
Optimization of the induction hardening process of Tow Axle Spindle  
 

 

Mohan K Misra
1
 

Bishakh Bhattacharya
2
 

Onkar Singh
3
 

A. Chatterjee
4 

1
PhD scholar, GB technical University Lucknow, India.   

2
Professor, Indian Institute of Technology Kanpur, India.    

3
Professor,HBTI Kanpur, India.    

4
P. Reseach Engineer, Indian Institute of Technology Kanpur, India.   

 

 

Abstract 

 
In the present paper, an investigation is performed 

to find out best combination of process parameters 

for induction hardening of Tow Axle Spindle with 

the help of design of experiments (DOE). Quality 

characteristics like effective case depth (ECD) and 

hardness are analyzed for various combinations of 

medium frequency power, feed rate, quench 

pressure and temperature. The experimental trials 

are conducted, based on the design matrix 

obtained from the rotatable central composite 

design (CCD) and D-optimal, with the help of 150 

kW power converter equipped with an induction 

hardening station. To investigate the induction 

hardening process, for combined influence of all 

four above mentioned process parameters, 

significant regression modes are developed to 

predict the quality characteristics using response 

surface methodology (RSM). The mathematical 

model, developed during the course of research, 

helped in investigating induction hardening 

process with analytical technique like desirability. 

Desirability test showed its efficacy in finding out 

number of optimal strategies for hardening of 

spindle shaft axle to achieve the desired ECD and 

hardness values. The desirability index, in a multi-

response process like induction hardening, 

suggested that selection of both, heating and 

quenching parameters is significant.  

 

Keywords: Response Surface Methodology, 

Desirability, Induction hardening. 

 

1. Introduction 

 
Industrial hardening process, meant for specific 

applications, demand critical changes designed to be 

introduced in material properties. Manufacturing 

processes, which bring these critical changes, are 

classified as property-sensitive processes. Heat 

treatment, for example, is one such kind of extensively 

applied process. Processes like hardening, softening 

and grain refinement are often needed to be performed 

for very specific operations. Similar to other heat 

treatment processes, induction hardening brings 

changes into the properties of metal or alloy in the 

solid state, through a cycle of heating and cooling [1]. 

However, some of the distinctive functional objectives, 

which are desired to be obtained after induction 

hardening process, are as following:  

a) Refined grain size.  

b) Improved mechanical properties like strength, 

hardness, and toughness.  

c) Increased wear resistance   

d) Improved shock resistance. 

The motivation of giving preference to induction 

hardening over other heat treatments processes is due 

to the fact that induction hardening has fast cycle time, 

better reproducibility and lower energy consumption. It 

is interesting to note that most of the time; induction 

hardening processes are set up using engineering 

experience and a trial-and-error procedure for 

achieving the above mentioned desired functional 

objectives. It also includes a series of hardening trials 
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and metallographic testing. Therefore, besides the 

knowledge and experience, significant time is required 

to establish desired output quality out of the induction 

hardening process, resulting in the increased cost of the 

process itself. 

An in-depth analysis of process planning for specifying 

the process parameters like hardening method, power, 

operating frequency, feed rate, quench temperature, 

etc, is presented by Cajner [2]. It is observed that the 

features of process setup, for induction hardening, do 

not influence the output of this process in a predictable 

manner. Therefore, it is necessary to develop more 

rigorous relationships between the system output and 

various parameters that control the process of 

Induction Hardening (IH). The present study focuses 

on optimizing those process parameters which are 

directly responsible for quality response i.e. required 

pattern of hardened layer, specified surface hardness 

and depth of surface hardening. A better planned and 

optimized IH process as described ahead can bring 

down material wastage significantly and reduce the 

cost and time of manufacturing.  

  

1.1 Induction hardening process -a brief 

description 

 
In the induction hardening process, the metal is heated 

up to a temperature till there is change of state or 

change in the structure. The change of structure does 

not occur at a constant temperature; therefore 

transformation range of temperature is critical for IH 

process. Austenite structure formation (above 750˚C) 

can be treated as the desired change of structure. It is 

then, followed by very rapid cooling of the structure to 

a temperature 205˚ to 215˚C or even lower than that. 

As a result of such rapid cooling, austenitic structure 

changes to martensite with a tetragonal crystal 

structure. The  martensite exhibits hardness value of 50 

~ 65 on Rockwell scale depending on the grain 

structure and carbon content  [3]. This martensite 

phase is only produced due to rapid quenching, where 

austenite is decomposed by entrapping up to 2% 

carbon. Therefore, it becomes extremely hard and 

brittle. IH process can be sub-divided into different 

phases depending upon heating and cooling cycle:  

a) Heating of the metal,   

b) Soaking of heat by metal and  

c) Rapid cooling. 

Favennec et al. (2003) [4] described that rapid cooling 

of steel generates thermal stresses due to uneven 

cooling, therefore, produces an unequal distribution of 

austenite and its decomposition product. This mixture 

of austenite and martensite, pearlite etc is formed at 

different rate of cooling in outer layers and central 

portion of steel component. Correspondingly it creates 

a soft core and hard outer surface of steel components, 

when induction hardening process terminates. 

Haimbaugh (2001) [5] described about desired quality 

parameters, of induction hardening process, i.e. 

effective case depth (ECD) and hardness value in 

details. Often, an improper IH process results in 

products with low hardness and insufficient ECD, 

therefore, resulting in non-conforming output. 

Following reasons can be put forth, which contributed 

towards, for low hardness value and insufficient ECD: 

 Inadequate heating temperature or 

time or both; 

 Unsatisfactory quenching conditions 

(temperature, pressure etc.). 

It is, therefore, essential to maintain optimum process 

parameters to ensure the requisite quality 

characteristics of induction hardening process output. 

Mucha et al. (1989) [6] suggested following as those 

important process parameters which require definite 

attention, while considering the output quality 

characteristics: 

a) Heating parameters (frequency, current, 

power)  

b) Quenching parameters (pressure, temperature, 

flow rate)  

c) Part handling (rotation, scanning, positioning)  

d) Induction tooling (inductor coil)  

Except inductor coil, all the other parameters are 

controlled by different settings in induction hardening 

equipment. Zinn and Semiatin (1988) [7] described 

that designing an inductor coil is a non trivial problem. 

It depends on various cross boundary phenomenon like 

effect of magnetism, electrical and thermal aspect on 

dynamic properties of steel components during 

induction hardening process. Induction hardening 

equipments are designed for producing a range of 

output therefore; only limited number of options is 

available to try for alteration in heating and quenching 

parameters. Since the parameters for IH process are 

interlinked, therefore, it is a perfect example of 
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optimization of interdependent variables of a dynamic 

system. The presented paper discussed about finding 

all the possible optimum combinations of process 

parameters, which ensure the desired hardness values 

and ECD of steel component after IH process. 

Therefore, only heating and quenching parameters are 

considered for optimization to obtain correct ECD and 

hardness value. In the following section, motivations 

for optimizing the process parameters are discussed. 

 

1.2 Optimization of processes with multiple 

variables 

Response surface methodology (RSM) is a useful tool 

for predicting the behavior of any process especially in 

manufacturing and helps to analyze using different 

statistical and mathematical methods. Following are 

the requisites to utilize RSM for optimization of the 

manufacturing process: 

a) Data collection for selection of independent 

variables which influence the system. 

b) After selecting an experimental matrix based 

on design of experiment (DOE), prediction of 

suitable model of the system. 

c) Perform optimization for this predicted model 

for already selected goals (maximizing, 

minimizing or for target value of response 

variables).  

Bezerra et al. (2008) [8] also defined RSM as a 

powerful technique for optimization. Most of the work 

in RSM has been focused on the case where, there is 

only one response of interest. In a manufacturing 

process, like IH process, there are more than one 

response variables. Therefore, for the determination of 

optimum conditions, simultaneous consideration of all 

the responses on the input variables is necessary. In 

multi-response problem environment, to predict the 

combination of process parameters, a relatively robust 

and cost effective approach is an essential need. 

Method proposed by Taguchi (1987) [9], has proved 

very helpful amongst manufacturers. This conventional 

method is focused only on a single quality 

characteristic to optimize the parameter conditions, 

hence, when it comes across a multiple quality 

characteristics process, it sometimes may lead to 

serious degradation of the other critical quality 

characteristics. This limitation proved fatal when the 

characteristics are interlinked i.e. parameters have 

some definite weightage on quality parameters of 

process output like IH process.  

Phadke (1995) [10] also mentioned that it is rather 

difficult to optimize responses simultaneously in a 

complex process by single-response method. 

Therefore, engineering judgment is primarily used to 

resolve such complicated problems. The major 

problem arises when this engineering decision 

increases the degree of uncertainty during decision-

making process. This, over optimization, often makes 

it most critical to the quality of output and the validity 

and robustness of results and therefore, cannot be 

guaranteed using this approach alone.  

Bainik and Mazumder [11] described the main 

objective of DOE as the selection of position where 

response is to be evaluated. This DOE results a 

mathematical model of the process or system, which 

can be in the form of polynomial.  In order to construct 

a best suited model of IH process, specifically designed 

experiment matrix is required, which may be framed 

depending on the following methods:  

a) Full factorial design  

b) Central composite design  

c) D-optimal Design.  

Montgomery et al. [12] informed in-depth details on 

these methods. 

Aman et al [13] presented their study on determining 

optimum parameters for CNC operation using 

desirability function. For optimization of tool life, 

cutting force, power consumption and surface 

roughness, four controllable factors i.e. cutting speed, 

feed, depth of cut and nose radius were selected. The 

desirability concept has been used for multi-response 

optimization owing to its better readability, 

acceptability and visualization as compared to other 

multi characteristic optimization techniques like utility 

concept, principal component analysis etc. Desirability 

function can be a better alternate for processes with 

multi-response objectives. The following section 

elaborates it further. 
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2. Desirability function for IH process 

optimization 

Multi response optimization methods, including the 

conventional desirability function approach and loss 

function approach, are categorized into the prior 

method therefore; all the necessary information about 

preference should be made available before solving the 

problem. Desirability function proposed in 80’s by 

Derringer and Suich, which is further modified as 

suggested by Del Castillo et al. (1996) [14]. 

Subsequently, Carlyle et al. (2000) [15] also informed 

that desirability function is a better approach for the 

optimization of multiple quality characteristics 

problems. In a significant research contribution, he has 

tried to address the limitation of Taguchi’s method 

while encountering the effect of variability in multiple 

quality characteristics processes. Desirability function 

not only proved effective to optimizing inter-related 

multiple quality characteristics based processes but 

also represented a relatively simple method of scale 

free values between 0 and 1 for process characteristics. 

In this function, the most suitable parameter should be 

announced based on its proximity with the output 

response value. The highest geometric mean of the 

individual desirability for all the combinations 

considered as optimal parameter conditions. The 

desirability function D is defined as following in (1) as: 

D= (d 1× d 2× .. .. . .. .. . .. .d n)
1 /n= [∏

i= 1

n

di]
1/n

 

(1)    

where n denotes the number of quality characteristics. 

In our present study, we are targeting to optimize ECD 

and hardness value only; therefore, n will be 2 in our 

case, as mentioned in (2) 

D= (d 1× d 2)
1/2

                                                   (2) 

Here desirability function 
d i is assigned numbers 

between 0 and 1 to the possible value for each 

response. The value of 
d i increases as the desirability 

of the corresponding response increases.  

Kohli and Singh (2012) [16] have performed 

desirability test on induction hardening of AISI 1040 

rolled steel by doing a set of experiments. However, 

process parameters taken into consideration were: 

 Feed rate (mm/sec), 

 Dwell time (sec),  

 Current (amp.), 

 Gap between work piece and inductor coil 

(mm). 

As informed, desirability found to be 0.874 

corresponds to maximum value of quality 

characteristics (Mean ECD, hardness value, total ECD) 

in a selected range of process parameters. 

Since induction hardening process can only be 

terminated when both heating and quenching 

operations are completed, therefore, ignoring 

quenching parameters like temperature or pressure 

seems unreasonable. In his book, Rudnev et al. (2002) 

[17] presented state of the art in induction hardening 

process. It is suggested that while considering for 

optimization of Induction hardening process, it is 

necessary to comprehend heating as well as quenching 

process. 

In order to validate the effect of heating parameters and 

quenching parameters on desirability function, both 

parameters are considered in our present research. 

Therefore, with this modified approach for predicting 

quality response functions like ECD and hardness 

values, a reasonable desirability can be established. To 

make this study more useful, modeling of IH process 

using two powerful strategies i.e. central composite 

design (CCD) and D-optimal is carried out. DOE 

matrices from CCD and D-optimal are then optimized 

for target values of ECD and hardness. The 

optimization results thus obtained, informed the 

efficacy of CCD and D-optimal Multi Response 

Optimization (MRO) processes.   

The following section describes this new dimension for 

solving multiple response optimizations in the field of 

induction hardening process. 
 

3. Experimental set up  

 
3.1 Component presented for experiments 

 
Steel is an alloy of iron and carbon, with carbon 

content maximum up to 1.7%. The carbon, which 

appears in the form of iron carbide, exhibits its ability 

to increase the hardness and strength to the steel. For 

the present study, a typical tow axle spindle, used in 

farm tractors, is considered. Total length of spindle is 

200mm and the diameter presented for induction 
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hardening is found to be as 35mm as shown in Figure 

1. 

 

 
Figure 1. Tow axle spindle 

 

The carbon, which appears in the form of iron carbide, 

exhibits its ability to increase the hardness and strength 

to the steel. Apart from other elements e.g. silicon, 

sulphur, phosphorus and manganese are also present to 

greater or lesser amount to add desired properties to 

steel. The material for steel component is AISI 1045 

(see Table 1 for specification as mentioned in Budinski 

and Budinski (2009)) [18] which is suitable for 

majority of automotive components like axle and 

spline shafts. 
 

Table 1. Material specification of AISI 1045 
 

C % Mn % P % S % 

0.43-0.5 0.6-0.9 0.04 max 0.05 

 

3.2 Experimental plan for data collection 

 

To perform the experiments, a medium frequency 

induction hardening equipment with 10 kHz, 150 kW 

rated power converter has been used. It is important to 

mention here that induction hardening equipments are 

manufactured to harden specific component or for 

specific range of steel components only, therefore, 

altering the heating and quenching parameters, beyond 

certain limits, is not possible. A careful selection of 

desired input process parameters with suitable range 

thus becomes an important task. This always helps to 

make the optimum usage of available resource, in our 

case; it is 150 kW power converter and attached 

hardening station. Process parameters, observed during 

the induction hardening process, were as follows: 

1. Medium frequency power (in kW); 

2. Feed rate (in % of rotation); 

3. Quench temperature (in ◦ C); and 

4. Quenching water pressure (in Kg/cm
2
). 

Literature review on properties achieved after the 

induction hardening process, along with engineering 

judgment and few preliminary trials on tow axle 

spindle for establishing quality parameters helped in 

deciding the range of parameters considered for 

experiments as shown in Table 2.  

 
Table 2. Range of process parameters for 

experiments 

 

Sl.  Parameter Range 

1. MF  power 75~90 kW 

2. Feed rate 75~90 % 

3. Quenching pressure 2.0~3.5 Kg/cm
2
 

4. Quenching temperature 20~35 ˚C 

 

3.3 Design of experiment (DOE) 

 
For obtaining an accurate response surface, identifying 

deserving data points and selection of a good set of 

points for carrying out experiments, proved vital. 

Therefore, design of experiments (DOE) is considered 

a useful tool for multi-response optimization (MRO) 

problem. To optimize the quality parameters, 

conducting large number of experimentation of 

different combination of process parameters is 

expansive. Here, software package design expert is 

used for obtaining DOE and collect data. As already 

discussed, DOE matrices are chosen based on Central 

Composite Design (CCD) with rotatable option and D-

optimal with coordinate exchange. It helps to maintain 

the desired level of accuracy in less number of tests. As 

already informed, industrial IH equipments can only be 

operational in certain incremental steps (like 75, 80, 85 

etc.). Therefore, certain modifications on DOE 

matrices are necessary, for obtaining experimental data 

of ECD and hardness value. DOE matrices thus 

generated, through design expert software, are then 

modified from the experimental results of IH process 

carried out on 50 no. of tow axle spindle. The complete 

sets of data, for conducting response surface 

methodology, with experimental results of chosen 
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quality response parameters (ECD and hardness value) 

are presented in Table 3 & 4:  

 

 

 

 
Table 3. DOE based on Central composite design 

 
Run 

no. 

MF  

Power 

kW 

Feed 

Rate 

 % 

Quench 

Press. 

Kg/cm2 

Quenc

h 

Temp. 

˚ C 

ECD 

mm 

Hard 

ness 

HRC 

1 75 85 3.0 30 1.8 52 

2 75 75 3.5 35 2.4 54 

3 90 90 3.5 25 2.4 54 

4 90 90 3.5 35 2.7 52 

5 75 90 2.0 25 1.0 48 

6 85 80 3.0 25 2.4 54 

7 90 90 2.0 35 1.9 48 

8 85 75 3.0 30 2.7 55 

9 75 75 2.0 25 1.5 52 

10 90 75 3.5 35 3.3 56 

11 80 85 3.0 35 2.1 50 

12 90 75 2.0 35 2.5 50 

13 90 75 3.5 25 3.2 58 

14 85 80 3.0 30 2.5 54 

15 90 90 2.0 25 1.7 50 

16 85 80 3.0 30 2.6 54 

17 85 85 3.0 30 2.3 52 

18 80 80 2.0 30 1.7 48 

19 85 85 3.0 30 2.4 52 

20 85 85 3.0 30 2.3 52 

21 75 90 2.0 35 1.1 45 

22 85 80 4.0 30 2.8 56 

23 75 75 3.5 25 2.4 56 

24 75 90 3.5 25 1.8 52 

25 90 75 2.0 25 2.4 52 

26 80 85 3.0 30 2.0 52 

27 90 80 3.0 30 2.6 54 

28 75 75 2.0 35 1.6 50 

29 80 90 3.0 30 2.0 50 

30 75 90 3.5 35 2.0 50 

 
 
 
 
 
 
Table 4 DOE based on D-optimal 
 

Run 

no. 

MF  

Power 

kW 

Feed 

Rate 

 % 

Quench 

Press. 

Kg/cm2 

Quench 

Temp. 

˚ C 

ECD 

mm 

Hard 

ness 

HRC 

1 75 85 3.0 30 1.8 52 

2 75 75 3.5 35 2.4 54 

3 90 90 3.5 25 2.4 54 

4 90 90 3.5 35 2.7 52 

5 75 90 2.0 25 1.0 48 

6 85 80 3.0 25 2.4 54 

7 90 90 2.0 35 1.9 48 

8 85 75 3.0 30 2.7 55 

9 75 75 2.0 25 1.5 52 

10 90 75 3.5 35 3.3 56 

11 80 85 3.0 35 2.1 50 

12 90 75 2.0 35 2.5 50 

13 90 75 3.5 25 3.2 58 

14 85 80 3.0 30 2.5 54 

15 90 90 2.0 25 1.7 50 

16 85 80 3.0 30 2.6 54 

17 85 85 3.0 30 2.3 52 

18 80 80 2.0 30 1.7 48 

19 85 85 3.0 30 2.4 52 

20 85 85 3.0 30 2.3 52 

21 75 90 2.0 35 1.1 45 

22 85 80 4.0 30 2.8 56 

23 75 75 3.5 25 2.4 56 

24 75 90 3.5 25 1.8 52 

25 90 75 2.0 25 2.4 52 

26 80 85 3.0 30 2.0 52 

27 90 80 3.0 30 2.6 54 

28 75 75 2.0 35 1.6 50 

29 80 90 3.0 30 2.0 50 

30 75 90 3.5 35 2.0 50 
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Those process outputs, which found crack or 

physically non- conforming, did not qualify for further 

analysis. Following section informed about the analysis 

of variance (ANOVA) on both the DOE matrices, and 

predicts the “best fit” model for IH process on 

presented steel component.  

 

3.4 Prediction of Model using ANOVA 

 

DOE matrices are analyzed for prediction of the 

mathematical models. The use of design expert 

software package allowed backward elimination of all 

the insignificant model terms in the initial polynomial 

equation. Table 5 & 6 show the analysis of variance 

(ANOVA) report: 

 
Table 5. Model significance using ANOVA (based 
on CCD) 

 
Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 8.28 8 1.03 241.0

8 

< 0.0001 

A-MF  

power 

2.81 1 2.81 655.0

7 

< 0.0001 

B-Feed  

Rate 

1.54 1 1.54 358.7

5 

< 0.0001 

C-Quench  

Press 

3.07 1 3.07 716.0

8 

< 0.0001 

D-Quench  

Temp 

0.09 1 0.09 20.05 0.0002 

AB 0.03 1 0.03 5.96 0.0235 

BD 0.01 1 0.01 3.37 0.0806 

B2 0.02 1 0.02 4.14 0.0547 

C2 0.05 1 0.05 11.75 0.0025 

Residual 0.09 21 0 - - 

Lack  

of Fit 

0.08 18 0 1.12 0.5357 

Pure  

Error 

0.01 3 0 - - 

Cor. Total 8.37 29 - - - 

Std. Dev.                

  Mean                              

C.V. %                 

PRESS                  

0.07 

2.20 

2.97 

0.16 

 R-Squared 

Adj R-Squared 

Pred R-Squared 

Adeq Precision   

     0.99 

     0.98 

     0.98 

   63.42    

 

ANOVA suggests that the predicted regression model 

is significant as model F-value found to be as 241.08 

and there is only 0.01% chance that ”Model F-Value” 

this large could occur due to noise. Values of Prob. > F 

less than 0.05 indicate model terms are significant. 

Therefore, medium frequency power, feed rate, quench 

pressure and temperature are all significant model 

terms. ANOVA analysis declared “Lack of Fit” as non-

significant; therefore it is equally good as the model 

needed to be fit. Due to our consideration, only for 

those components whose hardness values were lying 

between 49 and 59 HRC, a quadratic regression model 

predicted is represented in the following equation (3):  

 

ECD  = 2.93791 +0.10922 x MF power -0.18956 x 

Feed Rate +1.30988 x Quench Press  -0.051947 x 

Quench Temp -0.0007x MF power x Feed Rate 

+0.0008 x Feed Rate x Quench Temp +0.001 x Feed 

Rate
2
 -0.14134 x Quench Press

2                           (3)   

 
Table 6. Model significance using ANOVA (based 
on D-optimal) 
 

Source Sum of 

Squares 

df Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 8.8 4 2.2 1639.12 < 0.0001 

A-MF 

power 

4.1 1 4.1 3058.41 < 0.0001 

B-Feed  

Rate 

 1.77 1 1.77 1320.52 < 0.0001 

C-Quench 

Press 

3.41 1 3.41 2538.73 < 0.0001 

D-Quench 

Temp 

0.08 1 0.08 61.43 < 0.0001 

Residual 0.03 20 0 - - 

Lack 

 of Fit 

0.02 15 0 1.46 0.5355 

Pure  

Error 

0.01 5 0 - - 

Cor. Total 8.83 24 - - - 

Std. Dev. 

Mean    

C.V. %  

PRESS                 

0.04 

2.12  

1.72  

0.04             

 R-Squared 

 Adj R-Squared      

Pred R-Squared      

     Adeq Precision  

    1.00 

    0.99 

    0.99 

147.42   

 

When the experimental matrix, based on D-optimal 

strategy is analyzed, ANOVA suggests that predicted 

linear regression model is significant. Therefore, 

medium frequency power, feed rate, quench pressure 

and temperature are all significant model terms. 

ANOVA analysis brought out that the “Lack of Fit” as 

non-significant; therefore it is expected that linear 

regression model can be used to navigate the design 

space. 
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 Predicted linear regression model for ECD is 

represented in following equation (4):  

 

 ECD  = -0.149  +0.0419 x MF power -0.024 x Feed 

Rate +0.209  x  Quench Press  + 0.011 x Quench Temp            

(4) 

                                                

Following section presents the results of optimization 

for both models i.e. quadratic regression model 

predicted using CCD approach and linear regression 

model as predicted, using D-optimal strategy.  
                                  

4. Results and discussions 
 

The induction hardening process is desired for 

improved mechanical properties in steel components. 

Tow axle spindle, steel component for our present 

study, is desired to serve in an industrial environment. 

Therefore the effective case depth of 2.0 mm with 

hardness value 56 HRC is assigned during the design 

stage. We have considered these designed values as 

target values for response functions (ECD and hardness 

value) in our study. Theoretical desirability function 

for such conditions, where response functions are 

assigned with target values, is described as following: 

Goal-Target: 

 

d i =0              if response < low value 

0 ≤ d i ≤1        as response varies from low to target 

1 ≥ d i ≥0        as response varies from target to high 

d i =0              if response > high value. 

 

In order to find out the desirability index value for 

comprehensive effect of both the quality response 

characteristics on varying values of input parameters, 

equal weightage is assigned. Following Table 7 shows 

the criteria and weight assigned to each process 

parameter and response characteristics. 

 
Table 7. Criterion for process parameters and 
response characteristics 

 

Constraint Target Range Wt. Impor- 

tance 

MF power In range 75~90 1 3 

Feed rate In range 75~90 1 3 

Quench 

Pressure 

In range 2~3.5 1 3 

Quench 

Temp. 

In range 25~35 1 3 

ECD Target =2.0 1.3~3.3 1 3 

Hardness Target =56 49~59 1 3 

 

For target value of 2.0 mm as ECD and 56 HRC as 

hardness value, optimum values for mf power, feed 

rate, quenching pressure and temperature are found as 

75 kW, 82%, 3.5Kg/cm
2
 and 25˚C respectively. These 

process parameters are resultant of optimization of 

regression model predicted   using CCD approach. The 

desirability index found for predicted input conditions 

as 0.916. (See Fig. 2). 

 
 

Figure 2. Ramp function graph for desirability 
(optimization using CCD) 

 

While investigating the ramp function graph obtained 

for optimization of linear model, desirability index 

found to be 0.969 for the same set of process 

parameters. This graph is generated using linear model 

of IH process, which is predicted with the help of D-

optimal approach, (See Fig. 3 shown below) 

 

 
 

2928

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110941



Figure 3 Ramp function graph for desirability 
(optimization using D-optimal) 

 

Therefore considering heating as well as quenching 

parameters for quality characteristics evaluation, 

proved as a useful strategy. This is very significant 

contribution for multi response optimization in the 

field of processes like induction hardening where 

heating and quenching both are equally important to 

achieve desired quality characteristics (ECD and 

hardness) of output. 

 

5. Conclusions 
 

In this study, an optimization of process parameters for 

the induction hardening of Tow Axle Spindle is 

presented. The statistical analysis using ANOVA 

indicated that the effect of process parameters like 

quench pressure and temperature along with MF power 

and feed rate, too are significant factors for process 

response like ECD and hardness of IH process output. 

The optimum range of input variables (i.e. IH process 

parameters) that generated desired process output was 

determined through the desirability function.  With the 

selection of a D-optimal design, the substantial 

reduction of experimental effort can be produced. The 

predicted regression model, showed maximum 

desirability index as 0.969. The methodology shown in 

this paper is an empirical methodology that can be 

adapted to MRO processes of similar nature problem. 
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