
Optimized Architecture for an Adaptive FIR

Filter using Distributed Arithmetic

Sathyabhama.

B

1
, Sahaana harishankar

2
, Preetha

3

1

Assistant Professor, Department

of

Electronics and Communication, Panimalar engineering college, Chennai, India

2

Sahaana harishankar, Department

of

Electronics and Communication, Panimalar engineering college, Chennai, India

3

Preetha, Department

of

Electronics and Communication, Panimalar engineering college, Chennai, India

Abstract — the architecture is based on distributed arithmetic

in which the partial products of filter coefficients are pre-

computed. These coefficients are stored in lookup tables (LUTs)

and the weighted co-efficient are updated using Offset Binary

Coding (OBC).The filtering is done by shift and accumulate

operations on these partial products. Thus, it results in lesser

area comparatively and this technique can be applied to all FIR

based adaptive filter application. Results are obtained using

modelsim and altera quartus tool.

 Index Terms- adaptive filter, Distributed Arithmetic (DA), finite

impulse response (FIR), least Mean Square (LMS), lookup table

(LUT), Offset Binary Coding (OBC).

I. INTRODUCTION

 Adaptive filters are widely used in many Signal

Processing, applications like system identification and

modeling, equalization, interference and echo cancelation.

However, in many applications such as echo cancelation and

system identification, coefficient adaption is needed. Such

filters are generally made of Finite –Impulse- Response (FIR)

filters whose coefficients are updated as per a minimization

criterion. The output of a FIR filter is the weighted sum of

present and past input samples and , hence they can be

realized using multiply and accumulate(MAC) units .If N is

the number of filter taps, a single MAC unit would take N

clock cycles to produce one sample of output sequence.

Although, multiple MAC units can be utilized in order to

increase the speed of the system the system cost increases as

the multipliers consume more area.

 Distributed Arithmetic (DA) is one of the efficient

techniques to realize the higher order filters and it can achieve

the high throughputs without using Hardware Multipliers.

Distributed Arithmetic is essentially a bit serial operation that

produces the sum of products in a fixed number of clock

cycles regardless of the number of products to be summed up.

The basic idea behind DA is that, the pre-computed partial

products are stored in look up tables (LUT), accessing and

shift-accumulating. The right ones will generate the output.

Furthermore, the Multiplier less architecture of DA makes it

the most effective one to realize the higher order filters. A

fixed –coefficient filter can be easily realized using DA by

storing the partial products of filter coefficients in the LUT.

However the DA treatment to adaptive filters will face certain

difficulties not encountered in the fixed-coefficient case

namely, the two principal operations – filtering and weight

updating are manually coupled and so the partial products of

the filter coefficients stored in the LUTs are recalculated

before the filtering operation. However, few attempts have

been made to realize adaptive filters using DA by

approximations to standard adaptation algorithms which will

degrade the performance.

II. FIR FILTER DESIGN

A. DA (DISTRIBUTED ARITHMETIC) based FIR Filter

Memory based structures are well-suited for many digital

signal processing (DSP) algorithms, which involve

multiplication with a fixed set of coefficients. For this

Distributed Arithmetic architecture is used in our FIR filter

design along with the technique of Offset Binary Coding(OBC).

DA is an efficient technique for calculation of sum of products

or vector dot product or inner product or multiply and

accumulate (MAC). MAC operation is very common in all

Digital Signal Processing Algorithms. This technique consists

of Accumulators, Look Up Tables and Shift registers.

According to this technique, all of the multipliers are totally

removed and are replaced by array multipliers. The LUTs can

be subdivided into many LUTs so that the size of the higher

order filters can be reduced. In DA, the cumulative partial

products are precomputed and stored in a Look Up Table

(LUT) that is addressed by multiplier bits. The output y[n] of

an N –tap fir filter with the present input sample x[n] at any

instant n is given by

y[n]=





1

0

][][
N

i

inxiw

2089

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031874

Fig.1. DA based implementation of four tap fir filter

Where w[i] (i=0,1,…,N-1) denotes the weights of the filter

.By representing each of the input samples x[n-i] in the two’s

complement form,we got

X [n-i] =
j

B

j

jBiBiin bbx 




  2
1

1

1,1, (2)

By substituting (2) into (1) and rearranging, we will get

 Y[n]=
j

B

j

jBc 




 2
1

0

1

Where

 jBi

N

i

ijB bwc 





  1,

1

0

.1 (j 0)

 




 
1

0

1

N

i

iB wc 1, Bib

Thus for the given set of iw (i=0, 1..., N-1).the terms jBc 1

Would take only one out of
N2 possible combinatonal, which

can be precomputed and stored in LUT.The DA

implementation of a four- tap FIR filter is shown in fig.1. The

incoming bits of input samples are stored in the registers in the

order that, at any instant the bits of the most recent input

sample are stored in the top most register while the bits of the

oldest sample are stored in the bottommost register. The least

significant bits (LSBs) from each of the registers from the

address lines to the LUT containing the partial products. The

partial products are then shifted and accumulated for “B"

number of clock cycles to produce one sample of the output.

III. ADAPTIVE FILTERING TECHNIQUE

 The diagram below shows a block diagram in

which a sample from a digital input signal x(n) is fed into a

device, called an adaptive filter, that computes a

corresponding output signal sample y(n) at time n. For the

moment, the structure of the adaptive filter is not important,

except for the fact that it contains adjustable parameters

whose values affect how y(n) is computed.

Fi g . 2 . Th e g en e r a l a d a p t i v e f i l t e r .

The output signal is compared to a second signal d (n), called

the desired response signal, by subtracting the two samples at

time n. This difference signal, given by

e(n) = d (n) − y(n) ,

is known as the error signal. The error signal is fed into a

procedure which alters or adapts the parameters of the filter

from time n to time (n + 1) in a well-defined manner. This

process of adaptation is represented by the oblique arrow that

pierces the adaptive filter block in the figure. As the time index

n is incremented, it is hoped that the output of the adaptive filter

becomes a better and better match to the desired response signal

through this adaptation process, such that the magnitude of

e(n) decreases over time. In this context, what is meant by

“better” is specified by the form of the adaptive algorithm used

to adjust the parameters of the adaptive filter.

In the adaptive filtering task, adaptation refers to the method

by which the parameters of the system are changed from time

index n to time index (n + 1). The number and types of

parameters within this system depend on the computational

structure chosen for the system.

A. DA-Based FIR Filter With the OBC technique

 The ROM size in the before mentioned block can be further

reduced using the OBC technique [5] as follows. By rewriting

(2) as x)]()[2/1(ininin xx  

Fig.3. DA based implementation of four tap fir filter using the OBC scheme

Choose

 (5)

By substituting (4) and (5) into (1) and rearranging we got

j

jBii

B

j

N

i

dwny 











  2)
2

1
(][. 1,

1

0

1

0

- (




1

02

1 N

i

iw) 2
)1( B

Define

 p ,,

1

0 2

1
jii

N

i

j dw




 0 1 Bj

2090

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031874

 P 





1

02

1 N

i

iinitial w

 (6)

We get this

 y[n]=
)1(

1

0

1 22 






  B

initial

B

j

j

jB pp (7)

Now, for the given set of iw (i=0,1,…,N-1), the terms PB-1-J

would take one out of 2
n

 combinations, half of which would

be the mirror image of the other half[4].Hence ,a 2
1N

sized

ROM can be used, the address of which can be obtained

through the EXOR operation of all the LSBs with the LSB of

the newest sample. Considering an adaptive filter that

processes an input signal x(n) and generates an output signal

y(n) as

 Y (n) = xwT

 (8)

Where
Tw = [

)](),...(),(110 nwnwnw N is the coefficient

vector and
)1(),...,1(),([ NnxnxnxxT

is the

input sample vector, where N is the number of filter

coefficients. If the least mean square (LMS) algorithm is

chosen, then each of the weights kw
(k=0,1,…,N-1) can be

updated using

)()()()1(knxnenwnw kk  

 (9)

Where e(n) = d(n) – y(n) is the error signal and


is the

approximate step size.

IV. PROPOSED DA – BLOCK FOR THE ADAPTIVE

FILTER

 The block schematic of the proposed DA- architecture for

efficient implementation of the filtering and weight update

operations consists of a register bank to store the incoming

input samples, a primary LUT (P-LUT) that stores the

combinations of weights that is responsible for the DA

filtering operation in every iteration and also a secondary

LUT(S-LUT) that will store the combination of input samples.

It also consists of a register R0 that along with S - LUT aids

the weight adaptation process, a shift - and – accumulate block

of the DA filtering operation, and a combinational logic block

that takes care of the weight adaptation process.

Fig.4. Primary LUT

Fig.5. Secondary LUT

 While the P-LUT can store the OBC combinations of the

filter weights, the S-LUT stores the OBC combination of input

samples except for the term containing the most recent input

sample which is stored in register 0R
.The entry of P-LUT at

time n addressed by a can be expressed as

1
1

1

)(
1

0
)1)((

2

1
)(

2

1
)(






 
a

kNq

k

N

k

a nwnwnP

2091

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031874

 =

,
2

1
waT

 a=0, 1, 2
2

N

-1

(10)

If the vector w is replaced by the vector x, which is

represented as x)]1(),...1(),([ NnxnxnxT
,then a

new LUT T(n) is formed with its entry at address location a

given as …,







1

1

,1

)(

)(
1)1)(()(

2

1
)(

N

k

q

a

a
kNknxnxnT

 a=0, 1,.., 2

2
N

-1 (12)

)()()()(0)(nsnRnT aa 
 (13)

Where 0R denotes the contents of the register 0R at time n

and)()(ns a is the entry of the S-LUT at time n addressed by a

 0R (n)=)(
2

1
nx

 (14)

 S
1

1

1

)(

)(
1)1)((

2

1
)(







a

kNq
N

k

a knxn

 (15)

In Fig-4, the contents of P-LUT and S-LUT at time instant n

for a four- tap filter are shown. It can be observed that S –LUT

stores the OBC combinations (lower half) of input samples

except for the sample x(n).In the S-LUT update scheme

averaging the S-LUT entry with its next consecutive entry

would generate a term that is independent of the oldest input

sample. The content of register Ro is then subtracted and

added with the result. For example, when N=4,the average of

the first and second entries of S-LUT would give

)],2()1([
2

1  nxnx Which is independent of the

third term x[n-3] .Now the subtraction and addition of the

term of [x{n}] with the result will generate the terms of

[-x{n}-x(n-1)-x(n-2)] and ½{x(n)-x(n-1)-x(n-2)},respectively

which are then stored in the same consecutive locations of S-

LUT. Similarly, the third and fourth locations of S-LUT are

updated by subtracting and adding the term1/2[x (n)] to their

average and storing the difference and sum in exactly the same

locations. In a similar way, all the entries of S-LUT can be

updated using the sum and the difference with the term

½[x(n)]. Mathematically, the new entries iS (n+1) of S-LUT

can be obtained from the old entries iS (n) with the index

entry]12,0[1  Ni as

iS (n+1) = (-1))()({2/1
]

2
[2]

2
[2

0

1 nSnSR ii

i 
} (16)

Fig.6.contents of s-LUT

Where 0R (n) is the entry of register 0R at time n. When the

new input sample x(n+1) has arrived ,the right - shifted

version of it that is term1/2[x(n+1)] is stored in the register

0R , which is useful for weight adaptation at time n+1.The S-

LUT update scheme from time n to n=1 for a 4-Tap filter is

shown in fig.5, where the positive and negative terms of the

input samples are represented by “1” and “0”,respectively.It

can be observed that, at time n+1,there are enough contents in

the S-LUT but their locations are not in proper order for the

weight adaptation. By close observation, it can be seen that the

contents of S-LUT are placed in the bit circularly right-shifted

addressed locations. For example, if we consider the data (at

time n+1) at address location 1(001) given as ½{x(n)+x(n-1)-

x(n-2)}which is supposed to be in address location 6(110)-

nothing but the circularly right-shifted version of the address

bits of location 5(101).

If “1” and “0” are the positive and negative terms in the OBC

combinations of input samples, at time n, the contents of S-

LUT would look like the binary sequence of the input

samples, as shown in fig.6.At time n+1,the contents would be

a circularly right-shifted version of that binary sequence .

Similarly at time n+2, the contents would be a circularly right-

shifted version of the binary sequence at time n+1 and so on.

Hence, for accessing the entries of S-LUT in each iteration,

instead of physically moving the contents, the address bits to

the S-LUT are circularly left-shifted. At time n+3, the

sequence once again would be a normal binary sequence as

shown in fig. 6.Accessing time can be reduced by maintaining

two similar S-LUTs namely, ODD-LUT and EVEN-LUT as

shown in fig.7, where the even location entries and odd

location entries are stored respectively. initialP Can be stored

in a register and can be updated in every iteration easily since

2092

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031874

the term initialP is nothing but the additive inverse of the entry

of P-LUT at its last address location. The algorithm which

explains the overall operation of the proposed filter is shown

in fig.8

 Fig. 7. Two LUT storing odd and even location

IV SIMULATION RESULTS

The following simulation results are obtained using altera

modelsim and synthesized using quartus.

Fig. 8. Fir filter using array multiplier

Fig. 9. Fir filter using Distributed Arithmetic

Fig. 10. Adaptive fir filter using Distributed Arithmetic

simulated results.

SUMMARY RESULTS (TABLE 1)

SUMMARY RESULTS (TABLE 2)

V. CONCLUSION

 In brief, we have presented an FIR adaptive filter

implementation based on DA. In order to reduce the memory

requirement this has been implemented . Unlike the technique

used in [11], hence the proposed technique uses an S-LUT

used to adapt weight process as in [10]. The technique used to

store complex combination of input samples and the prev

DESCRIPTION ADAPTIVE FIR FILTER

AREA Logic elements - 1322

POWER 327.81mw

TIMING 4.327ns

DESCRI
PTION

FIR FILTER WITH
ARRAY MULTIPLIER

FIR FILTER

WITH
DISTRIBUTED

ARITHMETIC

AREA Logic elements - 19
Logic elements

- 288

POWER 324.40mw 320.7mw

TIMING 15.923ns 4.824 ns

2093

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031874

ious input sample is smartly eliminated in order to update S-

LUT. Thus, the proposed structure will utilize very less chip

area and can operate at higher throughput when compared to

other existing blocks.

REFERENCES

[1] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson,

“LMS adaptive filters using distributed arithmetic for high throughput,”

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337,
Jul. 2005.

[2] R. Guo and L. S. DeBrunner, “Two high-performance adaptive filter

implementation schemes using distributed arithmetic,” IEEE Trans.
Circuit Syst. II, Exp. Briefs, vol. 58, no. 9, pp. 600–604, Sep. 2011.

[3] R. Guo and L. S. DeBrunner, “A novel adaptive filter implementation

scheme using distributed arithmetic,” in Conf. Rec. 45th ASILOMAR,
Nov. 2011, pp. 160–164.

[4] C. F. N. Cowan and J. Mavor, “New digital adaptive-filter

implementation using distributed-arithmetic techniques,” Proc. Inst.
Elect. Eng., vol. 128, no. 4, pt. F, pp. 225–230, Feb. 1981.

[5] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson,

“LMS adaptive filters using distributed arithmetic for high throughput,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337,

Jul. 2005.

[6] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson, “A
novel high performance distributed arithmetic adaptive filter

implementation on an FPGA,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2004, vol. 5, pp. V-161–V-164.

[7] .A. White, “Applications of distributed arithmetic to digital signal

processing: A tutorial review,” IEEE ASSP Mag., vol. 6, no. 3, pp. 4–19,
Jul. 1989.

[8] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson, “An

FPGA implementation for a high throughput adaptive filter using
distributed arithmetic,” in Proc. 12th Annu. IEEE Symp. Field-

Programmable Custom Comput. Mach., 2004, pp. 324–325.

[9] A. Croisier, D. J. Esteban, M. E. Levilion, and V. Rizo, “Digital Filter
for PCM Encoded Signals,” U.S. Patent 3 777 130, Apr. 1973.

[10] A. Peled and B. Lie, “A new hardware realization of digital filters,”

IEEE Trans. Acoustics, Sound, Signal Process., vol. ASSP-22, no. 4, pp.
456–462, Dec. 1974.

[11] Pocket Guide to DSP Processors, Berkeley Design Technology Inc.

(2003, Dec.). [Online]. Available: http://www.bdti.com

[12] Stratix Device Family Data Sheet, Altera Corporation.

(2003).[Online].Available:http://www.altera.com/literature/lit-
index.html

[13] J. P. Uyemura, Introduction to VLSI Circuits and Systems. New York:
Wiley, 2001

[14] M. Surya Prakash and R. Shaik, “High performance architecture for LMS
based adaptive filter using distributed arithmetic,” in Proc. ICICA, Mar.

2012, vol. 24, pp. 18–22.

2094

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031874

