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Abstract — the architecture is based on distributed arithmetic 

in which the partial products of filter coefficients are pre-

computed. These coefficients are stored in lookup tables (LUTs) 

and the weighted co-efficient are updated using Offset Binary 

Coding (OBC).The filtering is done by shift and accumulate 

operations on these partial products. Thus, it results in lesser 

area comparatively and this technique can be applied to all FIR 

based adaptive filter application. Results are obtained using 

modelsim and altera quartus tool. 

  Index Terms- adaptive filter, Distributed Arithmetic (DA), finite 

impulse response (FIR), least Mean Square (LMS), lookup table 

(LUT), Offset Binary Coding (OBC). 

I.  INTRODUCTION 

  

 Adaptive filters are widely used in many Signal 

Processing, applications like system identification and 

modeling, equalization, interference and echo cancelation. 

However, in many applications such as echo cancelation and 

system identification, coefficient adaption is needed. Such 

filters are generally made of Finite –Impulse- Response (FIR) 

filters whose coefficients are updated as per a minimization 

criterion. The output of a FIR filter is the weighted sum of 

present and past input samples and , hence they can be 

realized using multiply and accumulate(MAC) units .If N is 

the number of filter taps, a single MAC unit would take N 

clock cycles to produce one sample of  output sequence. 

Although, multiple MAC units can be utilized in order to 

increase the speed of the system the system cost increases as 

the multipliers consume more area. 

          Distributed Arithmetic (DA) is one of the efficient 

techniques to realize the higher order filters and it can achieve 

the high throughputs without using Hardware Multipliers. 

Distributed Arithmetic is essentially a bit serial operation that 

produces the sum of products in a fixed number of clock 

cycles regardless of the number of products to be summed up. 

The basic idea behind DA is that, the pre-computed partial 

products are stored in look up tables (LUT), accessing and 

shift-accumulating. The right ones will generate the output. 

Furthermore, the Multiplier less architecture of DA makes it 

the most effective one to realize the higher order filters.  A 

fixed –coefficient filter can be easily realized using DA by 

storing the partial products of filter coefficients in the LUT. 

However the DA treatment to adaptive filters will face certain 

difficulties not encountered in the fixed-coefficient case 

namely, the two principal operations – filtering and weight 

updating are manually coupled and so the partial products of 

the filter coefficients stored in the LUTs are recalculated 

before the filtering operation. However, few attempts have 

been made to realize adaptive filters using DA by 

approximations to standard adaptation algorithms which will 

degrade the performance. 

 

II.  FIR FILTER DESIGN  

 

A. DA (DISTRIBUTED ARITHMETIC) based FIR Filter  

 

Memory based structures are well-suited for many digital 

signal processing (DSP) algorithms, which involve 

multiplication with a fixed set of coefficients. For this 

Distributed Arithmetic architecture is used in our FIR filter 

design along with the technique of Offset Binary Coding(OBC). 

DA is an efficient technique for calculation of sum of products 

or vector dot product or inner product or multiply and 

accumulate (MAC). MAC operation is very common in all 

Digital Signal Processing Algorithms. This technique consists 

of Accumulators, Look Up Tables and Shift registers. 

According to this technique, all of the multipliers are totally 

removed and are replaced by array multipliers. The LUTs can 

be subdivided into many LUTs so that the size of the higher 

order filters can be reduced. In DA, the cumulative partial 

products are precomputed and stored in a Look Up Table 

(LUT) that is addressed by multiplier bits. The output y[n] of 

an N –tap fir filter with the present input sample x[n] at any 

instant n is given by                                  

y[n]=





1

0

][][
N

i

inxiw  
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Fig.1. DA based implementation of four tap fir filter 

Where w[i] (i=0,1,…,N-1) denotes the weights of  the filter 

.By representing each of the input samples x[n-i] in the two’s 

complement form,we got  

X [n-i] =
j

B

j

jBiBiin bbx 




  2
1

1

1,1,            (2) 

By substituting (2) into (1) and rearranging, we will get 

                   Y[n]=
j

B

j

jBc 




 2
1

0

1  

Where 

            jBi

N

i

ijB bwc 





  1,

1

0

.1       (j 0 ) 

             




 
1

0

1

N

i

iB wc 1, Bib  

Thus for the given set of iw (i=0, 1..., N-1).the terms jBc 1  

Would take only one out of 
N2 possible combinatonal, which 

can be precomputed and stored in LUT.The DA 

implementation of a four- tap FIR filter is shown in fig.1. The 

incoming bits of input samples are stored in the registers in the 

order that, at any instant the bits of the most recent input 

sample are stored in the top most register while the bits of the 

oldest sample are stored in the bottommost register. The least 

significant bits (LSBs) from each of the registers from the 

address lines to the LUT containing the partial products. The 

partial products are then shifted and accumulated for “B" 

number of clock cycles to produce one sample of the output. 

III. ADAPTIVE FILTERING TECHNIQUE 

 The  diagram  below shows a block diagram in 

which a sample from a digital input signal x(n) is fed into a 

device, called an adaptive filter, that computes a 

corresponding output signal sample y(n) at time n.  For the 

moment, the structure of the adaptive filter is not important, 

except for the fact that it contains adjustable parameters 

whose values affect how y(n) is computed.   

 
Fi g . 2 .  Th e  g en e r a l  a d a p t i v e  f i l t e r .  

 

The output signal is compared to a second signal d (n), called 

the desired response signal, by subtracting the two samples at 

time n. This difference signal, given by  

e(n) = d (n) − y(n) , 

is known as the error signal. The error signal is fed into a 

procedure which alters or adapts the parameters of the filter 

from time n to time  (n + 1) in a well-defined manner. This 

process of adaptation is represented by the oblique arrow that 

pierces the adaptive filter block in the figure. As the time index 

n is incremented, it is hoped that the output of the adaptive filter 

becomes a better and better match to the desired response signal 

through this adaptation process, such that the magnitude of 

e(n) decreases over time. In this context, what is meant by 

“better” is specified by the form of the adaptive algorithm used 

to adjust the parameters of the adaptive filter. 

In the adaptive filtering task, adaptation refers to the method 

by which the parameters of the system are changed from time 

index n to time index (n + 1). The number and types of 

parameters within this system depend on the computational 

structure chosen for the system. 

 

A.  DA-Based FIR Filter With the OBC technique 

 

    The ROM size in the before mentioned block can be further 

reduced using the OBC technique [5] as follows. By rewriting 

(2) as x )]()[2/1( ininin xx    

 
Fig.3. DA based implementation of four tap fir filter using the OBC scheme 

 

Choose 

       (5) 

By substituting (4) and (5) into (1) and rearranging we got  

  
j

jBii

B

j

N

i

dwny 
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   P 





1

02

1 N

i

iinitial w                                      

              (6) 

We get this 

    y[n]=
)1(

1

0

1 22 






  B

initial

B

j

j

jB pp           (7) 

Now, for the given set of iw (i=0,1,…,N-1), the terms PB-1-J 

would take one out of 2
n

 combinations, half of which would 

be the mirror image of the other half[4].Hence  ,a 2
1N

sized 

ROM can be used, the address of which can be obtained 

through the EXOR operation of all the LSBs with the LSB of 

the newest sample. Considering an adaptive filter that 

processes an input signal x(n) and generates an output signal 

y(n) as 

 

                                Y (n) = xwT

            (8) 

 

Where 
Tw = [

)](),...(),( 110 nwnwnw N  is the coefficient 

vector and 
)1(),...,1(),([  NnxnxnxxT

is the 

input sample vector, where N is the number of filter 

coefficients. If the least mean square (LMS) algorithm is 

chosen, then each of the weights kw
(k=0,1,…,N-1) can be 

updated using  

           
)()()()1( knxnenwnw kk  

        (9) 

 

Where e(n) = d(n) – y(n) is the error signal and 


is the 

approximate step size. 

 

 

IV.   PROPOSED DA – BLOCK FOR THE ADAPTIVE 

FILTER 

 

    The block schematic of the proposed DA- architecture for 

efficient implementation of the filtering and weight update 

operations consists of a register bank to store the incoming 

input samples, a primary LUT (P-LUT) that stores the 

combinations of weights that is responsible for the DA 

filtering operation in every iteration and also a secondary 

LUT(S-LUT) that will store the combination of input samples. 

It also consists of a register R0 that along with S - LUT aids 

the weight adaptation process, a shift - and – accumulate block 

of the DA filtering operation, and a combinational logic block 

that takes care of the weight adaptation process. 

 

 
Fig.4. Primary LUT 

 

 

 
Fig.5. Secondary LUT 

 While the P-LUT can store the OBC combinations of the 

filter weights, the S-LUT stores the OBC combination of input 

samples except for the term containing the most recent input 

sample which is stored in register 0R
.The entry of P-LUT at 

time n addressed by a can be expressed as 

1
1

1

)(
1

0
)1)((

2

1
)(

2

1
)(






 
a

kNq

k

N

k

a nwnwnP

 

2091

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031874



                 =

,
2

1
waT

      a=0, 1, 2
2

N

-1                                 

(10) 
 

  

      

           

If the vector w is replaced by the vector x, which is 

represented as x )]1(),...1(),([  NnxnxnxT
,then a 

new LUT T(n) is formed with its entry at address location a 

given as …, 

            






1

1

,1

)(

)(
1)1)(()(

2

1
)(

N

k

q

a

a
kNknxnxnT

     

                        a=0, 1,.., 2

2
N

-1                                        (12) 

 

            

)()()( )(0)( nsnRnT aa 
                             (13) 

Where 0R  denotes the contents of the register 0R at time n 

and )()( ns a is the entry of the S-LUT at time n addressed by a 

                    0R (n)= )(
2

1
nx

                                          (14) 

                  S
1

1

1

)(

)(
1)1)((

2

1
)(







a

kNq
N

k

a knxn

        (15) 

In Fig-4, the contents of P-LUT and S-LUT at time instant n 

for a four- tap filter are shown. It can be observed that S –LUT 

stores the OBC combinations (lower half) of input samples 

except for the sample x(n).In the S-LUT update scheme 

averaging the S-LUT entry with its next consecutive entry 

would generate a term that is independent of the oldest input 

sample. The content of register Ro is then subtracted and 

added with the result. For example, when N=4,the average of 

the first and second entries of S-LUT would give 

)],2()1([
2

1  nxnx Which is independent of the 

 

third term x[n-3] .Now the subtraction and addition of the 

term of [x{n}] with the result will generate the terms of          

[-x{n}-x(n-1)-x(n-2)] and ½{x(n)-x(n-1)-x(n-2)},respectively 

which are then stored in the same consecutive locations of S-

LUT. Similarly, the third and fourth locations of S-LUT are 

updated by subtracting and adding the term1/2[x (n)] to their 

average and storing the difference and sum in exactly the same 

locations. In a similar way, all the entries of S-LUT can be 

updated using the sum and the difference with the term 

½[x(n)].  Mathematically, the new entries iS (n+1) of S-LUT 

can be obtained from the old entries iS (n) with the index 

entry ]12,0[ 1  Ni as 

iS (n+1) = (-1) )()({2/1
]

2
[2]

2
[2

0

1 nSnSR ii

i 
}    (16) 

 

 
Fig.6.contents of s-LUT 

        

 

Where 0R (n) is the entry of register 0R  at time n. When the 

new input sample x(n+1) has arrived ,the right - shifted 

version of it that is term1/2[x(n+1)]  is stored in the register 

0R , which is useful for weight adaptation at time n+1.The S-

LUT update scheme from time n to n=1 for a 4-Tap filter is 

shown in fig.5, where the positive and negative terms of the 

input samples are represented by “1” and “0”,respectively.It 

can be observed that, at time n+1,there are enough contents in 

the S-LUT but their locations are not in proper order for the 

weight adaptation. By close observation, it can be seen that the 

contents of S-LUT are placed in the bit circularly right-shifted 

addressed locations. For example, if we consider the data (at 

time n+1) at address location 1(001) given as  ½{x(n)+x(n-1)-

x(n-2)}which is supposed to be in address location 6(110)-

nothing but the circularly right-shifted version of the address 

bits of location 5(101). 

If “1” and “0” are the positive and negative terms in the OBC 

combinations of input samples, at time n, the contents of S-

LUT would look like the binary sequence of the input 

samples, as shown in fig.6.At time n+1,the contents would be 

a circularly right-shifted version of that binary sequence . 

Similarly at time n+2, the contents would be a circularly right-

shifted version of the binary sequence at time n+1 and so on. 

Hence, for accessing the entries of S-LUT in each iteration, 

instead of physically moving the contents, the address bits to 

the S-LUT are circularly left-shifted. At time n+3, the 

sequence once again would be a normal binary sequence as 

shown in fig. 6.Accessing time can be reduced by maintaining 

two similar S-LUTs namely, ODD-LUT and EVEN-LUT as 

shown in fig.7, where the even location entries and odd 

location entries are stored respectively. initialP  Can be stored 

in a register and can be updated in every iteration easily since 
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the term initialP  is nothing but the additive inverse of the entry 

of P-LUT at its last address location. The algorithm which 

explains the overall operation of the proposed filter is shown 

in fig.8 

 
 

      Fig. 7. Two LUT storing odd and even location   

 

IV  SIMULATION RESULTS 

The following simulation results are obtained using altera 

modelsim and synthesized using quartus. 

 

Fig. 8.     Fir filter using array multiplier 

 

Fig. 9.  Fir filter using Distributed Arithmetic 

 

 

Fig. 10. Adaptive fir filter using Distributed Arithmetic 

simulated results. 

SUMMARY RESULTS (TABLE 1) 

 

 

 

 

 

 

 

 

SUMMARY RESULTS (TABLE 2) 

 

 

 

 

V.  CONCLUSION 

    In brief, we have presented an FIR adaptive filter 

implementation based on DA. In order to reduce the memory 

requirement this has been implemented . Unlike the technique 

used in [11], hence the proposed technique uses an S-LUT 

used to adapt weight process as in [10]. The  technique used to 

store complex combination of input samples and the prev 

DESCRIPTION ADAPTIVE FIR FILTER 

AREA Logic elements - 1322 

POWER 327.81mw 

TIMING 4.327ns 

DESCRI
PTION 

FIR FILTER WITH 
ARRAY MULTIPLIER 

FIR FILTER 

WITH 
DISTRIBUTED 

ARITHMETIC 

AREA Logic elements - 19 
Logic elements 

- 288 

POWER 324.40mw 320.7mw 

TIMING 15.923ns 4.824 ns 
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ious input sample is smartly eliminated in order to update S-

LUT.  Thus, the proposed structure will utilize very less chip 

area and can operate at higher throughput when compared to 

other existing blocks.  
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