
Optimized Design Implementation of Direct

Memory-Based Hardware for Efficient Resource-

Constraint Digital Signal Processing Systems

Nandita Jaiswal
M.Tech (VLSI),

Department of Electronics & Communication Engineering

 Hindustan College of Science & Technology

 Farah, Mathura, India

Soumitra Sarkar
M.Tech Project Coordinator,

Department of Electronics & Communication Engineering

 Hindustan College of Science & Technology

 Farah, Mathura, India

Abstract— An advance approach for Direct-Memory-Based

hardware for area-delay-power efficient systems for commonly

encountered computation-intensive cores of digital signal

processing (DSP) systems is presented by combining three

techniques, where the memory-size is reduced to one-eighth at

the cost of some increase in combinational circuit complexity for

signed magnitude numbers. Each of these techniques results in

the reduction of the memory size by a factor of two. It is shown

that by efficiently combining sign-bit exclusion technique, a

different form of anti-symmetric product coding (APC) and a

modified odd-multiple-storage (OMS) scheme, we get an

optimized direct-memory-based multiplication hardware for

resource-constraint DSP systems which provides a reduction in

memory size to one-eighth over conventional direct-memory-

based hardware, at the cost of a marginal area overhead. The

proposed design for small input sizes can be used for efficient

implementation of high-precision multiplication by input

operand decomposition. The proposed optimized design also

offers almost 87.5% and 85% reductions in direct- memory size

for L=5 bits and L=6 bits signed-magnitude numbers

respectively, over conventional direct-memory size.

Keywords— Digital signal processing (DSP), direct-memory-

based computing, very large scale integration (VLSI).

I. INTRODUCTION
Rapid advancement in very large scale integration (VLSI)

technology and hardware performance of digital devices have
paved way to efficient memory-based computing systems as
alternative to the conventional logic-only computing in order
to meet the stringent constraint and growing requirements of
the digital signal processing (DSP) systems in different
application environments. Since DSP is considered as the
major component of the digital revolution that is currently
taking place around the world, it is therefore, important to
design dedicated VLSI chips for fast and efficient
computation of the DSP applications. It is observed that
algorithms optimized for software-implementation, in general,
are not well-suited for dedicated hardware-implementation.
Appropriate algorithm design has a major role on developing a
hardware entity that can meet the system requirements and
specification. Not only it should necessarily lead to reduction
of computational complexity, but also should facilitate
maximization of concurrency by exploiting the possible
parallelism to achieve high-throughput performance.
Moreover, the architecture should be developed synergetic
with the underlying algorithms to derive a cost effective and
area-time-power efficient optimal VLSI. Memory-based
designs consequently are gaining substantial popularity in the

DSP application space. DSP algorithms involve multipliers
that not only consume most of the resources of the system but
also involve most of the computation-time. Significant
researches have, therefore, been made in the past two decades
for efficient multiplier less implementation of DSP systems.

Most of the DSP algorithms involve repetitive multiply
accumulate operations and inner-product computation.
Besides, very often the multiplying coefficients (e.g., filter
coefficients or transform kernel coefficients) remain constant
during the DSP operations. This behavior of DSP algorithms
is utilized to realize the memory-based computing systems.
There are two basic variants of memory-based computing
techniques found to be popularly used. One of the techniques
is the direct memory-based implementation of multiplications
[1], while the second is based on distributed arithmetic (DA)
[2]. The DA principle is used primarily to compute the inner-
products by repeated shift-add operations of partial products
corresponding to the successive bit-vectors of one of the input
vectors. Whereas in the direct-memory-based
implementations, the multiplications of input values with the
fixed coefficients are performed by a look-up-table (LUT),
where each of the LUTs contains the pre-computed product
values for all possible values of input samples.

Apart from that, memory-based computing structures are
more regular than the multiply–accumulate structures and
offer many other advantages, e.g., greater potential for high-
throughput and low-latency implementation and less dynamic
power consumption [11]. However, we find that now
increasing efforts are made to carry any sort of significant
work on optimization for memory-based multiplication.

The rest of the paper follows as: in the next section, we
have discussed comparison study of techniques used in direct-
memory-based computation. In Section III, the proposed
optimized technique used in direct-memory-based
multiplication are discussed which are sign-bit exclusion, the
APC and the modified OMS technique. The Section IV
explains to use optimized direct-memory-based multiplication
for signed and unsigned operands. The algorithmic design for
proposed techniques is given in Section V and the optimized
hardware implementation of direct-memory-based multiplier
is presented in Section VI. The results of the proposed
multiplier along with the conclusion are presented in Section
VII.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 202

II. COMPARISON STUDY OF TECHNIQUES USED

IN DIRECT-MEMORY-BASED COMPUTATION

Direct-Memory-based computing is well suited for many
DSP algorithms, which involve multiplication with a fixed set
of coefficients. In the conventional direct-memory-based
implementations, the multiplications of input value B with the
fixed coefficients A are performed by a look-up-table (LUT)
of size 2L, (L is the word-length of B) where each value of the

LUT contains the pre-computed product values P=AB for all

possible values of input samples. The product word A・Bi is

stored at the location Bi for 0 ≤ Bi ≤ 2L
 − 1, such that if an L-

bit binary value of Bi is used as the address for the LUT, then
the corresponding product value is available as its output.
Several architectures have been reported in the literature for
memory-based implementation of DSP algorithms involving
orthogonal transforms and digital filters [1]–[8].

 In [9], odd multiples of the fixed coefficient is required to
be stored, which is referred to as the odd-multiple-storage
(OMS) scheme. Using OMS approach, one can reduce the
LUT size to half, but it has significant combinational overhead
since it requires a barrel-shifter along with a control-circuit to
generate the control-bits for producing a maximum of (L − 1)
left-shifts, and an encoder to map the L-bit input word to (L −
1)- bit LUT address.

In [10], there is anti symmetric product coding (APC)
approach, in this the LUT size can also be reduced to half,
where the product words are recoded as anti symmetric pairs.
The APC approach, although providing a reduction in LUT
size by a factor of two, incorporates substantial overhead of
area and time to perform the two’s complement operation of
LUT output for sign modification and that of the input
operand for input mapping.

However, we find that when the APC approach is
combined with the OMS technique, the two’s complement
operations could be very much simplified since the input
address and LUT output could always be transformed into odd
integers. However, the OMS technique in [9] cannot be
combined with the APC scheme in [10], since the APC words
generated according to [10] are odd numbers. Moreover, the
OMS scheme in [9] does not provide an efficient
implementation when combined with the APC technique. In
[11], a combined APC-OMS scheme reduces the LUT size to
one-fourth. But further optimization can also be achieved,
with our proposed scheme that combines three techniques
which reduces the LUT size to one-eight. We therefore
present three schemes for optimization of LUT with lower
area-and time-overhead. One of the proposed optimization is
based on exclusion of sign-bit from the LUT address, and the
other two optimization is based on a coding of stored product
word, where a different form of APC and combined that with
a modified form of the OMS scheme for efficient memory
based multiplication are presented.

III. PROPOSED OPTIMIZED TECHNIQUE

EMPLOYED IN DIRECT- MEMORY-BASED

MULTIPLICATION
The optimization of product values stored could easily be

performed for unsigned as well as signed magnitudes
numbers. Besides, numbers could be fractions or integers in
fixed-point format. But, for simplicity we assume here the
multiplicand B to be an integer in sign-magnitude

representation, while the constant A is assumed to be either in
sign-magnitude or in 2’s complements representation. We
present here the proposed sign-bit exclusion scheme, the APC
technique and its further optimization by combining it with a
modified form of OMS.

A. Direct-Memory-Based Sign-Bit Exclusion Technique:

As the name suggest in this technique the sign-bit of
multiplier and multiplicand is excluded, and the product
values stored is P=|A|·|B|, where |A| is magnitude-part of A
and |B| is magnitude-part of B. The signed-bit which is the
most significant bit (MSB) of A and B are XOR operated and
the result of XOR operation is concatenated with P to get the
true result of multiplication. Since |B| is an (L − 1)-bit binary
number, all possible product values of |A|·|B| can be stored as
2(L-1) LUT words which reduces its size to half.

 The product words required to be stored for different
values of B for direct-memory-based multiplication for L = 6
is shown in Table I. The product word corresponding to B = (1
b4 b3 b2 b1 b0) is negative of that for B = (0 b4 b3 b2 b1 b0) for
any given value of |B| = (b4 b3 b2 b1 b0). Therefore, product
words on the fourth column can be derived by negating the
product word stored at the second column on the same row.
Therefore, instead of 64 product words only 32 values of |A| ·
|B| for all possible values of |B| are required to be stored, as
shown in the sixth column. The technique requires only one
additional XOR gate to determine the sign of product word P.

TABLE I. DIRECT-MEMORY-BASED SIGN-BIT EXCLUSION TECHNIQUE

FOR L=6

Input, B

address, |B|

product
Input, B

address, |B|

product stored words

values values

2’s comp

sign-

magnitude

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 A 1 0 0 0 0 1 −A A |A|

0 0 0 0 1 0 2A 1 0 0 0 1 0 −2A 2A 2|A|

0 0 0 0 1 1 3A 1 0 0 0 1 1 −3A 3A 3|A|

0 0 0 1 0 0 4A 1 0 0 1 0 0 −4A 4A 4|A|

0 0 0 1 0 1 5A 1 0 0 1 0 1 −5A 5A 5|A|

0 0 0 1 1 0 6A 1 0 0 1 1 0 −6A 6A 6|A|

0 0 0 1 1 1 7A 1 0 0 1 1 1 −7A 7A 7|A|

0 0 1 0 0 0 8A 1 0 1 0 0 0 −8A 8A 8|A|

0 0 1 0 0 1 9A 1 0 1 0 0 1 −9A 9A 9|A|

0 0 1 0 1 0 10A 1 0 1 0 1 0 −10A 10A 10|A|

0 0 1 0 1 1 11A 1 0 1 0 1 1 −11A 11A 11|A|

0 0 1 1 0 0 12A 1 0 1 1 0 0 −12A 12A 12|A|

0 0 1 1 0 1 13A 1 0 1 1 0 1 −13A 13A 13|A|

0 0 1 1 1 0 14A 1 0 1 1 1 0 −14A 14A 14|A|

0 0 1 1 1 1 15A 1 0 1 1 1 1 −15A 15A 15|A|

0 1 0 0 0 0 16A 1 1 0 0 0 0 −16A 16A 16|A|

0 1 0 0 0 1 17A 1 1 0 0 0 1 −17A 17A 17|A|

0 1 0 0 1 0 18A 1 1 0 0 1 0 −18A 18A 18|A|

0 1 0 0 1 1 19A 1 1 0 0 1 1 −19A 19A 19|A|

0 1 0 1 0 0 20A 1 1 0 1 0 0 −20A 20A 20|A|

0 1 0 1 0 1 21A 1 1 0 1 0 1 −21A 21A 21|A|

0 1 0 1 1 0 22A 1 1 0 1 1 0 −22A 22A 22|A|

0 1 0 1 1 1 23A 1 1 0 1 1 1 −23A 23A 23|A|

0 1 1 0 0 0 24A 1 1 1 0 0 0 −24A 24A 24|A|

0 1 1 0 0 1 25A 1 1 1 0 0 1 −25A 25A 25|A|

0 1 1 0 1 0 26A 1 1 1 0 1 0 −26A 26A 26|A|

0 1 1 0 1 1 27A 1 1 1 0 1 1 −27A 27A 27|A|

0 1 1 1 0 0 28A 1 1 1 1 0 0 −28A 28A 28|A|

0 1 1 1 0 1 29A 1 1 1 1 0 1 −29A 29A 29|A|

0 1 1 1 1 0 30A 1 1 1 1 1 0 −30A 30A 30|A|

0 1 1 1 1 1 31A 1 1 1 1 1 1 −31A 31A 31|A|

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 203

The sign-bit exclusion technique can also be applied for
2’s complement representation of coefficient A, which stores
the product words in 2’s complement representation, and
requires a 2’s complement unit along with a 2:1 MUX to
change the sign of LUT output for negative values of B. If the
sign bit is 0 the result is product value stored in LUT but if
sign bit is 1 the true result is 2’s complement of product value
stored in LUT. The address of stored product word is the same
as the magnitude bit of input.

B. Direct-Memory-Based Anti-Symmetric Product Coding

(Apc) Technique:
In Anti-Symmetric Product Coding we arrange the inputs

in such a way that we can utilize the anti-symmetric property
to get the output. Here for convince we assume both numbers
to be positive, the product words for different input values of
B for L = 5 are shown in Table II. The table is so arranged that
the input word on the first column of each row is the 2’s
complement of that on the third column of the same row.
Also, the sum of product values corresponding to these two
input values on the same row is 32A. Let the product values
on the second and fourth columns of a row be j and k,
respectively.

Since one can write j = [(j + k)/2 − (k − j)/2] and

 k = [(j + k)/2 + (k − j)/2].

 For (j + k) = 32A, we can have

 j = 16A - [(k – j)/2] (1a)

 k = 16A + [(k – j)/2] (1b)

The product values on the second and fourth columns
therefore have negative mirror symmetry. This behavior of the
product words can be used to reduce the LUT size, where,
instead of storing j and k, only [(k - j)/2] is stored for a pair of
input on a given row. The 4-bit LUT addresses and
corresponding coded words are listed on the fifth and sixth
columns of the table, respectively. Since the arrangement of
products is done by the anti-symmetric behavior of the
products, we called it anti-symmetric product coding.

To evaluate the address of APC words if MSB of the input
is 1 then address is rest of the least significant bits (LSB) but
if MSB of the input is 0 then address is the 2’s complement of

rest of the LSBs. Therefore, 4-bit address B= (b3 b2 b1 b0)
of the APC word is given by:

 (2)

Where BL = (b3 b2 b1 b0) is the four less significant bits of B,

and BL is the 2’s complement of BL. The desired product
could be obtained by adding or subtracting the stored value
(k−j)/2 to or from the fixed value 16A when b4 is 1or 0,
respectively, i.e.

Product word = 16A + (sign value) × (APC word) (3)

Where (APC word) = (k-j)/2, sign value =+1 for b4 = 1 and
sign value = −1 for b4 = 0. The product value for B = (10000)
corresponds to APC value “zero,” which could be derived by
resetting the LUT output, instead of storing that in the LUT.

TABLE II. DIRECT-MEMORY-BASED APC TECHNIQUE FOR L=5

Input, B
Product

values
Input, B

Product

values

 Address B,

b3 b2 b1 b0

APC

words

 0 0 0 0 1 A 1 1 1 1 1 31A 1 1 1 1 15A

 0 0 0 1 0 2A 1 1 1 1 0 30A 1 1 1 0 14A

 0 0 0 1 1 3A 1 1 1 0 1 29A 1 1 0 1 13A

 0 0 1 0 0 4A 1 1 1 0 0 28A 1 1 0 0 12A

 0 0 1 0 1 5A 1 1 0 1 1 27A 1 0 1 1 11A

 0 0 1 1 0 6A 1 1 0 1 0 26A 1 0 1 0 10A

 0 0 1 1 1 7A 1 1 0 0 1 25A 1 0 0 1 9A

 0 1 0 0 0 8A 1 1 0 0 0 24A 1 0 0 0 8A

 0 1 0 0 1 9A 1 0 1 1 1 23A 0 1 1 1 7A

 0 1 0 1 0 10A 1 0 1 1 0 22A 0 1 1 0 6A

 0 1 0 1 1 11A 1 0 1 0 1 21A 0 1 0 1 5A

 0 1 1 0 0 12A 1 0 1 0 0 20A 0 1 0 0 4A

 0 1 1 0 1 13A 1 0 0 1 1 19A 0 0 1 1 3A

 0 1 1 1 0 14A 1 0 0 1 0 18A 0 0 1 0 2A

 0 1 1 1 1 15A 1 0 0 0 1 17A 0 0 0 1 A

 1 0 0 0 0 16A 1 0 0 0 0 16A 0 0 0 0 0

a. For B= (0 0 0 0 0), the encoded word to be stored is 16 A.

C. Direct-Memory-Based Modified Odd Multiple Storage

(Oms) Technique:

In Odd Multiple Storage technique instead of storing all

the 2L possible values of product P = A・B as in conventional,

here only (2L/2) words corresponding to the odd multiples of
A may be stored in the LUT, while all the even multiples of A
could be derived by left-shift operations of one of those odd
multiples. In Table III, we have shown that, the even multiples
2A, 4A, and 8A are derived by left-shift operations of A.
Similarly, 6A and 12A are derived by left shifting 3A, while
10A and 14A are derived by left shifting 5A and 7A,
respectively. A barrel shifter for producing a maximum of
three left shifts could be used to derive all the even multiples
of A.

In Modified OMS technique the address of the APC stored
words becomes the input B of OMS such that when we
combine APC-OMS technique we get the reduction in LUT
size by one-fourth over conventional. At the eight memory
locations the eight odd multiples of product words are stored
by relation Pi = A × (2i + 1) for i =0, 1, 2 7. As required
by (3), the word to be stored for B = (00000) is not 0 but 16A,
which we can obtain from A by four left shifts using a barrel
shifter. However, if 16A is not derived from A, only a
maximum of three left shifts is required to obtain all other
even multiples of A. A maximum of three bit shifts can be
implemented by a two-stage logarithmic barrel shifter, but the
implementation of four shifts requires a three-stage barrel
shifter. Therefore, it would be a more efficient strategy to
store 2A for input B = (00000), so that the product 16A can be
derived by three arithmetic left shifts. The product values and
encoded words for input words B= (00000) and (10000) are
separately shown in Table IV. For B= (00000), the desired
encoded word 16A is derived by 3-bit left shifts of 2A [stored
at address (1000)]. For B = (10000), the APC word “0” is
derived by resetting the LUT output, by an active-high
RESET signal given by:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 204

 (4)

TABLE III. DIRECT-MEMORY-BASED OMS TECHNIQUE OF APC WORDS

FOR L=5

Input, B

 b3 b2 b1 b0

Product

value

No.
of

shifts

Control

 S1 S0

Shifted

Input, B

Stored odd

APC words
 address,

d3 d2 d1 d0

0 0 0 1 A 0 0 0

0 0 0 1 P0=A 0 0 0 0
0 0 1 0 2 A 1 0 1

0 1 0 0 4 A 2 1 0

1 0 0 0 8 A 3 1 1

0 0 1 1 3A 0 0 0

0 0 1 1 P1=3A 0 0 0 1 0 1 1 0 2 3A 1 0 1

1 1 0 0 4 3A 2 1 0

0 1 0 1 5A 0 0 0
0 1 0 1 P2=5A 0 0 1 0

1 0 1 0 2 5A 1 1 0

0 1 1 1 7A 0 0 0
0 1 1 1 P3=7A 0 0 1 1

1 1 1 0 2 7A 1 0 1

1 0 0 1 9A 0 0 0 1 0 0 1 P4=9A 0 1 0 0

1 0 1 1 11A 0 0 0 1 0 1 1 P5=11A 0 1 0 1

1 1 0 1 13A 0 0 0 1 1 0 1 P6=13A 0 1 1 0

1 1 1 1 15A 0 0 0 1 1 1 1 P7=15A 0 1 1 1

TABLE IV. PRODUCTS AND ENCODED WORDS FOR B=(00000)

AND B=(10000)

Input, B

b4 b3 b2 b1 b0

Product

value

Encoded

word

Stored
values

No. of

shifts

address

 d3 d2 d1 d0

Control

S1 S0

1 0 0 0 0 16A 0 - - - - - - - - - - -

0 0 0 0 0 0 16A 2A 3 1 0 0 0 11

It may be seen from Tables III and IV that the 5-bit input
word B can be mapped into a 4-bit LUT address (d3d2d1d0), by
a simple set of mapping relation

 , for i = 0, 1, 2 and (5)

 Where B = (b3 b2 b1 b0) is generated by shifting-out

all the leading zeros of B by an arithmetic right shift followed
by address mapping, i.e.

 (6)

 Where YL and YL are derived by circularly shifting-out all

the leading zeros of BL and BL, respectively. The RESET
signal can alternatively be generated as (d3 AND b4).

 (7)

 The control bits s0 and s1 to be used by the barrel shifter
to produce the desired number of shifts of the LUT output are
generated by the control circuit, according to the relation

 (7a)

 (7b)

Note that (s1 s0) is a 2-bit binary equivalent of the required
number of shifts specified in Tables III and IV.

IV. OPTIMIZED DIRECT-MEMORY-BASED

MULTIPLICATION FOR SIGNED AND UNSIGNED OPERANDS

In this section, we discuss that the direct-memory-based
multiplication of input B with fixed coefficient A could be
easily carried out for any combination of signed and unsigned
magnitude number by just modifying the design.

A. Both Operands in Signed-magnitude form :

The APC–OMS combined optimization of the LUT can be
performed for signed values of A and B with the help of sign-
bit exclusion technique. All the three technique are well
utilized when both operands are in sign-magnitude form, the
multiples of magnitude of the fixed coefficient are to be stored
in the LUT, and the sign of the product could be obtained by
the XOR operation of sign bits of both multiplicands. When
both operands are in two’s complement forms, a two’s
complement operation of the output of the LUT is required to
be performed for MSB equal to 1.

B. Both Operands in Unsigned-Magnitude form :

When both the operands A and B are in unsigned-
magnitude form then there is no need for the sign-bit
exclusion technique for the optimization. Here only the APC-
OMS combined optimization technique is used for reduction
in LUT size.

C. Input is Unsigned-Magnitude and fixed coefficient is

Signed Magnitude form:

For the multiplication of unsigned input B with signed
coefficient A, the products could be stored in two’s
complement representation, and the sign-modification circuit
checks the MSB of the output to give a 2’s complement as
true output for MSB equal to 1 and as it is otherwise. A
straight forward implementation of the sign-modification
circuit involves multiplexing of the LUT output and its two’s
complement, to reduce the area–time complexity.

D. Input is Signed-Magnitude and fixed coefficient is

Unsigned Magnitude form:

For the multiplication of signed input B with unsigned
coefficient A, as the sign-bit of input is excluded by the sign-
bit exclusion technique the products could be stored as it is,
and the sign-modification circuit checks the MSB of the input
to give a 2’s complement as true output for MSB equal to 1
and as it is otherwise. Here also all the three techniques are
well utilized with no modification in proposed combined
design.

V. ALGORITHMIC DESIGN FOR PROPOSED

TECHNIQUES USED IN OPTIMIZED DIRECT-EMORY-

BASED MULTIPLICATION
This section presents the design algorithms of techniques

used in optimized direct-memory-based multiplication.

A. Algoritmic Design for Direct-Memory-Based Sign-Bit

Exclusion technique:

The design of this technique for L= 6 bits, consists of a
memory array of 32 word size which stores the pre-computed
product values and an address generating circuit which is in
form of a 5To 32 line decoder for address mapping the input
to a particular memory location. It also consist of a 2’s

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 205

complement unit which generates the product words in 2’s
complement representation along with a 2:1 MUX to change
the sign of LUT output for negative values of input.

ALGORITHM

Step1: Let fixed coefficient input A be 10 bit word.

Step2: Multiplicand input B (b5 b4 b3 b2 b1 b0) is 6 bit word.

Step3: Product output P is 16 bit word.

Step4: Memory component has pre-computed 32 Stored

 Product Words SPW of 16 bit size.

 Output SPW = A·|B| corresponding to input |B|.

Step5: Signal is declared for address D (d4 d3 d2 d1 d0) of 5
bits.

Step6: Signal is declared for SPW of 16 bits.

Step7: Begin for finding address D value:

 Address D = |B| (i.e. b4 b3 b2 b1 b0);

Step8: Begin Process 1 for finding SPW for given address D:

 Case Address D is

 (Here a list of address value D and corresponding to

 it SPW value is given according to table I).

 end Case;

 End Process 1;

Step9: Begin Process 2 for finding true product P:

 If sign-bit b5 = 0 (i.e. for positive number) then

 Product P = SPW;

 else sign-bit b5 = 1 (i.e. for negative number) then

 Product P = 2’s complement of SPW;

 End Process 2;

Step10: End

B. Algoritmic Design for Direct-Memory-Based Anti-

Symmetric Product Coding (APC) Technique:

In this technique for L=5 bit, taking only the magnitude
part of signed 6bit numbers or unsigned 5bit numbers, here the
design consist of a four-input memory array of 16 words to
store the APC values of product words as given in the sixth
column of Table II, except on the last row, where 2A is stored
for input B= (00000) instead of storing a “0” for input B =
(10000). Besides, it consists of an address-mapping circuit and
an add/subtract circuit. The address-mapping circuit generates

the desired address B= (b3 b2 b1 b0) according to (2). A
straightforward implementation of address mapping can be

done by multiplexing BL and BL using b4 as the control bit.
The output of the memory table is added with or subtracted
from 16A, for b4 = 1 or 0, respectively, according to (3) by the
add/subtract cell. Hence, b4 is used as the control for the
add/subtract cell.

ALGORITHM

Step1: Let fixed coefficient input A be 10 bit word.

Step2: Multiplicand input B (b4 b3 b2 b1 b0) is 5 bit unsigned

 number or is |B| for signed 6 bit number.

Step3: Product output P is 16 bit word.

Step4: Memory component has pre-computed 16 APC words.

Step5: Signal is declared for address B (b3 b2 b1 b0) of 4 bit.

Step6: Signal is declared for APC word of 16 bits.

Step7: Begin Process 1 for finding address B :

 If b4 = 1 then

 Address B = (b3 b2 b1 b0);

 else b4 = 0 then

 Address B =2’s complement of (b3 b2 b1 b0);

 End Process 1;

Step8: Begin Process 2 for finding APC for given address B:

 Case Address B is

 (Here a list of address value Band corresponding to it

 APC value is given according to table II).

 end Case;

 End Process 2;

Step9: Begin Process 3 for finding true product P:

 If b4 = 1 then

 Product P = 16A + APC;

 else b4 = 0 then

 Product P = 16A - APC;

 End Process 3;

Step10: End
C. Algoritmic Design for Direct-Memory-Based Modified

Odd Multiple Storage (OMS) Technique:
In this technique for L=4 bits taking unsigned 4bit number

or APC words of L=5 bit and for any coefficient width W,
here the design consists of a memory array of nine words of
(W + 4)-bit width, a four-to-nine-line address decoder, a barrel
shifter, an address generation circuit, and a control circuit for
generating the RESET signal and control word (s1s0) for the
barrel shifter. The pre-computed values of A × (2i + 1) are
stored as Pi, for i = 0, 1, 2, . . . , 7, at the eight consecutive
locations of the memory array, as specified in Table III, while
2A is stored for input B = (00000) at memory address “1000,”
as specified in Table IV. The decoder takes the 4-bit address
from the address generator and generates nine word-select
signals, i.e., {vi, for 0≤ i ≤ 8}, to select the referenced word
from the memory. The control bits s0 and s1 to be used by the
barrel shifter to produce the desired number of shifts of the
memory output are generated by the control circuit, according
to (7a) and (7b). The RESET signal can be generated by (7).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 206

The address-generator circuit receives the input operand B
and maps that onto the 4-bit address word (d3d2d1d0),
according to (5) and (6).

ALGORITHM

Step1: Let fixed coefficient input A be 10 bit word.

Step2: Multiplicand input B (b3 b2 b1 b0) is 4 bit unsigned

 number or is APC word of L=5 bit.

Step3: Product output P is 16 bit word.

Step4: Memory component has pre-computed 9 OMS words.

Step5: Signal is declared for address D (d3 d2 d1 d0) of 4 bits.

Step6: Signal is declared for OMS word of 16 bits.

Step7: Signal is declared for control S (s1 s0) of 2 bits.

Step8: Signal is declared for RESET of 1 bit.

Step9: Begin Process 1for finding address and control signal:

 Case Input B is

 (Here a list of input values B and corresponding to it

 Control signal value S and address location D is

 given according to table III and IV).

 end Case;

 End Process 1;

Step10: Begin Process 2 for finding OMS for given address D:

 Case Address D is

 (Here a list of address value D and corresponding to it

 OMS value is given according to table III and IV).

 end Case;

 End Process 2;

Step11: Begin Process 3 for finding true product value.

 RESET = d3. b4

 If RESET = 1 then

 Product P= 0

 else RESET=0 then

 Product P= OMS << S (i.e. OMS is left shift by S)

 End Process 3;
Step12: End

D. Algorithmic Design Of Combined Technique Used In

Proposed Optimized Direct-Memory-Based

Multiplication:
The algorithmic design principle here is to utilize all the

three technique Sign-Bit Exclusion, APC and Modified OMS
efficiently in an optimized manner to get our proposed design
which reduce the LUT memory size to one-eighth of the
conventional LUT. By efficiently combine all the technique
we get optimized direct-memory-based multiplication
hardware. It consists of an address generator and control

circuit, 4-To-9 address-line decoder, 9(W+6) LUT memory
units, barrel shifter, add/subtract unit and 2’s
complement/sign-modification unit.

ALGORITHM

Step1: Let fixed coefficient input A be 10 bit word.

Step2: Multiplicand input B (b5 b4 b3 b2 b1 b0) is 6 bit
signed number.

Step3: Product output P is 16 bit word.

Step4: Memory component has pre-computed 9 OMS words.

Step5: Signal is declared for address D(d3 d2 d1 d0) of 4 bits.

Step6: Signal is declared for input B(b3 b2 b1 b0) of

 OMS technique of 4 bits.

Step7: Signal is declared for OMS word of 16 bits.

Step8: Signal is declared for APC word of 16 bits.

Step9: Signal is declared for control S(s1 s0) of 2 bits.

Step10: Signal is declared for RESET of 1 bit.

Step11: Begin Process 1 for finding Input B of OMS value:

 Case Input (b5 b4) is

 [Value (b5 b4) = “00”

 Input of OMS B =2’s complement of (b3 b2 b1 b0);

 Value (b5 b4) = “01”

 Input of OMS B = (b3 b2 b1 b0);

 Value (b5 b4) = “10”

 Input of OMS B =2’s complement of (b3 b2 b1 b0);

 Value (b5 b4) = “11”

 Input of OMS B = (b3 b2 b1 b0);]

 end Case;

 End Process 1;

Step12: Begin Process 2 for finding address D and control

 signal S:

 Case Input B’ is

 (Here a list of input values B’ and corresponding

 to it Control signal value S and address location

 D is given according to tables III and IV).

 end Case;

 End Process 2;

Step13: Begin Process 3 for finding OMS for given address D:

 Case Address D is

 (Here a list of address D and corresponding to it

 OMS value is given according to tables III and IV).

 end Case;

 End Process 3;

Step14: Begin Process 4 for finding APC product value:

 RESET = d3. b4;

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 207

 If RESET = 1 then

 Product APC= 0;

 else RESET=0 then

 Product APC= OMS << S; (i.e. OMS is left shift by S)

 End Process 4;

Step15: Begin Process 5 for finding true product P;

 Case Input (b5 b4) is

 [Value (b5 b4) = “00”

 Product P= 16A – APC;

 Value (b5 b4) = “01”

 Product P= 16A + APC;

 Value (b5 b4) = “10”

 Product P=2’s complement of (16A – APC);

 Value (b5 b4) = “11”

 Product P=2’scomplement of (16A + APC);]

 end Case;

 End Process 5;

Step16: End

VI. HARDWARE IMPLEMENTATION OF DIRECT-MEMORY-

BASED MULTIPLIER USING THE PROPOSED OPTIMIZATION

TECHNIQUE

The hardware implementation of direct-memory-based
multiplier for an L-bit input with a W-bit coefficient using the
proposed optimization scheme is shown in fig.1. The
multiplicand input (b5 b4 b3 b2 b1 b0) is applied to address
generator and control circuit to generate the desired address
location (d3d2d1d0), RESET and control signal (s1 s0),
according to (5), (6), (7), (7a) and (7b) respectively. The
function of a 4To9 address-line decoder is to take the 4-bit
address from the address generator and generate nine word-
select signals, i.e., {vi, for 0≤ i ≤ 8}, to select the referenced
word from the memory unit. The memory unit consist of LUT
of nine words of (W + 6)-bit width, which stores the pre-
computed values of Pi =A× (2i + 1), for i = 0, 1, 2, . . . , 7, at
the eight consecutive locations of the LUT memory unit, as
specified in Table III, while 2A is stored for input B = (00000)
at LUT address “1000,” as specified in Table IV. The control
bits s0 and s1 is used by the barrel shifter to produce the
desired number of shifts of the LUT memory output. The
output of the barrel shifter is added with or subtracted from
16A, for b4 = 1 or 0, respectively, according to (3) by the
add/subtract unit. Hence, b4 is used as the control for the
add/subtract unit. At the 2’s complement/sign modification
unit, a two’s complement operation of the output of
add/subtract cell is required to be performed for b5=1 and
remain as it is for b5=0, when both operands are in two’s
complement form. Here b5 act as a sign control signal. The
RTL schematic of Optimized Direct-Memory-Based
Multiplier Design, Using Sign-Bit Exclusion, APC and OMS
Technique is shown in Fig.2.

VII. RESULT AND CONCLUSION

The proposed optimized memory-based multiplier is coded
in VHDL and synthesized in Xilinx ISE 9.1i Project
Navigator, for word size L = 5 and 6 bits for signed
magnitude numbers and L= 5 bits unsigned magnitude
numbers respectively. For unsigned numbers we use APC and
modified OMS scheme whereas for signed-magnitude
numbers the sign-bit exclusion

Fig. 1. Proposed Optimized Direct-Memory-Based Multiplier Design,

Using Sign-Bit Exclusion, APC and OMS Technique.

Fig. 2. RTL schematic of Optimized Direct-Memory-Based Multiplier

Design, Using Sign-Bit Exclusion, APC and OMS Technique.

scheme is included in APC and modified OMS scheme to get
an optimized LUT multiplier which reduces the memory size
to one-eighth of conventional LUT. Simulation result, area
utilization and timing analysis for 6 bit signed number, 5 bit
unsigned number and 5 bit signed number are shown in fig.3,
fig.4, fig.5, fig.6, fig.7, fig.8, fig.9, fig.10 and fig.11
respectively.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 208

Fig. 3. Simulation Result of Proposed Optimized Design for Signed-

Magnitude Numbers, L=6 Bits

Fig. 4. Area Utilization of Proposed Optimized Design for Signed-

Magnitude Numbers, L=6 Bits

Fig. 5.

Fig. 6. Timing Report of Proposed Optimized Design for Signed-Magnitude

Numbers, L=6 Bits

Fig. 7. Simulation Result of Optimized Design for Unsigned-Magnitude

Numbers, L=5 Bits

Fig. 8. Area Utilization of Optimized Design for Unsigned-Magnitude

Numbers, L=5 Bits

Fig. 9. Timing Report of Optimized Design for Unsigned-Magnitude

Numbers, L=5 Bits

Fig. 10. Simulation Result of Proposed Optimized Design for Signed-

Magnitude Numbers, L=5 Bits

Fig. 11. Area Utilization of Proposed Optimized Design for Signed-

Magnitude Numbers, L=5 Bits

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 209

Fig. 12. Timing Report of Proposed Optimized Design for Signed-Magnitude

Numbers, L=5 Bits

Comparison of memory block and LUT memory size for
L= 6 bits by different techniques is shown in Table V. In
Table VI we have compared the results derived from are
design summary and synthesis report for area and timing
parameters. It is found that for signed magnitude numbers of 5
bit word size it offers more saving in area-delay product as of
5 bit word size unsigned magnitude numbers. With our
proposed optimized design LUT memory size for L= 6 bits is
14.065% of conventional LUT and for L= 5 bits is 12.5% of
conventional LUT. Thus, the proposed optimized design also
offers almost 85% and 87.5% reductions in LUT memory size
for L=6 bits and L=5 bits respectively over conventional LUT.
The design also saves a lot of multiplication computation
power as it is direct-memory based and no product
computation are carried out, hence with a very negligible trade
off in delay a lot of area and power are saved.

The LUT multiplier could be used for memory-based
implementation of linear and circular convolution, cosine and
sinusoidal transforms, and inner-product computation. The
performance of memory-based structures with different
memory implementations could be studied in future for
different DSP applications. Although the memory core of the
direct-memory-based multiplier is reduced to nearly one-
eighth by the proposed optimization technique, it is not
efficient for operands of small widths, since it requires an
adder to add the offset value. However, it could be used for
multiplication with input of large word size by an input
decomposition scheme. When the width of the input
multiplicand is large, direct implementation of LUT multiplier
involves a very large LUT. Therefore, the input word could be

decomposed into a certain number of segments or sub-words,
and the partial products pertaining to different sub-words
could be shift added to obtain the desired product. In brief, we
have shown the possibility of using direct-memory-based
multipliers to implement the constant multiplication for DSP
applications. The full advantages of proposed design,
however, could be derived if the LUTs are implemented as
NAND or NOR read-only memories and the arithmetic shifts
for large operand word size are implemented by an array
barrel shifter using metal–oxide–semiconductor transistors.
Further work could still be done to derive Sign-Bit Exclusion,
OMS–APC-based LUTs for higher input sizes with different
forms of decompositions and parallel and pipelined addition
schemes for suitable area–delay tradeoffs.

TABLE V. COMPARISON STUDY OF OPTIMIZED DESIGN FOR

UNSIGNED- MAGNITUDE NUMBERS WITH PROPOSED OPTIMIZED

DESIGN FOR SIGNED-MAGNITUDE

NUMBERS

TABLE VI. COMPARISON OF MEMORY BLOCKS AND LUT SIZE FOR L= 6

METHOD CONVENTIONAL
SIGN-BIT

EXCLUSION
APC OMS

SIGN-BIT

EXCLUSION +

APC

APC+OMS

SIGN-BIT

EXCLUSION +

APC + OMS

MEMORY
BLOCK

64 32 33 33 17 17 9

LUT SIZE 100% 50% 51.5625% 51.5625% 26.5625% 26.5625% 14.0625%

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 210

REFERENCES

[1] International Technology Roadmap for Semiconductors. [Online].
Available: http://public.itrs.net/

[2] J.-I. Guo, C.-M. Liu, and C.-W. Jen, “The efficient memory-based
VLSI array design for DFT and DCT,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 39, no. 10, pp. 723–733, Oct.
1992.

[3] H.-R. Lee, C.-W. Jen, and C.-M. Liu, “On the design automation of
the memory-based VLSI architectures for FIR filters,” IEEE Trans.
Consum. Electron., vol. 39, no. 3, pp. 619–629, Aug. 1993.

[4] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and T. Stouraitis, “A
systolic array architecture for the discrete sine transform,” IEEE
Trans. Signal Process., vol. 50, no. 9, pp. 2347–2354, Sep. 2002.

[5] H.-C. Chen, J.-I. Guo, T.-S. Chang, and C.-W. Jen, “A memory-
efficient realization of cyclic convolution and its application to
discrete cosine transform,” IEEE Trans. Circuits Syst. Video
Technol., vol. 15, no. 3, pp. 445–453, Mar. 2005.

[6] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and T. Stouraitis,
“Systolic algorithms and a memory-based design approach for a
unified architecture for the computation of DCT/DST/IDCT/IDST,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 6, pp. 1125–
1137, Jun. 2005.

[7] P. K. Meher, “Systolic designs for DCT using a low-complexity
concurrent convolutional formulation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 16, no. 9, pp. 1041–1050, Sep. 2006.

[8] P. K. Meher, “Memory-based hardware for resource-constrained
digital signal processing systems,” in Proc. 6th Int. Conf. ICICS,
Dec. 2007, pp. 1–4.

[9] P. K. Meher, “New approach to LUT implementation and
accumulation for memory-based multiplication,” in Proc. IEEE
ISCAS, May 2009, pp. 453–456.

[10] P. K. Meher, “New look-up-table optimizations for memory-based
multiplication,” in Proc. ISIC, Dec. 2009, pp. 663–666.

[11] P.K.Mehra, “LUT optimization for Memory-Based Computation,”
IEEE Trans. Circuits and Syst.-II:Express Briefs,
vol.57,no.4,pp.285-289, Apr.2010.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080189

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 211

