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Abstract— An advance approach for Direct-Memory-Based 

hardware for area-delay-power efficient systems for commonly 

encountered computation-intensive cores of digital signal 

processing (DSP) systems is presented by combining three 

techniques, where the memory-size is reduced to one-eighth at 

the cost of some increase in combinational circuit complexity for 

signed magnitude numbers. Each of these techniques results in 

the reduction of the memory size by a factor of two. It is shown 

that by efficiently combining sign-bit exclusion technique, a 

different form of anti-symmetric product coding (APC) and a 

modified odd-multiple-storage (OMS) scheme, we get an 

optimized direct-memory-based multiplication hardware for 

resource-constraint DSP systems which provides a reduction in 

memory size to one-eighth over conventional direct-memory-

based hardware, at the cost of a marginal area overhead. The 

proposed design for small input sizes can be used for efficient 

implementation of high-precision multiplication by input 

operand decomposition. The proposed optimized design also 

offers almost 87.5% and 85% reductions in direct- memory size 

for L=5 bits and L=6 bits signed-magnitude numbers 

respectively, over conventional direct-memory size. 

Keywords— Digital signal processing (DSP), direct-memory-

based computing, very large scale integration (VLSI). 

I.  INTRODUCTION  
Rapid advancement in very large scale integration (VLSI) 

technology and hardware performance of digital devices have 
paved way to efficient memory-based computing systems as 
alternative to the conventional logic-only computing in order 
to meet the stringent constraint and growing requirements of 
the digital signal processing (DSP) systems in different 
application environments. Since DSP is considered as the 
major component of the digital revolution that is currently 
taking place around the world, it is therefore, important to 
design dedicated VLSI chips for fast and efficient 
computation of the DSP applications.  It is observed that 
algorithms optimized for software-implementation, in general, 
are not well-suited for dedicated hardware-implementation. 
Appropriate algorithm design has a major role on developing a 
hardware entity that can meet the system requirements and 
specification. Not only it should necessarily lead to reduction 
of computational complexity, but also should facilitate 
maximization of concurrency by exploiting the possible 
parallelism to achieve high-throughput performance. 
Moreover, the architecture should be developed synergetic 
with the underlying algorithms to derive a cost effective and 
area-time-power efficient optimal VLSI. Memory-based 
designs consequently are gaining substantial popularity in the 

DSP application space. DSP algorithms involve multipliers 
that not only consume most of the resources of the system but 
also involve most of the computation-time. Significant 
researches have, therefore, been made in the past two decades 
for efficient multiplier less implementation of DSP systems. 

Most of the DSP algorithms involve repetitive multiply 
accumulate operations and inner-product computation. 
Besides, very often the multiplying coefficients (e.g., filter 
coefficients or transform kernel coefficients) remain constant 
during the DSP operations. This behavior of DSP algorithms 
is utilized to realize the memory-based computing systems. 
There are two basic variants of memory-based computing 
techniques found to be popularly used. One of the techniques 
is the direct memory-based implementation of multiplications 
[1], while the second is based on distributed arithmetic (DA) 
[2]. The DA principle is used primarily to compute the inner-
products by repeated shift-add operations of partial products 
corresponding to the successive bit-vectors of one of the input 
vectors. Whereas in the direct-memory-based 
implementations, the multiplications of input values with the 
fixed coefficients are performed by a look-up-table (LUT), 
where each of the LUTs contains the pre-computed product 
values for all possible values of input samples.  

Apart from that, memory-based computing structures are 
more regular than the multiply–accumulate structures and 
offer many other advantages, e.g., greater potential for high-
throughput and low-latency implementation and less dynamic 
power consumption [11]. However, we find that now 
increasing efforts are made to carry any sort of significant 
work on optimization for memory-based multiplication. 

The rest of the paper follows as: in the next section, we 
have discussed comparison study of techniques used in direct-
memory-based computation. In Section III, the proposed 
optimized technique used in direct-memory-based 
multiplication are discussed which are sign-bit exclusion, the 
APC and the modified OMS technique. The Section IV 
explains to use optimized direct-memory-based multiplication 
for signed and unsigned operands. The algorithmic design for 
proposed techniques is given in Section V and the optimized 
hardware implementation of direct-memory-based multiplier 
is presented in Section VI. The results of the proposed 
multiplier along with the conclusion are presented in Section 
VII. 
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II. COMPARISON STUDY OF TECHNIQUES USED 

IN DIRECT-MEMORY-BASED COMPUTATION 

Direct-Memory-based computing is well suited for many 
DSP algorithms, which involve multiplication with a fixed set 
of coefficients. In the conventional direct-memory-based 
implementations, the multiplications of input value B with the 
fixed coefficients A are performed by a look-up-table (LUT) 
of size 2L, (L is the word-length of B) where each value of the 

LUT contains the pre-computed product values P=AB for all 

possible values of input samples. The product word  A・Bi  is 

stored at the location Bi for 0 ≤ Bi  ≤ 2L
 − 1, such that if an L-

bit binary value of Bi is used as the address for the LUT, then 
the corresponding product value is available as its output. 
Several architectures have been reported in the literature for 
memory-based implementation of DSP algorithms involving 
orthogonal transforms and digital filters [1]–[8]. 

 In [9], odd multiples of the fixed coefficient is required to 
be stored, which is referred to as the odd-multiple-storage 
(OMS) scheme. Using OMS approach, one can reduce the 
LUT size to half, but it has significant combinational overhead 
since it requires a barrel-shifter along with a control-circuit to 
generate the control-bits for producing a maximum of (L − 1) 
left-shifts, and an encoder to map the L-bit input word to (L − 
1)- bit LUT address. 

In [10], there is anti symmetric product coding (APC) 
approach, in this the LUT size can also be reduced to half, 
where the product words are recoded as anti symmetric pairs. 
The APC approach, although providing a reduction in LUT 
size by a factor of two, incorporates substantial overhead of 
area and time to perform the two’s complement operation of 
LUT output for sign modification and that of the input 
operand for input mapping.  

However, we find that when the APC approach is 
combined with the OMS technique, the two’s complement 
operations could be very much simplified since the input 
address and LUT output could always be transformed into odd 
integers. However, the OMS technique in [9] cannot be 
combined with the APC scheme in [10], since the APC words 
generated according to [10] are odd numbers. Moreover, the 
OMS scheme in [9] does not provide an efficient 
implementation when combined with the APC technique. In 
[11], a combined APC-OMS scheme reduces the LUT size to 
one-fourth. But further optimization can also be achieved, 
with our proposed scheme that combines three techniques 
which reduces the LUT size to one-eight. We therefore 
present three schemes for optimization of LUT with lower 
area-and time-overhead. One of the proposed optimization is 
based on exclusion of sign-bit from the LUT address, and the 
other two optimization is based on a coding of stored product 
word, where a different form of APC and combined that with 
a modified form of the OMS scheme for efficient memory 
based multiplication are presented. 

III. PROPOSED OPTIMIZED TECHNIQUE 

EMPLOYED IN DIRECT- MEMORY-BASED 

MULTIPLICATION 
The optimization of product values stored could easily be 

performed for unsigned as well as signed magnitudes 
numbers. Besides, numbers could be fractions or integers in 
fixed-point format. But, for simplicity we assume here the 
multiplicand B to be an integer in sign-magnitude 

representation, while the constant A is assumed to be either in 
sign-magnitude or in 2’s complements representation. We 
present here the proposed sign-bit exclusion scheme, the APC 
technique and its further optimization by combining it with a 
modified form of OMS. 

A. Direct-Memory-Based Sign-Bit Exclusion Technique: 

As the name suggest in this technique the sign-bit of 
multiplier and multiplicand is excluded, and the product 
values stored is P=|A|·|B|, where |A| is magnitude-part of A 
and |B| is magnitude-part of B. The signed-bit which is the 
most significant bit (MSB) of A and B are XOR operated and 
the result of XOR operation is concatenated with P to get the 
true result of multiplication. Since |B| is an (L − 1)-bit binary 
number, all possible product values of |A|·|B| can be stored as 
2(L-1) LUT words which reduces its size to half. 

 The product words required to be stored for different 
values of B for direct-memory-based multiplication for L = 6 
is shown in Table I. The product word corresponding to B = (1 
b4 b3 b2 b1 b0) is negative of that for B = (0 b4 b3 b2 b1 b0) for 
any given value of |B| = (b4 b3 b2 b1 b0). Therefore, product 
words on the fourth column can be derived by negating the 
product word stored at the second column on the same row. 
Therefore, instead of 64 product words only 32 values of |A| · 
|B| for all possible values of |B| are required to be stored, as 
shown in the sixth column. The technique requires only one 
additional XOR gate to determine the sign of product word P. 

TABLE I.  DIRECT-MEMORY-BASED SIGN-BIT EXCLUSION TECHNIQUE 

FOR  L=6 

Input, B    

address, |B| 

product 
Input, B    

address, |B| 

product stored words 

values values 

  

2’s comp 

sign-

magnitude 
      

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 A 1 0 0 0 0 1 −A A |A| 

0 0 0 0 1 0 2A 1 0 0 0 1 0 −2A 2A 2|A| 

0 0 0 0 1 1 3A 1 0 0 0 1 1 −3A 3A 3|A| 

0 0 0 1 0 0 4A 1 0 0 1 0 0 −4A 4A 4|A| 

0 0 0 1 0 1 5A 1 0 0 1 0 1 −5A 5A 5|A| 

0 0 0 1 1 0 6A 1 0 0 1 1 0 −6A 6A 6|A| 

0 0 0 1 1 1 7A 1 0 0 1 1 1 −7A 7A 7|A| 

0 0 1 0 0 0 8A 1 0 1 0 0 0 −8A 8A 8|A| 

0 0 1 0 0 1 9A 1 0 1 0 0 1 −9A 9A 9|A| 

0 0 1 0 1 0 10A 1 0 1 0 1 0 −10A 10A 10|A| 

0 0 1 0 1 1 11A 1 0 1 0 1 1 −11A 11A 11|A| 

0 0 1 1 0 0 12A 1 0 1 1 0 0 −12A 12A 12|A| 

0 0 1 1 0 1 13A 1 0 1 1 0 1 −13A 13A 13|A| 

0 0 1 1 1 0 14A 1 0 1 1 1 0 −14A 14A 14|A| 

0 0 1 1 1 1 15A 1 0 1 1 1 1 −15A 15A 15|A| 

0 1 0 0 0 0 16A 1 1 0 0 0 0 −16A 16A 16|A| 

0 1 0 0 0 1 17A 1 1 0 0 0 1 −17A 17A 17|A| 

0 1 0 0 1 0 18A 1 1 0 0 1 0 −18A 18A 18|A| 

0 1 0 0 1 1 19A 1 1 0 0 1 1 −19A 19A 19|A| 

0 1 0 1 0 0 20A 1 1 0 1 0 0 −20A 20A 20|A| 

0 1 0 1 0 1 21A 1 1 0 1 0 1 −21A 21A 21|A| 

0 1 0 1 1 0 22A 1 1 0 1 1 0 −22A 22A 22|A| 

0 1 0 1 1 1 23A 1 1 0 1 1 1 −23A 23A 23|A| 

0 1 1 0 0 0 24A 1 1 1 0 0 0 −24A 24A 24|A| 

0 1 1 0 0 1 25A 1 1 1 0 0 1 −25A 25A 25|A| 

0 1 1 0 1 0 26A 1 1 1 0 1 0 −26A 26A 26|A| 

0 1 1 0 1 1 27A 1 1 1 0 1 1 −27A 27A 27|A| 

0 1 1 1 0 0 28A 1 1 1 1 0 0 −28A 28A 28|A| 

0 1 1 1 0 1 29A 1 1 1 1 0 1 −29A 29A 29|A| 

0 1 1 1 1 0 30A 1 1 1 1 1 0 −30A 30A 30|A| 

0 1 1 1 1 1 31A 1 1 1 1 1 1 −31A 31A 31|A| 
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The sign-bit exclusion technique can also be applied for 
2’s complement representation of coefficient A, which stores 
the product words in 2’s complement representation, and 
requires a 2’s complement unit along with a 2:1 MUX to 
change the sign of LUT output for negative values of B. If the 
sign bit is 0 the result is product value stored in LUT but if 
sign bit is 1 the true result is 2’s complement of product value 
stored in LUT. The address of stored product word is the same 
as the magnitude bit of input.  

B. Direct-Memory-Based Anti-Symmetric Product Coding 

(Apc) Technique: 
In Anti-Symmetric Product Coding we arrange the inputs 

in such a way that we can utilize the anti-symmetric property 
to get the output. Here for convince we assume both numbers 
to be positive, the product words for different input values of 
B for L = 5 are shown in Table II. The table is so arranged that 
the input word on the first column of each row is the 2’s 
complement of that on the third column of the same row. 
Also, the sum of product values corresponding to these two 
input values on the same row is 32A. Let the product values 
on the second and fourth columns of a row be j and k, 
respectively. 

Since one can write j = [(j + k)/2 − (k − j)/2] and 

                          k = [(j + k)/2 + (k − j)/2]. 

 For (j + k) = 32A, we can have                

                   j = 16A - [(k – j)/2]                             (1a)   

                k = 16A + [(k – j)/2]                              (1b)   

The product values on the second and fourth columns 
therefore have negative mirror symmetry. This behavior of the 
product words can be used to reduce the LUT size, where, 
instead of storing j and k, only [(k - j)/2] is stored for a pair of 
input on a given row. The 4-bit LUT addresses and 
corresponding coded words are listed on the fifth and sixth 
columns of the table, respectively. Since the arrangement of 
products is done by the anti-symmetric behavior of the 
products, we called it anti-symmetric product coding.  

To evaluate the address of APC words if MSB of the input 
is 1 then address is rest of the least significant bits (LSB) but 
if MSB of the input is 0 then address is the 2’s complement of 

rest of the LSBs. Therefore, 4-bit address B= (b3 b2 b1 b0) 
of the APC word is given by:   

                                                      (2)                 

Where BL = (b3 b2 b1 b0) is the four less significant bits of B, 

and BL is the 2’s complement of BL. The desired product 
could be obtained by adding or subtracting the stored value 
(k−j)/2 to or from the fixed value 16A when b4 is 1or 0, 
respectively, i.e.  

Product word = 16A + (sign value) × (APC word)       (3) 

Where (APC word) = (k-j)/2, sign value =+1 for b4 = 1 and 
sign value = −1 for b4 = 0. The product value for B = (10000) 
corresponds to APC value “zero,” which could be derived by 
resetting the LUT output, instead of storing that in the LUT. 

 

TABLE II.  DIRECT-MEMORY-BASED APC TECHNIQUE FOR L=5 

Input, B 
Product 

values            
Input, B 

Product 

values 

  Address B,  

b3 b2 b1 b0 

APC 

words 

 
      

 0 0 0 0 1 A 1 1 1 1 1 31A 1 1 1 1 15A 

 0 0 0 1 0 2A 1 1 1 1 0 30A 1 1 1 0 14A 

 0 0 0 1 1 3A 1 1 1 0 1 29A  1 1 0 1 13A 

 0 0 1 0 0 4A 1 1 1 0 0 28A 1 1 0 0 12A 

 0 0 1 0 1 5A 1 1 0 1 1 27A 1 0 1 1 11A 

 0 0 1 1 0 6A  1 1 0 1 0 26A  1 0 1 0 10A 

 0 0 1 1 1 7A 1 1 0 0 1  25A 1 0 0 1  9A 

 0 1 0 0 0 8A 1 1 0 0 0 24A  1 0 0 0 8A 

 0 1 0 0 1 9A 1 0 1 1 1 23A  0 1 1 1 7A 

 0 1 0 1 0 10A 1 0 1 1 0 22A 0 1 1 0 6A 

 0 1 0 1 1 11A 1 0 1 0 1  21A 0 1 0 1  5A 

 0 1 1 0 0 12A 1 0 1 0 0  20A 0 1 0 0 4A 

 0 1 1 0 1 13A 1 0 0 1 1  19A 0 0 1 1  3A 

 0 1 1 1 0 14A 1 0 0 1 0 18A 0 0 1 0 2A 

 0 1 1 1 1 15A 1 0 0 0 1 17A 0 0 0 1 A 

 1 0 0 0 0 16A 1 0 0 0 0 16A  0 0 0 0 0 

a. For B= (0 0 0 0 0), the encoded word to be stored is 16 A. 

C. Direct-Memory-Based Modified Odd Multiple Storage 

(Oms) Technique: 

In Odd Multiple Storage technique instead of storing all 

the 2L possible values of product P = A・B as in conventional,  

here only (2L/2) words corresponding to the odd multiples of 
A may be stored in the LUT, while all the even multiples of A 
could be derived by left-shift operations of one of those odd 
multiples. In Table III, we have shown that, the even multiples 
2A, 4A, and 8A are derived by left-shift operations of A. 
Similarly, 6A and 12A are derived by left shifting 3A, while 
10A and 14A are derived by left shifting 5A and 7A, 
respectively. A barrel shifter for producing a maximum of 
three left shifts could be used to derive all the even multiples 
of A. 

In Modified OMS technique the address of the APC stored 
words becomes the input B of OMS such that when we 
combine APC-OMS technique we get the reduction in LUT 
size by one-fourth over conventional. At the eight memory 
locations the eight odd multiples of product words are stored 
by relation Pi =   A × (2i + 1) for i =0, 1, 2 . . . . 7. As required 
by (3), the word to be stored for B = (00000) is not 0 but 16A, 
which we can obtain from A by four left shifts using a barrel 
shifter. However, if 16A is not derived from A, only a 
maximum of three left shifts is required to obtain all other 
even multiples of A. A maximum of three bit shifts can be 
implemented by a two-stage logarithmic barrel shifter, but the 
implementation of four shifts requires a three-stage barrel 
shifter. Therefore, it would be a more efficient strategy to 
store 2A for input B = (00000), so that the product 16A can be 
derived by three arithmetic left shifts. The product values and 
encoded words for input words B= (00000) and (10000) are 
separately shown in Table IV. For B= (00000), the desired 
encoded word 16A is derived by 3-bit left shifts of 2A [stored 
at address (1000)]. For B = (10000), the APC word “0” is 
derived by resetting the LUT output, by an active-high 
RESET signal given by: 
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                                (4) 

TABLE III.  DIRECT-MEMORY-BASED OMS TECHNIQUE  OF APC WORDS 

FOR L=5 

Input, B 

 b3 b2 b1 b0 

Product 

value 

No. 
of 

shifts 

Control 

 S1 S0 

Shifted 

Input, B 

 

Stored odd 

APC words 
  address,  

d3 d2 d1 d0 
 

       

0 0 0 1 A 0 0 0 

0 0 0 1 P0=A 0 0 0 0 
0 0 1 0 2 A 1 0 1 

0 1 0 0 4 A 2 1 0 

1 0 0 0 8 A 3 1 1 

0 0 1 1 3A 0 0 0 

0 0 1 1 P1=3A 0 0 0 1 0 1 1 0 2 3A 1 0 1 

1 1 0 0 4 3A 2 1 0 

0 1 0 1 5A 0 0 0 
0 1 0 1 P2=5A 0 0 1 0 

1 0 1 0 2 5A 1 1 0 

0 1 1 1 7A 0 0 0 
0 1 1 1 P3=7A 0 0 1 1 

1 1 1 0 2 7A 1 0 1 

1 0 0 1 9A 0 0 0 1 0 0 1 P4=9A 0 1 0 0 

1 0 1 1 11A 0 0 0 1 0 1 1 P5=11A 0 1 0 1 

1 1 0 1 13A 0 0 0 1 1 0 1 P6=13A 0 1 1 0 

1 1 1 1 15A 0 0 0 1 1 1 1 P7=15A 0 1 1 1 

TABLE IV.  PRODUCTS AND ENCODED WORDS FOR B=(00000) 

AND B=(10000) 

Input, B 

b4 b3 b2 b1 b0 

Product 

value 

Encoded 

word 

  

Stored  
values  

No. of 

shifts 

address 

 d3 d2 d1 d0 

Control 

S1 S0 

 
      

 

1 0 0 0 0 16A 0  - - - - - - - - - - - 

0 0 0 0 0 0 16A 2A 3 1 0 0 0 11 

 

It may be seen from Tables III and IV that the 5-bit input 
word B can be mapped into a 4-bit LUT address (d3d2d1d0), by 
a simple set of mapping relation 

  ,   for i = 0, 1, 2     and            (5) 

  Where B = (b3 b2 b1 b0) is generated by shifting-out 

all the leading zeros of B by an arithmetic right shift followed 
by address mapping, i.e.      

                                                   (6) 

 Where YL and YL are derived by circularly shifting-out all 

the leading zeros of BL and BL, respectively. The RESET 
signal can alternatively be generated as (d3 AND b4). 

                                                             (7) 

 The control bits s0 and s1 to be used by the barrel shifter 
to produce the desired number of shifts of the LUT output are 
generated by the control circuit, according to the relation 

                                                    (7a)    

                                                           (7b) 

Note that (s1 s0) is a 2-bit binary equivalent of the required 
number of shifts specified in Tables III and IV.  

IV. OPTIMIZED DIRECT-MEMORY-BASED 

MULTIPLICATION FOR SIGNED AND UNSIGNED OPERANDS 

In this section, we discuss that the direct-memory-based 
multiplication of input B with fixed coefficient A could be 
easily carried out for any combination of signed and unsigned 
magnitude number by just modifying the design. 

A. Both Operands in Signed-magnitude form : 

The APC–OMS combined optimization of the LUT can be 
performed for signed values of A and B with the help of sign-
bit exclusion technique. All the three technique are well 
utilized when both operands are in sign-magnitude form, the 
multiples of magnitude of the fixed coefficient are to be stored 
in the LUT, and the sign of the product could be obtained by 
the XOR operation of sign bits of both multiplicands. When 
both operands are in two’s complement forms, a two’s 
complement operation of the output of the LUT is required to 
be performed for MSB equal to 1.  

B. Both Operands in Unsigned-Magnitude form : 

When both the operands A and B are in unsigned-
magnitude form then there is no need for the sign-bit 
exclusion technique for the optimization. Here only the APC-
OMS combined optimization technique is used for reduction 
in LUT size. 

C. Input is Unsigned-Magnitude and fixed coefficient is 

Signed Magnitude form: 

For the multiplication of unsigned input B with signed 
coefficient A, the products could be stored in two’s 
complement representation, and the sign-modification circuit 
checks the MSB of the output to give a 2’s complement as 
true output for MSB equal to 1 and as it is otherwise. A 
straight forward implementation of the sign-modification 
circuit involves multiplexing of the LUT output and its two’s 
complement, to reduce the area–time complexity. 

D. Input is Signed-Magnitude and fixed coefficient is 

Unsigned Magnitude form: 

For the multiplication of signed input B with unsigned 
coefficient A, as the sign-bit of input is excluded by the sign-
bit exclusion technique the products could be stored as it is, 
and the sign-modification circuit checks the MSB of the input 
to give a 2’s complement as true output for MSB equal to 1 
and as it is otherwise. Here also all the three techniques are 
well utilized with no modification in proposed combined 
design. 

V. ALGORITHMIC DESIGN FOR PROPOSED 

TECHNIQUES USED IN OPTIMIZED DIRECT-EMORY-

BASED MULTIPLICATION 
This section presents the design algorithms of techniques 

used in optimized direct-memory-based multiplication.  

A. Algoritmic Design for Direct-Memory-Based Sign-Bit 

Exclusion technique: 

The design of this technique for L= 6 bits, consists of a 
memory array of 32 word size which stores the pre-computed 
product values and an address generating circuit which is in 
form of a 5To 32 line decoder for address mapping the input 
to a particular memory location. It also consist of a 2’s 
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complement unit which generates the product words in 2’s 
complement representation along with a 2:1 MUX to change 
the sign of LUT output for negative values of input. 

ALGORITHM 

Step1: Let fixed coefficient input A be 10 bit word. 

Step2: Multiplicand input B (b5 b4 b3 b2 b1 b0) is 6 bit word. 

Step3: Product output P is 16 bit word. 

Step4: Memory component has pre-computed 32 Stored 

      Product Words SPW of 16 bit size. 

      Output SPW = A·|B| corresponding to input |B|. 

Step5: Signal is declared for address D (d4 d3 d2 d1 d0) of 5 
bits. 

Step6: Signal is declared for SPW of 16 bits. 

Step7: Begin for finding address D value: 

        Address D = |B| (i.e. b4 b3 b2 b1 b0);   

Step8: Begin Process 1 for finding SPW for given address D: 

         Case Address D is 

           (Here a list of address value D and corresponding to 

            it SPW value is given according to table I ).  

         end Case; 

      End Process 1; 

Step9: Begin Process 2 for finding true product P: 

            If sign-bit b5 = 0 (i.e. for positive number) then 

                          Product P = SPW;  

            else sign-bit b5 = 1 (i.e. for negative number) then 

                          Product P = 2’s complement of SPW; 

       End Process 2; 

Step10: End 

B. Algoritmic Design for Direct-Memory-Based Anti-

Symmetric Product Coding (APC) Technique: 

In this technique for L=5 bit, taking only the magnitude 
part of signed 6bit numbers or unsigned 5bit numbers, here the 
design consist of a four-input memory array of 16 words to 
store the APC values of product words as given in the sixth 
column of Table II, except on the last row, where 2A is stored 
for input B= (00000) instead of storing a “0” for input B = 
(10000). Besides, it consists of an address-mapping circuit and 
an add/subtract circuit. The address-mapping circuit generates 

the desired address B= (b3 b2 b1 b0) according to (2). A 
straightforward implementation of address mapping can be 

done by multiplexing BL and BL using b4 as the control bit. 
The output of the memory table is added with or subtracted 
from 16A, for b4 = 1 or 0, respectively, according to (3) by the 
add/subtract cell. Hence, b4 is used as the control for the 
add/subtract cell. 

 

 

ALGORITHM 

Step1: Let fixed coefficient input A be 10 bit word. 

Step2: Multiplicand input B (b4 b3 b2 b1 b0) is 5 bit unsigned   

            number or is |B| for signed 6 bit  number. 

Step3: Product output P is 16 bit word. 

Step4: Memory component has pre-computed 16 APC words. 

Step5: Signal is declared for address B (b3 b2 b1 b0) of 4 bit. 

Step6: Signal is declared for APC word of 16 bits. 

Step7: Begin Process 1 for finding address B : 

          If b4 = 1 then 

                   Address B = (b3 b2 b1 b0); 

                else b4 = 0  then 

                   Address B =2’s complement of (b3 b2 b1 b0); 

       End Process 1; 

Step8: Begin Process 2 for finding APC for given address B: 

             Case Address B is 

              (Here a list of address value Band corresponding to it 

                APC value is given according to table II).  

               end Case; 

            End Process 2; 

Step9: Begin Process 3 for finding true product P: 

           If b4 = 1 then 

                     Product P = 16A + APC; 

            else b4 = 0  then 

                   Product P = 16A - APC; 

       End Process 3; 
 

Step10: End 
C. Algoritmic Design for Direct-Memory-Based Modified 

Odd Multiple Storage (OMS) Technique: 
In this technique for L=4 bits taking unsigned 4bit number 

or APC words of L=5 bit and for any coefficient width W, 
here the design consists of a memory array of nine words of 
(W + 4)-bit width, a four-to-nine-line address decoder, a barrel 
shifter, an address generation circuit, and a control circuit for 
generating the RESET signal and control word (s1s0) for the 
barrel shifter. The pre-computed values of A × (2i + 1) are 
stored as Pi, for i = 0, 1, 2, . . . , 7, at the eight consecutive 
locations of the memory array, as specified in Table III, while 
2A is stored for input B = (00000) at memory address “1000,” 
as specified in Table IV. The decoder takes the 4-bit address 
from the address generator and generates nine word-select 
signals, i.e., {vi, for 0≤ i ≤ 8}, to select the referenced word 
from the memory. The control bits s0 and s1 to be used by the 
barrel shifter to produce the desired number of shifts of the 
memory output are generated by the control circuit, according 
to (7a) and (7b). The RESET signal can be generated by (7).  
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The address-generator circuit receives the input operand B 
and maps that onto the 4-bit address word (d3d2d1d0), 
according to (5) and (6). 

ALGORITHM 

Step1: Let fixed coefficient input A be 10 bit word. 

Step2: Multiplicand input B (b3 b2 b1 b0) is 4 bit unsigned   

            number or is APC word of L=5 bit. 

Step3: Product output P is 16 bit word. 

Step4: Memory component has pre-computed 9 OMS words. 

Step5: Signal is declared for address D (d3 d2 d1 d0) of 4 bits. 

Step6: Signal is declared for OMS word of 16 bits. 

Step7: Signal is declared for control S (s1 s0) of 2 bits. 

Step8: Signal is declared for RESET of 1 bit. 

Step9: Begin Process 1for finding address and control signal: 

              Case Input B is 

                (Here a list of input values B and corresponding to it  

                 Control signal value S and address location D is 

                 given according to table III and IV). 

               end Case; 

             End Process 1; 

Step10: Begin Process 2 for finding OMS for given address D: 

               Case Address D is 

              (Here a list of address value D and corresponding to it 

                OMS value is given according to table III and IV).  

                end Case; 

              End Process 2; 

Step11: Begin Process 3 for finding true product value. 

               RESET = d3. b4    

                 If RESET = 1 then  

                     Product P= 0 

                 else RESET=0 then 

                   Product P= OMS << S (i.e. OMS is left shift by S)  

               End Process 3; 
Step12: End 

D. Algorithmic Design Of Combined Technique Used In 

Proposed Optimized Direct-Memory-Based 

Multiplication: 
The algorithmic design principle here is to utilize all the 

three technique Sign-Bit Exclusion, APC and Modified OMS 
efficiently in an optimized manner to get our proposed design 
which reduce the LUT memory size to one-eighth of the 
conventional LUT. By efficiently combine all the technique 
we get optimized direct-memory-based multiplication 
hardware. It consists of an address generator and control 

circuit, 4-To-9 address-line decoder, 9(W+6) LUT memory 
units, barrel shifter, add/subtract unit and 2’s 
complement/sign-modification unit.  

ALGORITHM 

Step1: Let fixed coefficient input A be 10 bit word. 

Step2: Multiplicand input B (b5 b4 b3 b2 b1 b0) is 6 bit 
signed number. 

Step3: Product output P is 16 bit word. 

Step4: Memory component has pre-computed 9 OMS words. 

Step5: Signal is declared for address D(d3 d2 d1 d0) of 4 bits. 

Step6: Signal is declared for input B(b3 b2 b1 b0) of 

            OMS technique of 4 bits. 

Step7: Signal is declared for OMS word of 16 bits. 

Step8: Signal is declared for APC word of 16 bits. 

Step9: Signal is declared for control S(s1 s0) of 2 bits. 

Step10: Signal is declared for RESET of 1 bit. 

Step11: Begin Process 1 for finding Input B of OMS value: 

          Case Input (b5 b4) is  

           [Value (b5 b4)   = “00”   

             Input of OMS B =2’s complement of (b3 b2 b1 b0); 

            Value (b5 b4)   = “01”   

             Input of OMS B = (b3 b2 b1 b0);  

            Value (b5 b4)   = “10”   

             Input of OMS B =2’s complement of (b3 b2 b1 b0); 

            Value (b5 b4)   = “11”    

               Input of OMS B = (b3 b2 b1 b0);] 

               end Case; 

             End Process 1; 

Step12: Begin Process 2 for finding address D and control 

               signal S: 

            Case Input B’ is 

                (Here a list of input values B’ and corresponding 

                 to it Control signal value S and address location 

                 D is given according to tables III and IV). 

               end Case; 

             End Process 2; 

Step13: Begin Process 3 for finding OMS for given address D: 

           Case Address D is 

            (Here a list of address D and corresponding to it  

            OMS value is given according to tables III and IV).  

            end Case; 

         End Process 3; 

Step14: Begin Process 4 for finding APC product value: 

         RESET = d3. b4;    
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         If RESET = 1 then  

              Product APC= 0; 

         else RESET=0 then 

       Product APC= OMS << S; (i.e. OMS is left shift by S)  

         End Process 4; 

Step15: Begin Process 5 for finding true product P; 

            Case Input (b5 b4) is  

               [Value (b5 b4) = “00”   

                        Product P= 16A – APC; 

                Value (b5 b4) = “01”   

                        Product P= 16A + APC; 

                Value (b5 b4) = “10”   

                 Product P=2’s complement of (16A – APC); 

                Value (b5 b4) = “11”   

                 Product P=2’scomplement of (16A + APC);] 

               end Case; 

             End Process 5; 

Step16: End 

VI. HARDWARE IMPLEMENTATION OF DIRECT-MEMORY-

BASED MULTIPLIER USING THE PROPOSED OPTIMIZATION 

TECHNIQUE 

The hardware implementation of direct-memory-based 
multiplier for an L-bit input with a W-bit coefficient using the 
proposed optimization scheme is shown in fig.1. The 
multiplicand input (b5 b4 b3 b2 b1 b0) is applied to address 
generator and control circuit to generate the desired address 
location (d3d2d1d0), RESET and control signal (s1 s0), 
according to (5), (6), (7), (7a) and (7b) respectively. The 
function of a 4To9 address-line decoder is to take the 4-bit 
address from the address generator and generate nine word-
select signals, i.e., {vi, for 0≤ i ≤ 8}, to select the referenced 
word from the memory unit. The memory unit consist of LUT 
of nine words of (W + 6)-bit width, which stores the pre-
computed values of Pi =A× (2i + 1), for i = 0, 1, 2, . . . , 7, at 
the eight consecutive locations of the LUT memory unit, as 
specified in Table III, while 2A is stored for input B = (00000) 
at LUT address “1000,” as specified in Table IV. The control 
bits s0 and s1 is used by the barrel shifter to produce the 
desired number of shifts of the LUT memory output. The 
output of the barrel shifter is added with or subtracted from 
16A, for b4 = 1 or 0, respectively, according to (3) by the 
add/subtract unit. Hence, b4 is used as the control for the 
add/subtract unit. At the 2’s complement/sign modification 
unit, a two’s complement operation of the output of 
add/subtract cell is required to be performed for b5=1 and 
remain as it is for b5=0, when both operands are in two’s 
complement form. Here b5 act as a sign control signal. The 
RTL schematic of Optimized Direct-Memory-Based 
Multiplier Design, Using Sign-Bit Exclusion, APC and OMS 
Technique is shown in Fig.2. 

VII. RESULT AND CONCLUSION 

The proposed optimized memory-based multiplier is coded 
in VHDL and synthesized in Xilinx ISE 9.1i Project 
Navigator, for word size L = 5 and  6 bits for signed 
magnitude numbers and L= 5 bits unsigned magnitude 
numbers respectively. For unsigned numbers we use APC and 
modified OMS scheme whereas for signed-magnitude 
numbers the sign-bit exclusion  

 

Fig. 1. Proposed Optimized Direct-Memory-Based Multiplier Design, 

Using Sign-Bit Exclusion, APC and OMS Technique. 

 

Fig. 2. RTL schematic of Optimized Direct-Memory-Based Multiplier 

Design, Using Sign-Bit Exclusion, APC and OMS Technique. 

scheme is included in APC and modified OMS scheme to get 
an optimized LUT multiplier which reduces the memory size 
to one-eighth of conventional LUT. Simulation result, area 
utilization and timing analysis for 6 bit signed number, 5 bit 
unsigned number and 5 bit signed number  are shown in fig.3, 
fig.4, fig.5, fig.6, fig.7, fig.8, fig.9, fig.10 and fig.11 
respectively.  
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Fig. 3. Simulation Result of Proposed Optimized Design for Signed-

Magnitude Numbers, L=6 Bits 

 

Fig. 4. Area Utilization of Proposed Optimized Design for Signed-

Magnitude Numbers, L=6 Bits 

Fig. 5.  

 

Fig. 6. Timing Report of Proposed Optimized Design for Signed-Magnitude 

Numbers, L=6 Bits 

 

Fig. 7. Simulation Result of Optimized Design for Unsigned-Magnitude 

Numbers, L=5 Bits 

 

Fig. 8. Area Utilization of Optimized Design for Unsigned-Magnitude 

Numbers, L=5 Bits 

 

Fig. 9. Timing Report of Optimized Design for Unsigned-Magnitude 

Numbers, L=5 Bits 

 

Fig. 10. Simulation Result of Proposed Optimized Design for Signed-

Magnitude Numbers, L=5 Bits 

 

Fig. 11. Area Utilization of Proposed Optimized Design for Signed-

Magnitude Numbers, L=5 Bits 
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Fig. 12. Timing Report of Proposed Optimized Design for Signed-Magnitude 

Numbers, L=5 Bits 

Comparison of memory block and LUT memory size for 
L= 6 bits by different techniques is shown in Table V. In 
Table VI we have compared the results derived from are 
design summary and synthesis report for area and timing 
parameters. It is found that for signed magnitude numbers of 5 
bit word size it offers more saving in area-delay product as of 
5 bit word size unsigned magnitude numbers. With our 
proposed optimized design LUT memory size for L= 6 bits is 
14.065% of conventional LUT and for L= 5 bits is 12.5% of 
conventional LUT. Thus, the proposed optimized design also 
offers almost 85% and 87.5% reductions in LUT memory size 
for L=6 bits and L=5 bits respectively over conventional LUT. 
The design also saves a lot of multiplication computation 
power as it is direct-memory based and no product 
computation are carried out, hence with a very negligible trade 
off in delay a lot of area and power are saved. 

The LUT multiplier could be used for memory-based 
implementation of linear and circular convolution, cosine and 
sinusoidal transforms, and inner-product computation. The 
performance of memory-based structures with different 
memory implementations could be studied in future for 
different DSP applications. Although the memory core of the 
direct-memory-based multiplier is reduced to nearly one-
eighth by the proposed optimization technique, it is not 
efficient for operands of small widths, since it requires an 
adder to add the offset value. However, it could be used for 
multiplication with input of large word size by an input 
decomposition scheme. When the width of the input 
multiplicand is large, direct implementation of LUT multiplier 
involves a very large LUT. Therefore, the input word could be 

decomposed into a certain number of segments or sub-words, 
and the partial products pertaining to different sub-words 
could be shift added to obtain the desired product. In brief, we 
have shown the possibility of using direct-memory-based 
multipliers to implement the constant multiplication for DSP 
applications. The full advantages of proposed design, 
however, could be derived if the LUTs are implemented as 
NAND or NOR read-only memories and the arithmetic shifts 
for large operand word size are implemented by an array 
barrel shifter using metal–oxide–semiconductor transistors. 
Further work could still be done to derive Sign-Bit Exclusion, 
OMS–APC-based LUTs for higher input sizes with different 
forms of decompositions and parallel and pipelined addition 
schemes for suitable area–delay tradeoffs. 

TABLE V.  COMPARISON  STUDY OF OPTIMIZED DESIGN FOR 

UNSIGNED- MAGNITUDE NUMBERS WITH PROPOSED OPTIMIZED 

DESIGN  FOR SIGNED-MAGNITUDE 

NUMBERS

 

 

 

 

TABLE VI.  COMPARISON OF MEMORY BLOCKS AND LUT SIZE FOR L= 6

 

 

 

 

 

 

 

 

 

METHOD  CONVENTIONAL 
SIGN-BIT 

EXCLUSION 
APC OMS 

SIGN-BIT 

EXCLUSION + 

APC 

APC+OMS 

SIGN-BIT 

EXCLUSION +  

APC + OMS 

MEMORY 
BLOCK 

64 32 33 33 17 17 9 

LUT SIZE 100% 50% 51.5625% 51.5625% 26.5625% 26.5625% 14.0625% 
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