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We believe that sharing data among multiple users is 

perhaps one of the most engaging features that motivates 

cloud storage. A unique problem introduced during the 

process of public auditing for shared data in the cloud is 

how to preserve identity privacy from the TPA, because 

the identities of signers on shared data may indicate that a 

particular user in the group or a special block in shared data 

is a higher valuable target than others. 

Abstract—With cloud storage services, it is common 

place for data to be not only stored in the cloud, but also 

shared across multiple users. However, public auditing 

for such shared data — while preserving identity 

privacy— remains to be an open challenge. In this 

paper, we propose the first privacy-preserving 

mechanism that  allows public auditing on shared data 

stored in the cloud. In particular, we exploit ring 

signatures to compute the verification information 

needed to audit the integrity of shared data. With our 

mechanism, the identity of the signer on each block in 

shared data is kept private from a third party auditor 

(TPA), who is still able to publicly verify the integrity of 

shared data without retrieving the entire file. Our 

experimental results demonstrate the effectiveness and 

efficiency of our proposed mechanism when auditing 

shared data. 

mechanism for  cloud data, so that during public auditing, 

the content of private data belonging to a personal user is not 

disclosed to the third party auditor. 

keywords—Public auditing, privacy-preserving,shared data, cloud 

computing. 

For example, Alice and Bob work together as a group and 

share a file in the cloud. The shared file is divided into a 

number of small blocks, which are independently signed 

by users. Once a block in this shared file is modified by a 

user, this user needs to sign the new block using her 

public/private key pair. The TPA needs to know the 

identity of the signer on each block in this shared file, so 

that it is able to audit the integrity of the whole file based 

on requests from Alice or Bob. 

Fig. 1. Alice and Bob share a file in the cloud. 

         As shown in Fig. 1, after performing several 

auditing tasks, some private and sensitive information 

may reveal to the TPA. On one hand, most of the blocks 

in shared file are signed by Alice, which may indicate 

that Alice is a important role in this group, such as a 

group leader. On the other hand, the 8-th block is 

frequently modified by different users. It means this 

block may contain high-value data, such as a final bid in 

an auction, that Alice. and Bob need to discuss and 

change it several times. As described in the example 

above, the identities of signers on shared data may 

indicate which user in the group or block in shared data is 

a higher  valuable target than others. Such information is 

confidential to the group and should not be revealed to 

any third party. However, no existing mechanism in the 

1 INTRODUCTION 

 

Cloud service providers manage an enterprise-class 

infrastructure that offers a scalable, secure and 

re-liable environment for users, at a much lower 

marginal cost due to the sharing nature of resources. 

It is routine for users to use cloud storage services to 

share data with others in a team, as data sharing 

becomes a standard feature in most cloud storage 

offerings, including Dropbox and Google Docs. 

The integrity of data in cloud storage, however, is 

subject to skepticism and scrutiny, as data stored in an 

untrusted cloud can easily be lost or corrupted, due to 

hardware failures and human errors [1]. To protect the 

integrity of cloud data, it is best to perform public 

auditing by  introducing a third party auditor (TPA), 

who offers its auditing service with more powerful 

computation and communication abilities than regular 

users. 

The first provable data possession (PDP) mechanism 

[2] to perform public auditing is designed to check the  

correctness of data stored in an untrusted server, 

without retrieving the entire data. Moving a step 

forward, Wanget al. [3] (referred to as WWRL in this 

paper) is designed to construct a public auditing  
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literature is able to perform public auditing on shared

 

data in the cloud while still preserving identity privacy.

 2.2 Threat Model

 

2.2.1 Integrity Threats

 

  Two kinds of threats related to the integrity of shared

 

data are possible. First, an adversary may try to corrupt

 

the integrity of shared data and prevent users from using

 

data correctly. Second, the cloud service provider may

  

inadvertently corrupt (or even remove) data in its

  

storage due to hardware failures and human errors.

 

Making matters worse, in order to avoid jeopardizing its

 

reputation, the cloud server provider may be reluctant to

 

inform users about such corruption of data.

 

2.2.2. Privacy Threats 

   The identity of the signer on each block in shared data is 

private and confidential to the group. During the process of 

auditing, a semi-trusted TPA, who is only responsible for 

auditing the integrity of shared data, may try to reveal the 

identity of the signer on each block in shared data based on 

verification information. Once the TPA reveals the identity 

of the signer on each block, it can easily distinguish a 

high-value target (a particular user in the group or a special 

block in shared data). 

2.3 Design Objectives 

        To enable the TPA efficiently and securely verify 

shared data for a group of users, Oruta should be designed to 

achieve following properties: 

(1) Public Au-diting: The third party auditor is able to 

publicly verify the integrity of shared data for a group of users 

without retrieving the entire data. 

(2) Correctness: The third party auditor is able to correctly 

detect whether there is any corrupted block in shared data. 

(3) Unforgeability: Only a user in the group can generate 

valid verification information on shared data. 

(4) Identity Privacy: During auditing, the TPA cannot 

distinguish the identity of the signer on each block in 

shared data. 

3 PRELIMINARIES 

  In this section, we briefly introduce cryptographic primitives and 

their corresponding properties that we implement in Oruta. 

3.1 Bilinear Maps 

   We first introduce a few concepts and properties re-lated to 

bilinear maps. 

   1) G1, G2 and GT are three multiplicative cyclic 

      groups of prime order p; 

   2) g1 is a generator of G1, and g2 is a generator of G2; 

   3) ψ is a computable isomorphism from G2 to G1, 

2 PROBLEM STATEMENT

 

2.1 System Model 

As illustrated in Fig. 2, our work in this paper involves 

three parties: the cloud server, the third party auditor 

(TPA) and users. There are two types of users in a group: 

the original user and a number of group users. The original 

user and group users are both members of the group. 

Group members are allowed to access and modify shared 

data created by the original user based on access control 

polices [8]. Shared data and its verification information 

(i.e. signatures) are both stored in the cloud server. The 

third party auditor is able to verify the integrity of shared 

data in the cloud server on behalf of group members. 

Fig. 2. Our system model includes the cloud server, the 

third party auditor and users. 
In this paper, we only consider how to audit the 

integrity of shared data in the cloud with static groups. 

It means the group is pre-defined before shared data is 

created in the cloud and the membership of users in 

the group is not changed during data sharing. The 

original user is responsible for deciding who is able to 

share her data before outsourcing data to the cloud. 

Another interesting problem is how to audit the 

integrity of shared data in the cloud with dynamic 

groups — a new user can be added into the group and 

an existing group member can be revoked during data 

sharing — while still preserving identity privacy. We 

will leave this problem to our future work. 
         When a user (either the original user or a 

group user) wishes to check the integrity of shared 

data, she first sends an auditing request to the TPA. 

After receiving the auditing request, the TPA 

generates an auditing message to the cloud server, and 

retrieves an auditing proof of shared data from the 

cloud server. Then the TPA verifies the correctness of 

the auditing proof. Finally, the TPA sends an auditing 

report to the user based on the result of the 

verification. 
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   with ψ(g2) = g1;

 

4) e is a bilinear map e: G1 × G2 →

 

GT with the

 

following properties:

 

 

  Computability: there exists an efficiently

 

computable 

algorithm for computing the map.

 

   Bilinearity: for all u ∈

 

G1, v ∈

 

G2 and a, b ∈

 

Zp,

 

e(ua, 

vb) = e(u, v)ab.

 

   Non-degeneracy: e(g1, g2) ≠

 

1.

 

These properties further imply two additional properties:

 

 

(1) for any u1, u2 ∈

 

G1 and v ∈

 

G2, e(u1 · u2, v) = e(u1, v)

 

· e(u2, v); (2) for any u, v ∈

 

G2, e(ψ(u), v) = e(ψ(v), u).

 

3.2 Ring Signatures

 

   The concept of ring signatures is first proposed by

 

Rivest 

et al. [4] in 2001. With ring signatures, a verifier

 

is 

convinced that a signature is computed using one of

 

group 

members’ private keys, but the verifier is not able

 

to 

determine which one. This property can be used to

 

preserve 

the identity of the signer from a verifier.

 

The ring signature scheme introduced by Boneh et al.

 

[5] 

(referred to as BGLS in this paper) is constructed on

 

bilinear 

maps. We will extend this ring signature scheme

 

to construct 

our public auditing mechanism.

 

3.3 Homomorphic Authenticators

 

  Homomorphic authenticators (also called homomor-

 

phic 

verifiable tags) are basic tools to construct data

 

auditing 

mechanisms [2], [3], [6]. Besides unforgeability

 

(only a user 

with a private key can generate valid signa-

 

tures), a 

homomorphic authenticable signature scheme,

 

which denotes a 

homomorphic authenticator based on

 

signatures, should also 

satisfy the following properties:

 

  Let (pk, sk) denote the signer’s public/private key

 

pair, σ1 

denote a signature on block m1 ∈

 

Zp, σ2 denote a

 

signature on block m2 ∈

 

Zp.

 

  • Blockless verification: Given σ1 and σ2, two ran-dom 

values α1, α2 ∈

 

Zp and a block m′

 

= α1m1 +

 

α2m2 ∈

 

Zp, a 

verifier is able to check the correctness

 

of block m′

 

without 

knowing block m1 and m2.

 

  • Non-malleability Given σ1 and σ2, two random

 

values α1, 

α2 ∈

 

Zp and a block m′

 

= α1m1 + α2m2 ∈

 

Zp, a user, who does 

not have private key sk, is not

 

able to generate a valid signature 

σ′

 

on block m′

 

by

 

linearly combining signature σ1 and σ2.

 

Blockless verification allows a verifier to audit the

 

correctness 

of data stored in the cloud server with a

 

single block, which is a 

linear combination of all the

 

blocks in data. If the combined 

block is correct, the

 

verifier believes that the blocks in data are 

all correct. In

 

this way,

 

the verifier does not need to download 

all the

 

blocks to check the integrity of data. Non-malleability

 

indicates that an attacker cannot generate valid

 

signatures on 

invalid blocks by linearly combining

 

existing signatures.

 

 

        Other cryptographic techniques related to

 

homomor-phic authenticable signatures includes

 

aggregate 

sig-natures [5], homomorphic signatures [10]

 

and 

batch-verification signatures [11]. If a signature

 

scheme is 

blockless verifiable and malleable, it is a

 

homomorphic 

signature scheme. In the construction of

 

data auditing 

mechanisms, we should use homomorphic

 

authenticable 

signatures, not homomorphic signatures.

 

4 HOMOMORPHIC AUTHENTICABLE RING

 

SIGNATURES

 

4.1 Overview:

 

In this section, we introduce a new ring signature

 

scheme, 

which is suitable for public auditing. Then, we

 

will show 

how to build the privacy-preserving public

 

auditing 

mechanism for shared data in the cloud based

 

on this new 

ring signature scheme in the next section.

 

As we introduced 

in previous sections, we intend to

 

utilize ring signatures to 

hide the identity of the signer

 

on each block, so that private 

and sensitive information

 

of the group is not disclosed to 

the TPA. However,

 

traditional ring signatures [4], [5] 

cannot be directly

 

used into public auditing mechanisms, 

because these

 

ring signature schemes do not support 

blockless

 

verification. Without blockless verification, the 

TPA has

 

to download the whole data file to verify the 

correctness

 

of shared data, which consumes excessive 

bandwidth

 

and takes long verification times.

 

Therefore, we first construct a new homomorphic

 

authenticable ring signature (HARS) scheme, which is

 

extended from a classic ring signature scheme [5], de-

 

noted as BGLS. The ring signatures generated by HARS

 

is 

able not only to preserve identity privacy but also to

 

support blockless verification.

 

4.2 Construction of HARS

 

   HARS contains three algorithms: KeyGen, RingSign

 

and RingVerify. In KeyGen, each user in the group

 

generates her public key and private key. In RingSign, a

 

user in the group is able to sign a block with her private

 

key 

and all the group members’ public keys. A verifier

 

is 

allowed to check whether a given block is signed by a

 

group 

member in RingVerify.

 

KeyGen. For a user ui in the group U, she randomly

 

picks 

xi ∈

 

Zp and computes wi = g2xi ∈

 

G2. Then, user

 

ui’s 

public key is pki = wi and her private key is ski =

 

xi.
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RingSign.Given all the d users’ public keys
 
(pk1, ..., 

pkd) = (w1, ..., wd), a block m ∈
 

Zp, the iden-tifier of 

this block id and the private key sks for some s,
 
user us 

randomly chooses ai ∈
 

Zp for all i ≠
 
s, where i ∈

 
[1, d], 

and let σi = g1ai . Then, she computes
  

 

         β = H1(id)g1m ϵ G1 .               (1) 

and sets 

all the d users’ public key (pk1, ..., pkd) = (w1, ..., wd),

 

and 

is given access to the hash oracle and the ring-

 

signing oracle. 

The goal of the adversary is to output a

 

valid ring signature 

on a pair of block/identifier (id, m),

 

where this pair of 

block/identifier (id, m) has never been

 

presented to the 

ring-signing oracle. If the adversary

 

achieves this goal, then it 

wins the game.

 

THEOREM 2: Suppose A is a (t′, ǫ′)-algorithm that can

 

generate a forgery of a ring signature on a group of

 

users of 

size d. Then there exists a (t, ǫ)-algorithm that

 

can solve the 

co-CDH problem with t ≤

 

2t′+2cG1 (qH

 

+dqs+qs+d)+2cG2 d 

and ǫ

 

≥

 

(ǫ′/(e + eqs))2, where A

 

issues at most qH hash 

queries and at most qs ring-

 

signing queries, e = 

limqs→∞(1+ 1/qs)qs , exponentiation

 

and inversion on G1 

take time cG1 , and exponentiation

 

and inversion on G2 take 

time cG2 .

 

Proof: The co-CDH problem can be solved by solving

 

two 

random instances of

 

the following problem: Given

 

g1ab, g2a 

(and g1,g2), compute g1b. We shall construct an

 

algorithm B 

that solves this problem. This problem is

 

easy if a = 0. In what 

follows, we assume a ≠

 

0.

 

5  PRIVACY-PRESERVINGPUBLIC
 

AUDITING FOR SHARED DATA IN THE
 

CLOUD
 

 

5.1 Overview 

Using HARS and its properties we established in the previous 

section, we now construct Oruta,our privacy-preserving public 

auditing mechanism for shared data in the cloud. With Oruta, 

the TPA can verify the integrity of shared data for a group of 

users without retrieving the entire data. Meanwhile, the 

identity of the signer on each block in shared data is kept 

private from the TPA during the auditing. 

5.2   Reduce Signature Storage 

and the ring signature of block m is σ = (σ1, ..., σd) ∈ 

Gd1. 

RingVerify. Given all the d users’ public keys (pk1, ..., 

pkd) = (w1, ..., wd), a block m, an identifier id and a 

ring signature σ (σ1, ..., σd), a verifier first computes β 

= H1(id)g1m ∈ G1, and then checks 

If the above equation holds, then the given block m is 

signed by one of these d users in the group. Otherwise, 

it is not. 

4.3          Security Analysis of HARS 

    Now, we discuss some important properties of 

HARS, including correctness, unforgeability, 

blockless verification, non-malleability and identity 

privacy. 

  THEOREM 1: Given any block and its ring 

signature, a verifier is able to correctly check the 

integrity of this block under HARS. 

     Proof: 

equiva-lent 

Based on 

correctness 

follows: 

To prove the correctness of HARS is 

of proving Equation (3) is correct. 

prop-erties of bilinear maps, the 

of this equation can be proved as 

Now we prove that HARS is able to resistance to

 

forgery. We follow the security model and the game

 

defined in BGLS [5]. In the game, an adversary is given

 

   Another important issue we should consider in the 

construction of Oruta is the size of storage used for ring 

signatures. According to the generation of ring signatures in 

HARS, a block m is an element of Zp and its ring signature 

contains d elements of G1, where G1 is a cyclic group with 

order p. It means a |p|-bit block requires a d × |p|-bit ring 

signature, which forces users to spend a huge amount of space 

on storing ring signatures. It is very frustrating for users, 

because cloud service providers, such as Amazon, will charge 

users based on the storage space they used. To reduce the 

storage for ring signatures and still allow the TPA to audit 

shared data efficiently, we exploit an aggregated approach 

from [6]. Specifically, we aggregate a block mj = 
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(mj,1, ..., mj,k) ∈

 

Zpk in shared data as

 

Πl=1kηmj,l 

instead of computing gm in Equation(1),

 

where η1 ,…., 

ηk are random values of G1. With the

 

aggregation, the 

length of a ring signature is only d/k

 

of the length of a 

block. Similar methods to reduce

 

the storage space of 

signatures can also be found in

 

[7]. Generally, to obtain a 

smaller size of a ring

 

signature than the size of a block, 

we choose k > d.

 

As a trade-off, the communication cost 

will beincreasing with an increase of k.

 

5.3 Support Dynamic Operations

 

  To enable each user in the group to easily modify

 

data in 

the cloud and share the latest version of data

 

with the rest 

of the group, Oruta should also support

 

dynamic 

operations on shared data. An dynamic

 

opera-tion includes 

an insert, delete or update

 

operation on a single block. 

However, since the

 

computation of a ring signature 

includes an identifier

 

of a block (as presented in HARS), 

traditional

 

methods, which only use

 

the index of a block as 

its

 

identifier, are not suitable for supporting dynamic

 

operations on shared data. The reason is that, when a

 

user 

modifies a single block in shared data by

 

performing an 

insert or delete operation, the indices

 

of blocks that after 

the modified block are all

 

changed (as shown in Figure 3 

and 4), and the

 

changes of these indices require users to 

re-compute

 

the signatures of these blocks, even though the

 

contentoftheseblocksarenot

 

modified.

 

  5.4 Construction of Oruta 

      Now, we present the details of our public auditing 

mechanism, Oruta. It includes five algorithms: KeyGen, 

SigGen, Modify, ProofGen and ProofVerify. In 

Key-Gen, users generate their own public/private key 

pairs. 

In SigGen, a

 

user (either the original user or a group

 

user) is 

able to compute ring signatures on blocks in

 

shared data. 

Each user in the group is able to perform

 

an insert, delete or 

update operation on a block, and

 

compute the new ring 

signature on this new block in

 

Modify. ProofGen is operated 

by the TPA and the

 

cloud server together to generate a proof 

of

 

possession of shared data. In ProofVerify, the TPA

 

verifies the proof and sends an auditing report to the

 

user.

 

   Note

 

that the group is pre-defined before shared

 

data is 

created in the cloud and the membership of

 

the group is not 

changed during data sharing. Before

 

the original user 

outsources shared data to the cloud,

 

she decides all the group 

members, and computes all

 

the initial ring signatures of all 

the blocks in shared

 

data with her private key and all the 

group members’

 

public keys. After shared data is stored in the 

cloud,

 

when a group member modifies a block in shared

 

data, 

this group member also needs to compute

 

a new

 

ring 

signature on the modified block.

 

ProofGen. To audit the integrity of shared data, a

 

user first 

sends an auditing request to the TPA. After

 

receiving an 

auditing request, the TPA generates an

 

auditing message [2] as follows:

 

  1) The TPA randomly picks a c-element subset J

 

of set [1,          

n] to locate the c selected blocks that

 

will be checked in this 

auditing process, where

 

n is total number of blocks in shared 

data.

 

  2) For j ϵ

 

J , the TPA generates a random value yj

 

ϵ

 

Zq. 

Then, the TPA sends an auditing message

 

{(j, yj)} j ϵ

 

J to the 

cloud server (as illustrated inFig. 7).
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by computing d+2 pairing operations in verification 

instead of computing d+3 pairing operations with Equation 

(6). Specifically, Equation (6) can also bedescribed as 

After receiving an auditing message {(j, yj)} j ϵ J , the 

cloud server generates a proof of possession of selected 

blocks with the public aggregate key pak. More 

specifically: 

1) The cloud server chooses a random element rl ϵ Zq, 

and calculates λl = ηlrl ∈ G1, for l ∈ [1, k]. 

2) To hide the linear combination of selected blocks using 

random masking, the cloud server computes 

 3) The cloud server aggregates signatures as 

              π j ϵ J σ j,iyj, for i ϵ [1, d]. 

 After the computation, the cloud server sends an 

auditing proof {λ,µ,φ, {idj }j∈J } to the TPA, where 

(λ1, ..., λk), µ = (µ1, ..., µk) and φ = (φ1, ..., φd) (as 

shown in Fig. 8). 

5.5Security Analysis of Oruta 

  Now, we discuss security properties of Oruta, including 

its correctness, unforgeability, identity privacy and data 

privacy. 

   THEOREM 3: During an auditing task, the TPA is able to 

correctly audit the integrity of shared data under Oruta. 

     Proof: To prove the correctness of Oruta is equivalent of 

proving Equation (6) is correct. Based on properties of 

bilinear maps and Theorem 1, the right-hand side (RHS) of 

Equation (6) can be expanded as follows: 

THEOREM 4: For an untrusted cloud, it is computational 

infeasible to generate an invalid auditing proof that can 

pass the verification under Oruta. 

Proof: As proved in Theorem ??, for an untrusted cloud, if 

co-CDH problem in G1 and G2 is hard, it is computational 

infeasible to compute a valid ring signa-ture on an invalid 

block under HARS. 

ProofVerify. With an auditing proof {λ,µ,φ, {idj }j∈J, an 

auditing message {(j, yj )}j∈J , public aggregate key pak 

= (η1, ..., ηk), and all the group members’ public keys 

(pk1, ..., pkd) = (w1, ..., wd), the TPA verifies the 

correctness of this proof by checking the following 

equation 

  Following a similar theorem in [2], we show that 

our scheme is also able to support data privacy. 

    If the above equation holds, then the TPA 

believes that the blocks in shared data are all 

correct, and sends a positive auditing report to the 

user. Otherwise, it sends a negative one. 
Discussion. Based on the properties of bilinear maps, 

we can further improve the efficiency of verification 

5.6 Batch Auditing 

  More concretely, we assume there are B auditing tasks 

need to be operated, the shared data in all the B auditing 

tasks are denoted as M1, ..., MB and the number of users 

sharing data Mb is described as db, where 1 ≤ b ≤ B. To 

efficiently audit these shared data for different users in a 

single auditing task, the 
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TPA sends an auditing message as {(j, yj )}j∈J to the

 

cloud server. After receiving the auditing message,

 

the 

cloud server generates an auditing proof

 

{λb,µb,φb, 

{idb,j }j∈J } for each shared data Mb as we

 

presented 

in ProofGen, where 1 ≤

 

b ≤

 

B, 1 ≤

 

l ≤

 

k,

 

Here idb,j is described as idb,j = {fb, vj , rj },where fb 

is the identifier of shared data Mb, e.g. the name of 

shared data Mb. Clearly, if two blocks are in the same 

shared data, these two blocks have the same identifier 

of shared data. As before, when a user modifies a 

single block in shared data Mb, the identifiers of other 

blocks in shared data Mb are not changed.After the 

computation, the cloud server sends all the B auditing 

proofs together to the TPA. Finally, the TPA verifies 

the correctness of these B proofs simultaneously by 

checking the following equation with all the ΣBb=1 db 

users’ public keys: 

once the batch auditing of the B auditing proofs fails,

 

the 

TPA divides the set of all the B auditing proofs

 

into two 

subsets, which contains B/2 auditing proofs

 

in each subset, 

and re-checks the correctness of

 

auditing proofs in each 

subset using batch auditing. If

 

the verification result of one 

subset is correct, then

 

all the auditing proofs in this subset 

are all correct.

 

Otherwise, this subset is further divided into 

two sub-

 

subsets, and the TPA re-checks the correctness of

 

auditing proofs in the each sub-subsets with batch

 

auditing 

until all the incorrect auditing proofs are

 

found. Clearly, 

when the number of incorrect

 

auditing proofs increases, the 

efficiency of batch

 

auditing will be reduced. Experimental 

results in

 

Section 6 shows that, when less than 12% of 

auditing

 

proofs among all the B auditing proofs are 

incorrect,

 

batching auditing is still more efficient than 

verifying

 

these auditing proofs one by one.

 

6 PERFORMANCE 

  In this section, we first analysis the computation and 

communication costs of Oruta, and then evaluate the 

performance of Oruta in experiments. 

6.1 Computation Cost 

  The main cryptographic operations used in Oruta include 

multiplications, exponentiations, pairing and hashing 

operations. For simplicity, we omit additions in the 

following discussion, because they are much easier to be 

computed than the four types of operations mentioned above. 

6.2 Communication Cost 

The communication cost of Oruta is mainly introduced by 

two factors: the auditing message and the auditing proof. 

For each auditing essage {j, yj}j2J , the communication cost 

is c(|q| + |n|) bits, where |q| is the length of an element of Zq 

and |n| is the length of an index. Each auditing = {λ,μ,ɸ, 

{idj}jϵJ } contains (k+d) elements of G1, k elements of Zp 

and c elememts of Zq, therefore the communication cost 

of one auditing proof is (2k + d)|p| + c|q| bits. 

6.3 Experimental Results 

  We now evaluate the efficiency of Oruta in experiments. 

To implement these complex cryptographic operations that 

we mentioned before, we utilize the GNU Multiple 

Precision Arithmetic (GMP)2 library and Pair-ing Based 

Cryptography (PBC)3 library. All the following experiments 

are based on C and tested on a 2.26 GHz Linux system over 

1, 000 times. 

where pkb,i = wb,i. If the above verification equation 

holds, then the TPA believes that the integrity of all 

the B shared data is correct. Otherwise, there is at 

least one shared data is corrupted. 

  Based on the correctness of Equation (6), the 

correct-ness of batch auditing can be presented as 

follows: 

  If all the B auditing requests on B shared data are 

from the same group, the TPA can further improve the 

efficiency of batch auditing by verifying 

Note that batch auditing will fail if at least one incorrect 

auditing proof exists in all the B auditing proofs. To 

allow most of auditing proofs to still pass the 

verification when there is only a small number of 

incorrect auditing proofs, we can utilize binary search 

[3] during batch auditing. More specifically, 
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7 RELATED WORK 

    Provable data possession (PDP), first proposed by 

Ateniese et al. [2], allows a verifier to check the 

correctness of a client’s data stored at an untrusted 

server. By utilizing RSA-based homomorphic 

authenticators and sampling strategies, the verifier is 

able to publicly audit the integrity of data without 

retrieving the entire data, which is referred to as 

public verifiability or public auditing. Unfortunately, 

their mechanism is only suitable for auditing the 

integrity of static data. Juels and Kaliski [13] defined 

another similar model called proofs of retrievability 

(POR), which is also able to check the correctness of 

data on an untrusted server. The original file is added 

with a set of randomly-valued check blocks called 

sentinels. The verifier challenges the untrusted server 

by specifying the positions of a collection of sentinels 

and asking the untrusted server to return the 

Associated sentinel values. Shacham and Waters [6] 

designed twoimproved POR schemes. The first 

scheme is built from BLS signatures, and the second 

one is based on pseudo random functions. 

8 CONCLUSION 

       In this paper, we propose Oruta, the first 

privacy preserving public auditing mechanism for 

shared data in the cloud. We utilize ring signatures to 

construct homomorphic authenticators, so the TPA is 

able to audit the integrity of shared data, yet cannot 

distinguish who is the signer on each block, which can 

achieve identity privacy. To improve the efficiency of 

verification for multiple auditing tasks, we further 

extend our mechanism to support batch auditing. An 

interesting problem in our future work is how to 

efficiently audit the integrity of shared data with 

dynamic groups while still preserving the identity of 

the signer on each block from the third party auditor. 
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