Oscillatory Behaviour Of The Solution Of The Third Order Nonlinear Neutral Delay Difference Equation

P. Mohankumar ${ }^{(1)}$ and A. Ramesh ${ }^{(2)}$

\author{

1. Prof of Mathematics, Department of Mathematics, Aarupadiveedu Institute of Technology, Vinayaka Mission University, Kancheepuram, Tamilnadu, India-603 104
 2. Senior Lecturer and Head of the Department of Mathematics, District Institute of Education and Training, Uthamacholapuram, Salem-636 010
}

Abstract

In this paper we study oscillatory behaviour of the solution of the third order nonlinear neutral delay difference equation of the form $$
\Delta^{2}\left(a_{n} \Delta\left(x_{n}+p_{n} x_{n-k}\right)\right)+f(n, \sigma(n))=0, n \varepsilon N\left(n_{0}\right)
$$

Key words: Oscillation, third order, Nonlinear Neutral Delay difference equations

1. Introduction

We are concerned with the oscillatory behaviour of the solution of the third order nonlinear neutral delay difference equations of the form

$$
\begin{equation*}
\Delta^{2}\left(a_{n} \Delta\left(x_{n}+p_{n} x_{n-k}\right)\right)+f(n, \sigma(n))=0, n \varepsilon N\left(n_{0}\right) \tag{1.1}
\end{equation*}
$$

Where the following conditions are assumed to hold.
(H1) $\left\{a_{n}\right\}$ is a positive sequence of real numbers for $\mathrm{n} \in \mathrm{N}\left(\mathrm{n}_{0}\right)$ such that $\sum_{n=n_{0}}^{\infty} \frac{n}{a_{n}}=\infty$
(H2) $\quad\left\{p_{n}\right\}$ is a real sequence such that $0 \leq p_{n}<p<1$ for all $\mathrm{n} \in \mathrm{N}\left(\mathrm{n}_{0}\right)$
(H3) k is a non negative integer and $\{\sigma(n)\}$ is a sequence of positive integer with $\lim _{x \rightarrow \infty} \sigma(n)=\infty$
(H4) $f: N\left(n_{0}\right) \times R \rightarrow R$ is continuous and $\mathrm{f}(\mathrm{n}, \mathrm{u})$ is nondecreasing in u with $u f(n, u)>0$ for all $u \neq 0$ and all $n \in N\left(n_{0}\right)$ and $f(n, u) \neq 0$ eventually.

By a solution of equation (1.1) we mean real sequence $\quad\left\{x_{n}\right\} \quad$ satisfying (1.1)
$\mathrm{n}=\left\{\mathrm{n}_{0}, \mathrm{n}_{0+1}, \mathrm{n}_{0+2}, \ldots \ldots ..\right\}$ a solution $\left\{x_{n}\right\}$ is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise it is called non
oscillatory. The forward difference operator $\Delta \mathrm{X}_{\mathrm{n}}=\mathrm{X}_{\mathrm{n}+1}-\mathrm{X}_{\mathrm{n}}$

2. Main Result

In this section we state and prove some lemmas which are useful in establish main result for the sake of convenience we will use of following notations.

$$
R(\mathrm{n})=\sum_{s=n_{0}}^{n-1} \sum_{t=n_{0}}^{s-1} \frac{t}{a_{t}}
$$

and

$$
R(n, N)=\sum_{s=N}^{n-1} \sum_{s=N}^{s-1} \frac{t-1}{a_{t}}
$$

Let $\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ be a real sequences we will also associated sequences $\left\{z_{n}\right\}$

$$
\begin{equation*}
z_{n}=x_{n}+p_{n+k} \quad n \in N\left(n_{0}\right) \tag{2.1}
\end{equation*}
$$

Where $\left\{p_{n}\right\}$ and k have been defined above
First we give some relation between the sequence $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$
Let $\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ be positive sequence, $\left\{z_{n}\right\}$ be sequence by (1.2)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x_{n}=\infty \text { then } \lim _{x \rightarrow \infty} z_{n}=\infty \tag{i}
\end{equation*}
$$

(ii) If $\left\{z_{n}\right\}$ converges to zer then so does

$$
\left\{x_{n}\right\}
$$

Proof: The proof can be found in [9]

Lemma 2.2

Let $\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ is an eventually positive solution of equation (1.1) then there only the following two cases for n large enough
(i) $\quad x_{n}>0, z_{n}>0, \Delta z_{n}>0, a_{n} \Delta z_{n}>0, \Delta\left(a_{n} \Delta z_{n}\right)>o$
(ii) $\quad x_{n}>0, z_{n}>0, \Delta z_{n}>o, a_{n} \Delta z_{n}<0, \Delta\left(a_{n} \Delta z_{n}\right)>o$

Lemma 2.3

If $N \geq n_{0}$ then $\lim _{x \rightarrow \infty} \frac{R(n, \mathrm{~N})}{R(n)}=1$

Lemma 2.4

Let $\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ is an eventually positive solution of equation (1.1) then there exists an integer $N \in N\left(n_{0}\right)$ and a constant $k_{1}>0$ such that $\frac{1}{2} \Delta\left(a_{n} \Delta z_{n}\right) R(n) \leq z_{n} \leq k_{1}(R(n)), \mathrm{n}>\mathrm{N}$

Lemma 2.5

Let $\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ is an eventually positive solution of equation (1.1) then there exist an integer $n_{1} \in N\left(n_{0}\right)$ such that for any integer $N \geq n_{1}$ we have $z_{n} \geq \sum_{s=N}^{n-1} R(s, N) f(s, \sigma(n)), n \in N$
The proof of lemmas can be found [7] and [8]

Lemma 2.6

If $\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ is an eventually positive solution of equation (1.1) then there exist an integer $n \in N\left(n_{0}\right)$ such that
$\Delta z_{n} \geq \frac{1}{2} \Delta\left(a_{n} \Delta z_{n}\right) \Delta R \sigma(n)$ for $n \geq N$ also if $\sigma(n) \leq n$, then
$\Delta z_{\sigma(n)} \geq \frac{1}{2} \Delta\left(a_{n} \Delta z_{n}\right) \Delta R_{\sigma(n)}$ for $n \geq N$
Proof: From Lemma 2.2 we have for $n \geq n_{1} \varepsilon N\left(n_{0}\right)$
$z_{n}>0 \quad \Delta z_{n}>o$ and $\Delta^{2}\left(a_{n} \Delta z_{n}\right)<0$

$$
\begin{align*}
\Delta z_{n} & \geq \sum_{s=n_{1}}^{n-1} \Delta z_{s}=\sum_{s=n_{1}}^{n-1} \frac{1}{a_{z}} a_{z} \Delta z_{s} \\
& \geq \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \sum_{t=n_{1}}^{s-1} \Delta\left(a_{t} \Delta z_{t}\right) \\
& \geq \Delta\left(a_{n} \Delta z_{n}\right) \sum_{s=n_{1}}^{n-1} \frac{s-n_{1}}{a_{s}} \\
& \geq \Delta\left(a_{n} \Delta z_{n}\right) \Delta R\left(n, n_{1}\right) \tag{2.3}
\end{align*}
$$

From lemma 2.3 we conclude that there exist an integer $n \geq N$ such that $\Delta R\left(n, n_{1}\right) \geq \frac{1}{2} \Delta R(\mathrm{n})$ for $n \geq N$
Since $\Delta^{2}\left(a_{n} \Delta z_{n}\right)<0$ and $\sigma(n) \leq n$

We have $\Delta z_{\sigma(n)} \geq \frac{1}{2} \Delta\left(a_{n} \Delta z_{n}\right) \Delta R_{\sigma(n)}$ for $n \geq N$
The proof is complete

Lemma 2.7

If $\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ is an eventually positive solution of equation (1.1) then there exist an integer $n \in N\left(n_{0}\right)$ such that $\left(1-p_{n}\right) z_{n} \leq x_{n} \leq z_{n}$ for $n \geq N$
Proof: If $\left\{x_{n}\right\}_{n=n_{0}}^{\infty}$ is an eventually positive solution of equation (1.1) for $n \geq N$. Then from the definition of z_{n} we have $z_{n}>x_{n}$ for $n \geq N$ from lemma 2.2 we have $z_{n}>0$ and $\Delta z_{n}>o$ for $n \geq N$

$$
z_{n}=x_{n}+p x_{n-k} \quad x_{n}=z_{n}-p_{n} x_{n-k}
$$

$x_{n} \geq z_{n}-p_{n} z_{n-k}$

$$
\geq\left(1-p_{n}\right) z_{n} \text { for } n \geq N
$$

This completes the proof.

Theorem 2.8

Assume that there exists real sequences $\left\{q_{n}\right\}$ such that $\frac{f(n, u)}{u} \geq M q_{n}>0$ for all $u \neq 0, n \geq n_{0}$
(2.4)
and $\sigma(n)=n-l$ where l is a sequence $\left\{p_{n}\right\}$ such that
$\limsup _{x \rightarrow \infty} \sum_{s=n_{0}}^{n} \rho_{s}\left[\left(1-p_{z-l}\right) q_{s}-\frac{\left(\Delta \rho_{s}\right)^{2}}{2 M \Delta R(s-l) \rho_{s}^{2}}\right]=\infty$
(2.5)

Then all solutions of equation (1.1) are oscillatory. Proof: Let $\left\{x_{n}\right\}$ be a nonoscillatory solutions of (1.1) and assume without loss of generality the $\left\{x_{n}\right\}$ is eventually positive. From Lemmas 2.2 and
2.7 we have $z_{n}>o, z_{n-l}>0, \Delta z_{n}>o$ and $\Delta\left(a_{n} \Delta z_{n}\right)>0$ for $n \geq N$ and $x_{n-l} \geq\left(1-p_{n}\right) z_{n-l}$

Define
$\omega_{n}=\frac{\rho_{n} \Delta\left(a_{n} \Delta z_{n}\right)}{z_{n-l}}, n \geq N$
Then in view of Lemma 2.6, (2.4) and (2.5) we have

$$
\begin{aligned}
& \Delta \omega_{n} \leq \frac{\rho_{n} \Delta^{2}\left(a_{n} \Delta z_{n}\right)+\Delta\left(a_{n} \Delta z_{n}\right) \Delta \rho_{n}}{z_{n-l}}-\frac{\rho_{n} \Delta\left(a_{n} \Delta z_{n}\right) \Delta z_{n-l}}{\left(z_{n-l}\right)^{2}} \\
& \quad \leq-M q_{n}\left(1-p_{n-l}\right) \rho_{n}+\Delta \rho_{n} \frac{\omega_{n}}{\rho_{n}} \\
& \leq-M q_{n}\left(1-p_{n-l}\right) \rho_{n}+\Delta \rho_{n} \frac{\omega_{n}}{\rho_{n}}-\frac{1}{2 \rho_{n}} \omega^{2} \Delta R(n-l) \\
& \leq-M q_{n}\left(1-p_{n-l}\right) \rho_{n} \frac{\left(\Delta \rho_{n}\right)}{2 \rho_{n} \Delta R(n-l)}
\end{aligned}
$$

Summing the last inequality from N to $n \geq N$, we obtain

$$
\sum_{s=n_{0}}^{n} \rho_{s}\left[\left(1-p_{z-l}\right) q_{s}-\frac{\left(\Delta \rho_{s}\right)^{2}}{2 M \Delta R(s-l) \rho_{s}^{2}}\right] \leq \frac{\omega_{N}}{M}
$$

and this contradicts (2.5). Thus the proof is complete.

For the linear equation

$$
\begin{equation*}
\Delta^{3}\left(x_{n}+p_{n} x_{n-\tau}\right)+q_{n} x_{n-\sigma}=0 \tag{2.6}
\end{equation*}
$$

Where τ and σ are nonnegative integers less than n we obtain from Theorem 2.8 the following corollary

Corollary 2.7

Suppose $q_{n} \geq 0$ for all $n \geq n_{0}$ and there exists positive sequences $\left\{\rho_{n}\right\}$ such that
$\limsup _{x \rightarrow \infty} \sum_{s=n_{0}}^{n} \rho_{s}\left[\left(1-p_{z-l}\right) q_{s}-\frac{\left(\Delta \rho_{s}\right)^{2}}{2 M \Delta R(s-l) \rho_{s}^{2}}\right]=\infty$
then all solutions of equation 2.5 are oscillatory.
The proof is complete
Example : Consider the difference equations
$\Delta^{2}\left[n(n+1) \Delta\left(x_{n}+\frac{1}{\sqrt{n-1}} x_{n-1}\right)\right]+n x_{n-1}^{\frac{1}{3}}=0 ; n \geq 3$
it is easy to see all solutions of the equations(2.7) are oscillatory

REFERENCES

1. R. P. Agarwal: Difference equation andinequalities- theory, methods and Applications2nd edition.
2. R.P.Agarwal, Martin Bohner, Said R.Grace, Donal O'Regan: Discreteoscillation theory-CMIA Book Series, Volume 1, ISBN : 977-5945-19-4.
3. B.Selvaraj and I.Mohammed Ali Jaffer :Oscillation Behavior of Certain Thirdorder Linear Difference Equations-FarEast Journal of Mathematical Sciences,
Volume 40, Number 2, pp 169-178(2010).
4. B.Selvaraj and I.Mohammed Ali Jaffer:Oscillatory Properties of Fourth OrderNeutral Delay Difference Equations-Journal of Computer and Mathematical SciencesAnIternational ResearchJournal,Vol. 1(3), 364-373 (2010).
5. B. Selvaraj and I. Mohammed AliJaffer: Oscillation Behavior of CertainThird order Nonlinear Difference Equations-International Journal ofNonlinear Science (Accepted on September 6, (2010).
6. B.Selvaraj and I.Mohammed Ali JafferOscillation Theorems of Solutions ForCertain Third Order FunctionalDifference Equations With Delay-Bulletin of Pure and Applied Sciences(Accepted on October 20, (2010).
7. E.Thandapani and B.Selvaraj: Existenceand Asymptotic Behavior of Nonoscillatory Solutions of Certain Nonlinear Difference equation- Far East Journal of Mathematical Sciences 14(1),pp: 9-25 (2004).
8. E.Thandapani and B.Selvaraj:Oscillatory and Non-oscillatoryBehavior of Fourth order QuasilinearDifference equation -Far East Journalof Mathematical Sciences 17(3), 287-307 (2004).
9. E.Thandapani and B. Selvaraj:Oscillation of Fourth order Quasi-linearDifference equation-Fasci culi Mathematici Nr, 37, 109-119 (2007).
