Oscillatory Behaviour Of The Solution Of The Third Order Nonlinear Neutral Delay Difference Equation

P. Mohankumar⁽¹⁾ and A. Ramesh⁽²⁾

1. Prof of Mathematics, Department of Mathematics, Aarupadiveedu Institute of Technology,

Vinayaka Mission University, Kancheepuram, Tamilnadu, India-603 104

2. Senior Lecturer and Head of the Department of Mathematics, District Institute of Education and Training, Uthamacholapuram, Salem-636 010

Abstract

In this paper we study oscillatory behaviour of the solution of the third order nonlinear neutral delay difference equation of the form

$$\Delta^{2}\left(a_{n}\Delta\left(x_{n}+p_{n}x_{n-k}\right)\right)+f\left(n,\sigma\left(n\right)\right)=0,n\varepsilon N\left(n_{0}\right)$$

Key words: Oscillation, third order, Nonlinear Neutral Delay difference equations

1. Introduction

We are concerned with the oscillatory behaviour of the solution of the third order nonlinear neutral delay difference equations of the form

$$\Delta^{2}\left(a_{n}\Delta\left(x_{n}+p_{n}x_{n-k}\right)\right)+f\left(n,\sigma\left(n\right)\right)=0,n\varepsilon N\left(n_{0}\right)$$
(1.1)

Where the following conditions are assumed to hold.

(H1) $\{a_n\}$ is a positive sequence of real numbers

for
$$n \in N(n_0)$$
 such that $\sum_{n=n_0}^{\infty} \frac{n}{a_n} = \infty$

(H2) $\{p_n\}$ is a real sequence such that $0 \le p_n for all <math>n \in N(n_0)$

(H3) k is a non negative integer and $\{\sigma(n)\}$ is a sequence of positive integer with $\lim \sigma(n) = \infty$

(H4) $f: N(n_0) \times R \to R$ is continuous and f(n,u) is nondecreasing in u with u f(n,u) > 0 for all $u \neq 0$ and all $n \in N(n_0)$ and $f(n,u) \neq 0$ eventually.

By a solution of equation (1.1) we mean real sequence $\{x_n\}$ satisfying (1.1)

 $n=\{n_0,n_{0+1},n_{0+2},\dots\}$ a solution $\{x_n\}$ is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise it is called non oscillatory. The forward difference operator $\Delta x_n = x_{n+1} - x_n$

2. Main Result

In this section we state and prove some lemmas which are useful in establish main result for the sake of convenience we will use of following notations.

$$R(n) = \sum_{s=n_0}^{n-1} \sum_{t=n_0}^{s-1} \frac{t}{a_t}$$

and

$$R(n,N) = \sum_{s=N}^{n-1} \sum_{s=N}^{s-1} \frac{t-1}{a_t}$$

Let $\{x_n\}_{n=n_0}^{\infty}$ be a real sequences we will also

associated sequences $\{z_n\}$

$$z_n = x_n + p_{n+k} \qquad n \in N(n_0) \quad (2.1)$$

Where $\{p_n\}$ and k have been defined above

First we give some relation between the sequence $\{x_n\}$ and $\{z_n\}$

Let $\{x_n\}_{n=n_0}^{\infty}$ be positive sequence, $\{z_n\}$ be sequence by (1.2)

(i)
$$\lim_{x \to \infty} x_n = \infty$$
 then $\lim_{x \to \infty} z_n = \infty$

(ii) If $\{Z_n\}$ converges to zer then so does $\{x_n\}$

Proof: The proof can be found in [9]

Lemma 2.2

Let $\{x_n\}_{n=n_0}^{\infty}$ is an eventually positive solution of equation (1.1) then there only the following two cases for n large enough

(i)
$$x_n > 0, z_n > 0, \Delta z_n > o, a_n \Delta z_n > 0, \Delta \left(a_n \Delta z_n\right) > o$$

(ii)
$$x_n > 0, z_n > 0, \Delta z_n > o, a_n \Delta z_n < 0, \Delta (a_n \Delta z_n) > o$$

Lemma 2.3

If
$$N \ge n_0$$
 then $\lim_{x \to \infty} \frac{R(n, N)}{R(n)} = 1$

Lemma 2.4

Let $\{x_n\}_{n=n_0}^{\infty}$ is an eventually positive solution of equation (1.1) then there exists an integer $N \in N(n_0)$ and a constant $k_1 > 0$ such that $\frac{1}{2}\Delta(a_n\Delta z_n)R(n) \le z_n \le k_1(R(n)), n > N$ Lemma 2.5

Let $\{x_n\}_{n=n_0}^{\infty}$ is an eventually positive solution of equation (1.1) then there exist an integer $n_1 \in N(n_0)$ such that for any integer $N \ge n_1$ we

have
$$z_n \ge \sum_{s=N}^{n-1} R(s, N) f(s, \sigma(n)), n \in N$$

The proof of lemmas can be found [7] and [

The proof of lemmas can be found [7] and [8]

Lemma 2.6

If $\{x_n\}_{n=n_0}^{\infty}$ is an eventually positive solution of equation (1.1) then there exist an integer $n \in N(n_0)$ such that

$$\Delta z_n \ge \frac{1}{2} \Delta(a_n \Delta z_n) \Delta R \sigma(n)$$
 for $n \ge N$ also if $\sigma(n) \le n$, then

 $\Delta z_{\sigma(n)} \ge \frac{1}{2} \Delta (a_n \Delta z_n) \Delta R_{\sigma(n)}$ for $n \ge N$ (2.2)

Proof: From Lemma 2.2 we have for $n \ge n_1 \varepsilon N(n_0)$

$$z_n > 0 \quad \Delta z_n > o \quad \text{and} \quad \Delta^2 \left(a_n \Delta z_n \right) < 0$$

$$\Delta z_n \ge \sum_{s=n_1}^{n-1} \Delta z_s = \sum_{s=n_1}^{n-1} \frac{1}{a_z} a_z \Delta z_s$$
$$\ge \sum_{s=n_1}^{n-1} \frac{1}{a_s} \sum_{t=n_1}^{s-1} \Delta \left(a_t \Delta z_t \right)$$
$$\ge \Delta \left(a_n \Delta z_n \right) \sum_{s=n_1}^{n-1} \frac{s-n_1}{a_s}$$
$$\ge \Delta \left(a_n \Delta z_n \right) \Delta R(n, n_1) \qquad (2.3)$$

From lemma 2.3 we conclude that there exist an

integer $n \ge N$ such that $\Delta R(n, n_1) \ge \frac{1}{2} \Delta R(n)$ for $n \ge N$ Since $\Delta^2(a_n \Delta z_n) < 0$ and $\sigma(n) \le n$

We have
$$\Delta z_{\sigma(n)} \ge \frac{1}{2} \Delta (a_n \Delta z_n) \Delta R_{\sigma(n)}$$
 for

 $n \ge N$ The proof is complete

Lemma 2.7

If $\{x_n\}_{n=n_0}^{\infty}$ is an eventually positive solution of equation (1.1) then there exist an integer $n \in N(n_0)$ such that $(1-p_n)z_n \le x_n \le z_n$ for $n \ge N$ Proof: If $\{x_n\}_{n=n_0}^{\infty}$ is an eventually positive

solution of equation (1.1) for $n \ge N$. Then from the definition of z_n we have $z_n > x_n$ for $n \ge N$ from lemma 2.2 we have $z_n > 0$ and $\Delta z_n > o$ for $n \ge N$

$$z_n = x_n + p x_{n-k} \qquad \qquad x_n = z_n - p_n x_{n-k}$$

$$x_n \ge z_n - p_n z_{n-k}$$

 $\ge (1 - p_n) z_n \text{ for } n \ge N$

This completes the proof.

Theorem 2.8

Assume that there exists real sequences $\{q_n\}$ such

that
$$\frac{f(n,u)}{u} \ge Mq_n > 0$$
 for all $u \ne 0, n \ge n_0$
(2.4)

and $\sigma(n) = n - l$ where *l* is a sequence $\{p_n\}$ such that

$$\limsup_{x \to \infty} \sup \sum_{s=n_0}^n \rho_s [(1-p_{z-l})q_s - \frac{(\Delta \rho_s)^2}{2M\Delta R(s-l)\rho_s^2}] = \infty$$

(2.5)

Then all solutions of equation (1.1) are oscillatory. Proof: Let $\{x_n\}$ be a nonoscillatory solutions of (1.1) and assume without loss of generality the $\{x_n\}$ is eventually positive. From Lemmas 2.2 and 2.7 we have $z_n > o, z_{n-l} > 0, \Delta z_n > o$ and $\Delta(a_n \Delta z_n) > 0$ for $n \ge N$ and $x_{n-l} \ge (1-p_n)z_{n-l}$ Define

$$\omega_n = \frac{\rho_n \Delta \left(a_n \Delta z_n \right)}{z_{n-l}} , \ n \ge N$$

Then in view of Lemma 2.6, (2.4) and (2.5) we have

$$\Delta \omega_n \leq \frac{\rho_n \Delta^2 (a_n \Delta z_n) + \Delta (a_n \Delta z_n) \Delta \rho_n}{z_{n-l}} - \frac{\rho_n \Delta (a_n \Delta z_n) \Delta z_{n-l}}{(z_{n-l})^2}$$

$$\leq -Mq_n \left(1-p_{n-l}\right)\rho_n + \Delta\rho_n \frac{\omega_n}{\rho_n}$$

$$\leq -Mq_n (1-p_{n-l})\rho_n + \Delta\rho_n \frac{\omega_n}{\rho_n} - \frac{1}{2\rho_n} \omega^2 \Delta R(n-l)$$

$$\leq -Mq_n (1-p_{n-l})\rho_n \frac{\left(\Delta\rho_n\right)}{2\rho_n \Delta R(n-l)}^2$$

Summing the last inequality from N to $n \ge N$, we obtain

$$\sum_{s=n_{0}}^{n} \rho_{s} [(1-p_{z-l})q_{s} - \frac{(\Delta \rho_{s})^{2}}{2M\Delta R(s-l)\rho_{s}^{2}}] \leq \frac{\omega_{N}}{M}$$

and this contradicts (2.5). Thus the proof is complete.

For the linear equation

$$\Delta^{3}(x_{n} + p_{n}x_{n-\tau}) + q_{n}x_{n-\sigma} = 0$$
 (2.6)

Where τ and σ are nonnegative integers less than n we obtain from Theorem 2.8 the following corollary

Corollary 2.7

Suppose $q_n \ge 0$ for all $n \ge n_0$ and there exists

positive sequences $\{\rho_n\}$ such that

$$\limsup_{x \to \infty} \sup \sum_{s=n_0}^n \rho_s [(1-p_{z-l})q_s - \frac{(\Delta \rho_s)^2}{2M\Delta R(s-l)\rho_s^2}] = \infty$$

then all solutions of equation 2.5 are oscillatory. The proof is complete

Example : Consider the difference equations

$$\Delta^{2} \left[n(n+1)\Delta \left(x_{n} + \frac{1}{\sqrt{n-1}} x_{n-1} \right) \right] + n x_{n-1}^{\frac{1}{3}} = 0; n \ge 3$$

(2.7)

it is easy to see all solutions of the equations(2.7) are oscillatory

REFERENCES

1. R. P. Agarwal: *Difference equation andinequalities- theory, methods* and Applications-2nd edition.

2. R.P.Agarwal, Martin Bohner, Said R.Grace, Donal O'Regan: *Discreteoscillation theory-CMIA Book Series*, Volume 1, ISBN : 977-5945-19-4.

3. B.Selvaraj and I.Mohammed Ali Jaffer :Oscillation Behavior of Certain Thirdorder Linear Difference Equations-FarEast Journal of Mathematical Sciences,

Volume 40, Number 2, pp 169-178(2010).

4. B.Selvaraj and I.Mohammed Ali Jaffer:Oscillatory *Properties of Fourth OrderNeutral Delay Difference Equations-Journal of Computer and Mathematical Sciences-AnIternational ResearchJournal*, Vol. 1(3), 364-373 (2010).

5. B. Selvaraj and I. Mohammed AliJaffer: Oscillation Behavior of CertainThird order Nonlinear Difference Equations-International Journal ofNonlinear Science (Accepted on September 6, (2010).

6. B.Selvaraj and I.Mohammed Ali JafferOscillation Theorems of Solutions ForCertain Third Order FunctionalDifference Equations With Delay-Bulletin of Pure and Applied Sciences(Accepted on October 20, (2010).

7. E.Thandapani and B.Selvaraj: Existenceand Asymptotic Behavior of Nonoscillatory Solutions of Certain Nonlinear Difference equation- *Far East Journal of Mathematical Sciences* 14(1),pp: 9-25 (2004).

8. E.Thandapani and B.Selvaraj:Oscillatory and Non-oscillatoryBehavior of Fourth order QuasilinearDifference equation *-Far East Journalof Mathematical Sciences* 17(3), 287-307 (2004).

9. E.Thandapani and B. Selvaraj:Oscillation of Fourth order Quasi-linearDifference equation-Fasci culi Mathematici Nr, 37, 109-119 (2007).