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Abstract  
 

In this paper we study oscillatory behaviour of the 

solution of the third order nonlinear neutral delay 

difference equation of the form 

       2

0, 0,n n n n ka x p x f n n n N n     
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1. Introduction  
We are concerned with the oscillatory behaviour 

of the solution of the third order nonlinear neutral 

delay difference equations of the form 

 

       2

0, 0,n n n n ka x p x f n n n N n     

  

                                                                         (1.1) 

 
Where the following conditions are assumed to 

hold. 

(H1)  na is a positive sequence of real numbers 

for n∈N(n0) such that  

0n n n

n

a





    

(H2)   np  is a real sequence such that              

0≤ 𝑝𝑛 < 𝑝 < 1 for all n∈N(n0) 
(H3) k is a non negative integer and {𝜎 𝑛 } is a 

sequence of positive integer with  lim ( )
x

n


    

(H4) 𝑓: 𝑁 𝑛0 × 𝑅 → 𝑅 is continuous and f(n,u) is 

nondecreasing in u with u f(n,u)> 0 for all u≠ 0 

and all n∈N(n0) and f(n,u)≠ 0 eventually. 

  

By a solution of equation (1.1) we mean real 

sequence  nx  satisfying (1.1) 

n={n0,n0+1,n0+2,.......} a solution  nx is said to be 

oscillatory if it is neither eventually positive nor 

eventually negative. Otherwise it is called non 

oscillatory. The forward difference operator 

∆xn=xn+1 - xn 
 

2. Main Result 
    In this section we state and prove some lemmas 

which are useful in establish main result for the 

sake of convenience we will use of following 

notations. 

 

0 0

1 1

(n)
n s

s n t n t

t
R

a

 

 

    

and  
1 1 1

( , )
n s

s N s N t

t
R n N

a

 

 


   

Let  
0

n n n
x




 be a real sequences we will also 

associated sequences  nz   

  n n n kz x p         0n N n    (2.1) 

Where  np and k have been defined above  

First we give some relation between the sequence 

 nx and  nz  

Let  
0

n n n
x




 be positive  sequence,  nz be 

sequence by (1.2) 

(i) lim n
x

x


    then lim n
x

z


    

(ii) If  nz converges to zer then so does 

 nx  

 

Proof: The proof can be found in [9] 

  

Lemma 2.2 

Let  
0

n n n
x




 is an eventually positive solution of 

equation (1.1) then there only the following two 

cases for   n large enough 

(i)  0, 0, , 0,n n n n n n nx z z o a z a z o        

  

(ii)  0, 0, , 0,n n n n n n nx z z o a z a z o        

 

1162

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70591



 

 

 

Lemma 2.3 

If  0N n   then  
( , N)

lim 1
( )x

R n

R n
   

Lemma 2.4 

Let  
0

n n n
x




 is an eventually positive solution of 

equation (1.1) then there exists an integer 

 0N N n   and a constant 1 0k   such that 

   1

1
( ) ( ) ,n N

2
n n na z R n z k R n       

Lemma 2.5  

Let  
0

n n n
x




 is an eventually positive solution of 

equation (1.1)  then there exist an integer 

 1 0n N n such that for any integer 1N n  we 

have 

1

( , ) ( , ( )),
n

n

s N

z R s N f s n n N




    

The proof of lemmas can be found [7] and [8] 

 

Lemma 2.6  

If   
0

n n n
x




 is an eventually positive solution of 

equation (1.1)  then there exist an integer 

 0n N n such that 

1
( ) ( )

2
n n nz a z R n      for n N  also if 

( )n n  , then  

( ) ( )

1
( )

2
n n n nz a z R        for n N   (2.2) 

Proof:  From Lemma 2.2 we have for 

1 0( )n n N n   

0nz    nz o    and   2 0n na z     

 

1 1

1 1 1n n

n s z s

s n s n z

z z a z
a

 

 

        

          
1 1

1 11n s

t t

s n t ns

a z
a

 

 

      

          

1

1
1( )

n

n n

s n s

s n
a z

a






      

          1( ) ( , )n na z R n n             (2.3) 

From lemma 2.3 we conclude that there exist an 

integer n N such that 1

1
( , ) (n)

2
R n n R     

for n N  

Since  2 0n na z     and ( )n n      

We have    ( ) ( )

1

2
n n n nz a z R       for 

n N  
The proof is complete  

 

Lemma 2.7  

If   
0

n n n
x




 is an eventually positive solution of 

equation (1.1) then there exist an integer 

 0n N n such that (1 )n n n np z x z    for 

n N  

Proof: If   
0

n n n
x




 is an eventually positive 

solution of equation (1.1)   for n N . Then from 

the definition of nz   we have  n nz x  for 

n N  from lemma 2.2 we have 0nz    and 

nz o   for n N  

n n n kz x px              n n n n kx z p x     

n n n n kx z p z     

      1 n np z   for n N  

This completes the proof.   

Theorem 2.8   

Assume that there exists real sequences  nq  such 

that 
( , )

0n

f n u
Mq

u
    for all 00,u n n     

(2.4) 

and ( )n n l    where l  is a sequence  np

such that 

0

2

2

( )
limsup [(1 ) ]

2 ( )

n
s

s z l s
x

s n s

p q
M R s l











   

 


                                                                               

(2.5) 

Then all solutions of equation (1.1) are oscillatory.  

Proof:  Let  nx  be a nonoscillatory solutions of 

(1.1) and assume without loss of generality the 

 nx is eventually positive. From Lemmas 2.2 and 

2.7 we have , 0,n n l nz o z z o     and 

  0n na z    for n N  and 

(1 )n l n n lx p z     
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 Define 

 n n n

n

n l

a z

z






 
  ,  n N  

Then in view of Lemma 2.6, (2.4) and (2.5) we 

have 

     

 

2

2

n n n n n n n n n n l

n

n l n l

a z a z a z z

z z

  




 

        
  

  

          1 n
n n l n n

n

Mq p


 


     

 21
(1 )

2

n
n n l n n

n n

Mq p R n l


  
 

      

 
2

(1 )
2 ( )

n

n n l n

n

Mq p
R n l








  

 
   

Summing the last inequality from N to n N  , 

we obtain  

0

2

2

( )
[(1 ) ]

2 ( )

n
s N

s z l s

s n s

p q
M R s l M

 








  

 
  

 and this contradicts (2.5). Thus the proof is 

complete. 

 For the linear equation 

  3 0n n n n nx p x q x                  (2.6) 

Where   and    are nonnegative integers less 

than n we obtain from Theorem 2.8 the following 

corollary 

 

Corollary 2.7   

  Suppose  0nq   for all 0n n  and there exists 

positive sequences  n  such that  

0

2

2

( )
limsup [(1 ) ]

2 ( )

n
s

s z l s
x

s n s

p q
M R s l











   

 


 then all solutions of equation 2.5 are oscillatory.  

The proof  is complete 

 

Example : Consider the difference equations 
1

2 3
1 1

1
( 1) 0; 3

1
n n nn n x x nx n

n
 

  
        

  
                                                                                         

                                                                           (2.7) 

 it is easy to see all solutions of the equations(2.7) 

are oscillatory  
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