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In this paper, an experimental study of six well known selection methods has conducted to a new technique of selection. Dynamic 

selection (DS), the proposed technique, exploits the advantages of each selection methods in terms of quality of solution and population 

diversity. Indeed, dynamic selection is based on two parameters that allow to decide the quality of candidate solutions and the 

genotypic diversity. The famous 0-1 Knapsack Problem is used to illustrate the efficiency of DS. 
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I. INTRODUCTION 

enetic algorithms (GAs) are stochastic methods based 

on the concepts of genetics and Darwinian evolution. 

They stimulate the genetic process of natural populations that 

evolve according to the principle of  survival of the fittest [1]. 

By imitating this process, genetic algorithms are able to 

propose solutions to a variety of hard real-world problems in 

many application domains including engineering, medicine,  

computational science,  bioinformatics, logistics, forecasting,  

manufacturing, etc. [2]. 

In order to conceive a genetic solution to any optimisation 

problem we first need to represent each candidate solution to 

the problem, called individuals [3]. A fitness function is 

required for assigning a figure of merit to each candidate 

solutions. Hence, starting from an initial population of 

randomly generated individuals, GAs evolve this population, 

throughout iterations called generations. The individuals, 

during the reproductive phase, are selected from the 

population and recombined, producing offspring for the next 

generation. Parents are selected from the population using a 

scheme, which furthers better individuals.  Having selected 

two parents, their chromosomes are recombined, typically 

using mechanisms of crossover and mutation. More formally, 

a standard GA can be described by the following pseudo-code: 

// GA algorithm 

 Choose an initial population of individuals: (0)P  

 Evaluate the fitness of all individuals of (0)P  

 Choose a maximum number of generations: maxt  

 While (not satisfied and 
maxt t ) do { 

­ 1t t   

­ Select parents for offspring production 

­ Apply crossover and mutation operators 

­ Create a new population of survivors: ( )P t  

­ Evaluate ( )P t  

} 

 Return the best individual of ( )P t  

As we can see from the pseudo-code above, a GA is a 

parametrical algorithm whose application to a given problem 

requires setting parameters and making decisions about (i) the 

way parents are selected for offspring production, (ii) selected 

parents are crossed, and (iii) individuals are mutated, among 

other parameters [4]. 

One of the most important parameters that may influence 

the performance of a GA is treated in this paper. It is the 

parent selection operator (PSO). A PSO is aimed at exploiting 

the best characteristics of good candidate solutions in order to 

improve these solutions throughout generations, which, in 

principle, should guide the GA to converge to an acceptable 

and satisfactory solution of the optimisation problem at hand 

[2]. Several parent selection operators, which can lead to 

different results, are proposed in the literature [5-8]. However, 

despite decades of research, there are no general guidelines or 

theoretical support concerning the way of selecting a good 

PSO for each application problem [6]. This can be a serious 

problem because an inadequate PSO can lead  the GA in  rapid 

convergence and inefficiency. 

To illustrate this problem we will consider a Np-Hard 

problem often used in literature that is the Knapsack problem. 

The rest of the paper is organized as follows: section II gives a 

brief description of  Knapsack problem, section III presents 

each studied operator; section IV is dedicated to the 

presentation of a heuristic  proposed in order to help reducing 

the influence of PSO on the global performance of a GA. 

Experimental study is discussed in section V. Finally, section 

VI contains the concluding remarks. 

 

 

II. KNAPSACK PROBLEMS   

Knapsack problems have been amply studied sine the Dantzig 

works, because of their immediate applications in industry and 

financial management. In its simplified form, Knapsack 

problem is a combinatorial problem which seeks a subset of 

items that the corresponding profit sum is maximized without 

exceeding the capacity of the knapsack. (KP) is defined as 

follows: given a set of items (n), each with a weight W[i] and 

a profit P[i], with i=1,..,n. The goal is to determine the 

number of each item to include in the knapsack so that the 

total weight is less than some given limit (C) and maximizes 

the  profit sum.   




n

i

ii XP

1

max                                                                   (1) 

Subject to the constraints:  

G 
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                                                                  (2) 

Using the GAs for solving the knapsack problem, a 

chromosome can be represented in a string having the length 

equal to the number of items. Each gene from the chromosome 

denotes whether an item is in the knapsack  "1" or not  "0". 

Whereas the fitness of each chromosome is calculated by 

summing up the benefits of the items  included in the 

knapsack, but considering that the capacity of the knapsack is 

not exceeded. If the capacity of the chromosome is greater 

than the capacity of the knapsack then one of the bits in the 

chromosome whose value is "1" is inverted and the 

chromosome is checked again. 

III. PARENT SELECTION OPERATORS FOR GAS 

As mentioned before, six different SOP are considered in 

this work, namely: the roulette wheel selection (RWS), the 

stochastic universal sampling (SUS), the linear rank selection 

(LRS), the exponential rank selection (ERS), the tournament 

selection (TOS), and the truncation selection (TRS). In this 

section, we provide a brief description of each studied 

operator. 

A. The Roulette Wheel Selection (RWS) 

The salient characteristic of this operator is the fact that it 

gives to each individual i of the current population a 

probability ( )p i of being selected, proportional to its fitness 

( )f i  

1

( )
( )

( )
n

j

f i
p i

f j





 (3) 

where n denotes the population size in terms of the number of 

individuals. 

The RWS can be implemented according to the following 

pseudo-code 

 Calculate the sum 
1

( )
n

i
S f i


  

 For each individual 1 i n   do { 

­ Generate a random number  0, S   

­ 0iSum  ;  0j   

­ Do { 

­ ( )iSum iSum f j   

­ 1j j   

} while( iSum   and j n ) 

­ Select the individual j  

} 

Note that a well-known drawback of this technique is the 

risk of premature convergence of the GA to a local optimum, 

due to the possible presence of a dominant individual that 

always wins the competition and is selected as a parent. 

B. The Stochastic Universal Sampling (SUS) 

The SUS is a variant of RWS aimed at reducing the risk of 

premature convergence. It can be implemented according to 

the following pseudo-code 

 Calculate the mean 
1

1 ( )
n

i
f n f i


   

 Generate a random number  0,1   

 (1)Sum f ; delta f  ; 0j   

 Do { 

­ If ( delta Sum ) {  

­ select the jth individual 

­ delta delta Sum   

} 

else { 

­ 1j j   

­ 
( )Sum Sum f j 

 

} 

} while ( j n ) 

C. The Linear Rank Selection (LRS) 

LRS is also a variant of RWS that tries to overcome the 

drawback of premature convergence of the GA to a local 

optimum. It is based on the rank of individuals rather than on 

their fitness. The rank n is accorded to the best individual 

whilst the worst individual gets the rank 1. Thus, based on its 

rank, each individual i has the probability of being selected 

given by the expression 

( )
( )

( 1)

rank i
p i

n n


 
 (4) 

Once all individuals of the current population are ranked, 

the LRS procedure can be implemented according to the 

following pseudo-code 

 Calculate the sum 
1

2.001
v

n



 

 For each individual 1 i n   do { 

­ Generate a random number  0,v   

­ For each 1 j n   do { 

­ If ( ( )p j  ) { 

­ Select the j
th
 individual 

­ Break 

} 

} 

} 

D. The Exponential Rank Selection (ERS) 

The ERS is based on the same principle as LRS, but it 

differs from LRS by the probability of selecting each 

individual. For ERS, this probability is given by the 

expression 

 
( ) 1.0 exp

rang i
p i

c

 
   

 
 (5.a) 

with 
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  
  

2 1

6 1

n n
c

n n

  


  
 (5.b) 

Once the n probabilities are computed, the rest of the 

method can be described by the following pseudo-code 

 For each individual 1 i n   do { 

­ Generate a random number 
1 2

,
9

c
c


 

  
 

 

­ For each 1 j n   do { 

­ If ( ( )p j  ) { 

­ Select the jth individual 

­ Break 

} // end if 

} // end for j 

}// end for i 

E. The Tournament Selection (TOS) 

Tournament selection is a variant of rank-based selection 

operators. Its principle consists in randomly selecting a set of k 

individuals. These individuals are then ranked according to 

their relative fitness and the fittest individual is selected for 

reproduction. The whole process is repeated n  times for the 

entire population. Hence, the probability of each individual to 

be selected is given by the expression 

 

 

1

1  if 1, 1
( )

0 if ,

k

n

k

n

C
i n k

Cp i

i n k n






  
 
  

 (6) 

Technically speaking, the implementation of TOS can be 

performed according to the pseudo-code 

 Create a table t  where the n  individuals are placed in 

a randomly chosen order 

 For 1 to i n  do { 

­ for 1 to j n  do { 

­ 
1 ( )i t j  

­ For 1 to m n  do { 

­ 
2 ( )i t j m   

­ If (
1 2( ) ( )f i f i ) the select 

1i  else select 
2i  

}// end for m 

­ j j k   

} // end for j 

}// end for i 

Another way to implement the same technique is described 

by the following pseudo-code 

 For 1 to i n  do { 

­ Generate a random number  1 1,i n  

­ For 1 to j n  do { 

­ Generate a second random number  2 1,i n  

with 2 1i i  

­ If (
1 2( ) ( )f i f i ) the select 

1i  else select 
2i  

} // end for j 

}// end for i 

F. The Truncation Selection (TRS) 

The truncation selection is a very simple technique that 

orders the candidate solutions of each population according to 

their fitness. Then, only a certain portion p  of the fittest 

individuals are selected and reproduced 1 p  times. It is less 

used in practice than other techniques, except for very large 

population. The pseudo-code of the technique is as follows: 

 Order the n  individuals of ( )P t  according to their 

fitness 

 Set the portion p  of individuals to select 

(e.g.10% 50%p  ) 

 int( )sp n p  // selection pressure 

 Select the first sp  individuals 

IV. DESCRIPTION OF THE PROPOSED METHOD 

After implementing the six selection operators described in 

the previous section and tested them on the optimization 

problem of a variety of test functions we found that results 

differ significantly from one operator to another. This poses 

the problem of selecting the adequate operator for real-world 

problems for which no posterior verification of results is 

possible. 

To help mitigating this non-trivial problem we present in 

this section the outlines of a new selection procedure that we 

propose as an alternative, which can be useful when no single 

other technique can be used with enough confidence [9]. Our 

technique is a dynamic one in the sense that the selection 

protocol can vary from one generation to another. The 

underling idea consists in finding a good compromise between 

proportional methods, which decrease the effect of selection 

pressure and assure some genetic diversity within the 

population, but may increase the convergence time; and elitist 

methods that reduce the convergence time but may increase 

the effect of selection pressure and, therefore, the risk of 

converging to local minima. 

To achieve this goal, more than one selection operator are 

applied at each generation, but in a competitive way meaning 

that only results provided by the operator with the best 

performance are actually taken into account. To assess and 

compare the performance of candidate operators two objective 

criteria are employed. The first criterion is the quality of 

solution; it can easily be measured as a function of the fitness 
*f  of the best individual. The second criterion is the genetic 

diversity, which is less evident to quantify than the first one. 

In this work, as a measure of the genetic diversity within the 

population ( )P t  we propose the mean value of the Hamming 

distances between the best individual *i  and all other 

individuals of ( )P t , i.e.  
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*

1

1
( , )

n

i

H H i i
n 

    (7.a) 

where *( , )H i i  is the Hamming distance between individuals, 

or chromosomes, i  and *i , defined by 

* *

1
( , ) ( ) ( )

l

k
H i i i k i k


   (7.b) 

with l  denoting the length of chromosomes in terms of 

number of bits and   the “exclusive or” logical operator. 

However, as the genetic diversity should, in principle, 

decrease with generations, the actual criterion for measuring 

the quality of diversity should be a decreasing function of 

H  . For this reason, in this work, we used the criterion 

1 exp
H

C
t

  
  

 
 (8) 

where t  denotes the number of generations or iterations. 

And as a measure of the quality of the solution at each 

generation we used the criterion 
*

2 2 2

max min

f
C

f f



 (9) 

where 
maxf  and 

minf denote respectively the maximum and the 

minimum values of the fitness at generation t , and *

maxf f  

or *

minf f  depending on the nature of the problem, which 

can be either a maximization or a minimization problem. 

Finally, in order to combine the two criteria in a unique one 

we used the relation 

1 2

1 1t
C C C

t t


   (10) 

V. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, we implement the knapsack problem by 

varying the number of items (n=100, n=250, n=500) and 

generating a randomly uniform distribution of the weights and 

the profits. 

 10,1NWi   and  10,1NPi                                      (11) 

The capacity of the knapsack is equal to 






n

i

iWC

1

5.0            (12) 

Table I shows for each POS and each test function, the 
number of generations the GA needed to converge to an 
acceptable solution.  

Analysis of Table I shows significant differences in 
convergence speed of the GA for the six studied POS, 

particularly in the case of the deceptive example, 2f . 

TABLE I.  NUMBER OF GENERATIONS NEEDED FOR CONVERGENCE 

Test 

Functions 

Parent Selection Operators 

RWS SUS LRS ERS TOS TRS 

"50" 40 34 48 16 7 5 

"100" 29 13 20 20 14 18 

"250" 43 16 18 18 10 8 

"500" 27 9 14 14 3 3 

 

TABLE II.  PERCENTAGE OF SELECTION PRESSURE 

Items Parent Selection Operators 

RWS SUS LRS ERS TOS TRS 

"50" 25 30 40 45 80 100 

"100" 12.3 12.2 22.8 22.9 100 100 

"250" 42.3 42 25 55.4 85 85 

"500" 10 4.8 4.8 4.8 90 95 

 

Table II shows the percentage of selection pressure for each 

studied PSO and each function. The selection pressure, sp , of 

a given PSO is defined as the number of generations after 

which the best individual dominates the population. As to the 

percentage of selection pressure, it is defined by 
minsp sp  

where 
minsp  denotes the minimal selection pressure observed 

among all the studied PSO. We can remark that proportional 

methods maintain the genetic diversity more than elitist ones. 

Table III provides sample results related to another aspect 

of this study. It is the aspect of quality assessment of the 

optimum provided by the GA for each Knapsack problems  

and for each selection method, including the dynamic 

selection method proposed in this work.  

 

TABLE III.   THE OPTIMA PROVIDED BY THE GA FOR 7 SELECTION 

PROTOCOLS 

Items Parent Selection Operators 

RWS SUS LRS ERS TOS TRS DS 

"50" 220 230 250 255 260 260 280 

"100" 470 500 520 520 550 550 560 

"250" 1060 1200 1240 1300 1350 1360 1400 

"500" 2200 2250 2440 2450 2500 2550 2600 

 

By analysing this table we can see clearly that the proposed 

method of selection performs better than the six studied 

selection operators. 

VI. CONCLUSION 

In this paper, six well-known selection operators for GAs 

are studied, implemented and their  performance analysed and 

compared using a knapsack problems. These operators can be 

categorised into two categories: proportional and elitist. The 

first category uses a probability of selection proportional to the 

fitness of each individual. Operators of this category allow 

maintaining a genetic diversity within the population of 

candidate solutions throughout generations, which is a good 

property that prevents the GA from converging to local 

optima. But, on the other hand, these methods tend to increase 

the time of convergence. 

By contrast, operators of the second category select only 
the best individuals, which increases the speed of convergence 
but at the risk of converging to local optima due to the loss of 
genetic diversity within the population of candidate solutions. 

Starting from these observations, we have conducted a 
preliminary study aimed at combining the advantages of the 
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two categories. This study conducted in a new dynamic 
selection procedure whose outlines are presented in this paper. 
The main idea behind DS is the use of more than one selection 
operator in a competitive way together with two criterions 
which allow choosing the best operator to adopt at each 
generation. 

The proposed technique was successfully applied to the 

optimisation problem, which encourages farther developments 

of this idea. It is very interesting to study experimentally the 

different techniques of the operator genetic crossover and use 

the technique proposed in this paper to deduce an appropriate 

scheme that allows to exploit the benefits of  some well known 

crossover methods selected among the most commonly used 

in the literature. The same idea can be applied to the mutation 

operator. 
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