
A SQL

CE

Pattern for Using SQL CE Database in

Multithreaded Mode Along with C# .NET

 Vu Van Minh Quang
 Information Department

 Ho Chi Minh City University of Foreign Language and Information Technology

City, Country: Ho Chi Minh City, Vietnam

Abstract— This paper presents a sample – Pattern is used to

work with SQL CE in multithreaded mode. SQL CE is designed

for single user and single application operations so although

Microsoft has provided a SQL CE engine which has run quite

well, Microsoft has not had best practices yet about how to

effectively operate in the multithread environment with SQL

CE. Along with illustrating the pattern, this paper also presents

the testing result in the enterprise environment.

I. INTRODUCTION

Microsoft SQL Server Compact

SQL CE (Compact) is a small relation database running

without needing of a server. A software which use the SQL

CE only needs some dll files (SQL CE’s engine) provided by

Microsoft to create and access SQL CE database files. Thus,

the software could operate its database independently. It

allows the database to work freely from installing a SQL

server such as Microsoft SQL Server, MySQL or Oracle and

so on.

Application’s Scale: An SQL CE file has a maximum of 4GB

and a software is able to create unlimited of this kind of file.

We can consider the SQL CE is a shorten version of SQL

Express, which just keeps essential functions of relation

database. Therefore, the scale of software using SQL CE is

also smaller. Microsoft designed SQL CE for apps running on

Window Phone, Desktop Application and some apps on small

websites.

Microsoft maybe designed SQLCE for focusing on software

that have low concurrent users at a point of time when

skipping the capability of concurrency of database. SQL CE

allows many concurrent read to get access at a point of time,

but such accessibilities must belong to a process (single

process) and only open 256 concurrent connections.

The potential: with the capability of extending file up to 4GB,

data which is saved on SQL CE is not small. In addition, SQL

CE is provided completely free and it does not need to install

more from the aspect of users. Along with the development

of hardware, the capability of processing multithread, parallel

process which is supported from .NET framework, the

biggest problem of SQL CE is only how to manage

connection more effectively.

II. PROBLEMS AND ANALYSIS

To solve the problem of using SQL CE in the mode of

multithread, the author will illustrate a practical case which

applies a software for Company Z where has been running in

food production area. The company needs to perform a

statistical report about the business situation relating to retail

activities. A Task Y, it processes single thread, in report it

needs to process over the average level ranging from 100,000

to 200,000 lines of retail bill data. The average time for

processing ranges from 400 to 500 lines per minute, total

timing needs for accomplishing the report is approximately 4

– 6 hours. Hence, the problem concerned is how to curtail

timing process.

Because app running under single thread, when it runs, total

time of using a core CPU is accounted for 40 – 60 %.

However, in terms of a multi-core CPU, the rest of core is

wasted, in this case multi-core CPU merely uses one-

sixteenth of core which means that over 90% of the strength

of system is not exploited. Thus, one way to increase the

process speed, it needs to consider multithread software in

order to exploit potentially unused core.

Task Description: for each line of retail bill, Y will carry out

Task A.

Task A contains sub – functions B, C and D and import

export manipulation on database as following the graph:

R: Read – Read data from database

R/W: Read/Write – Read and Write data on database

Look at the connection points database, Task A will have

relatively dense relationships with database.

If Task A is implemented parallel with each retail bill, each

task will implement one core, at the same time, it can be

implemented 16 tasks. In this case, if it implements

successfully, it can curtail the timing process 16 times.

However, in this case, as SQL CE cannot implement parallel

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040422
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

394

A1

SQL

CE

A16

A2

…

A1

SQL

CE

A16

A2

…..

Connec

Pool

Dispenser

with manipulation of input data, it occurs the problem of

synchronization with dense connection quantities.

At a point of time, the number of Reading / Writing

connections is 3*16 = 48 and the number of read-only

connections is 1*16 = 16, the sum is 64 connections at a point

of time leading to the occurrence of access failure on

database file. Moreover, connection expense is relatively

expensive (Using profiler for measure, creating expense and

close connections accounts for 50% of the quantity of

execution job).

III. SOLUTION

Need to have an intermediary layer so as to manage

connections. The main mission of this layer is to solve two

problems:

 To avoid creating and closing connections regularly:

the use of connection pool to cache created

connections instead of canceling and creating new.

 To manage Read / Write connections which can

open many Read / Write connections at a point of

time but is only allowed to open one Write

connection: using the mechanism of .NET to

dominate the quantity of connections.

Thus, at a point of time, there will be a maximum of 16 read-

only connections (16 threads, each thread runs one core) and

one write connection. In addition, because of using the

mechanism of cache, connections must only create at once

during the process of running program. In comparison with

cancelling connections and creating connections for each

time of processing Task A, it saves many system resources

(this case is 16 (read) + 1 (write) time as opposed to over

100,000 times).

IV. INSTALLATION

Data structure

In connection pool, there are 2 classes which are responsible

for storing and distributing connections.

Pool: to distribute connections, it is considered a main class

for communication with external components.

Dispenser: it is in charge of creating and storing connections

to reuse, to restrict creating and closing connections.

Dispenser

Using a stack structure to store connection.

Through the stack structure, the newest connections will be

used in the first priority.

Pool

Using a hash table to store the list of pairs:

 The thread which was issued connection

 And the correlative connection to the thread.

Thank to the hash table, the speed of finding correlative

connection for each thread will be faster and ensure that thread

will be issued at once for each connection (read / write) in

order to use.

Connection Pool

Read Only

Read/Write Connection

Connection pool

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040422
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

395

V. THE MECHANISM

Each thread is created by two connections: read-only

connection and read / write connection.

As read-only connections do not impact on data, each thread

is allowed to use read-only connection unlimitedly.

By contrast, read / write connections impact on data so only

one connection is allowed to use for each time.

 lock (writePools[databasePath].SyncObj)

 {

 var connection =

WriteDispenser.GetAConnection();

 // Use connection

..

 WriteDispenser.Dismiss(connection);

 }

With the mechanism of lock of .NET, finishing a

manipulation of using connection, another new thread is

allowed to enter to use.

Pattern

Must understand some problems as following before using:

 Using syntax of C# allows to create and cancel an

object in a code.

 Using Linq2SQL to manipulate on database so

connection will be used with Data Context.

 Using lambda expression to avoid appearing boiler –

plate code in the program.

Two functions to communicate with Connection Pool

 Require to use Read / Write connection

public static void UsingReadWriteDataContext<T>(string

databasePath, Action<DataContext> function) where T :

DataContext

{

 //Test the requirement of thread whether creating

connection or not

 // If not, create connection for this thread

lock (@Write lock)

{

 var connection = Dispenser.GetConnection;

 using (var dataContext =

DataContextFactory.Create(typeof(T), connection))

 {

 function(dataContext);

 }

 }

}

 Require to use Read Only Connection

public static void UsingReadOnlyDataContext<T>(string

databasePath, Action<DataContext> function) where T :

DataContext

{

 // Test the requirement of thread whether creating

connection or not

 // If not, create connection for this thread

 var connection = Dispenser.GetConnection;

 using (var dataContext =

DataContextFactory.Create(typeof(T), connection))

 {

 function(dataContext);

 }

}

 Use inside the program

UsingReadOnlyDataContext(DataContext =>

{

 //Do manipulation with Data Context

});

VI. THE RESULT FROM EXPERIMENT

The system using connection pool was tested in two forms:

- Single thread: test the effective level of Dispenser

- Multi thread: tested the operation of multithread and

control the connection of connection pool

These tests are implemented on data with 100,000 lines. Each

test was repeated at twice and took the average value. The

numbers’ value was rounded.

Test Average time (minute) Line of data process /

minute

Old system (single

thread, calling SQL CE

read, write directly)

236 400

Use of dispenser 165 600

Use of connection pool 60 1600

Threads

list

Hash
table

SQL CE

Databas

e

Reus
able

Con
necti

ons

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040422
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

396

VII. CONCLUSION

Using Connection Pool to control read / write connection

brought a clear effectiveness in improving the performance of

software. By strictly handling the use of resources to create

and closing continuous connections, the system can minimize

the processing time through paralleled processing. Therefore,

it helps a small, cheap software to be able to exploit most of

the strength of a multi-cores CPU while processing the data

with SQL CE.

VIII. REFERENCES

[1] Blogs.msdn.com. Microsoft SQL Server Compact 4.0 is available for

download - Microsoft's Embedded Database - SQL Server Compact -
Team Blog - Site Home - MSDN Blogs.[Online]. Retrieved from:

http://blogs.msdn.com/b/sqlservercompact/archive/2011/01/12/microso

ft-sql-server-compact-4-0-is-available-for-download.aspx [Accessed
Apr 9th, 2017].

[2] Docs.sqlalchemy.org. SQLAlchemy 0.7 Documentation. [Online].

Retrieved from
http://docs.sqlalchemy.org/en/rel_0_7/core/pooling.html [Accessed Apr

9th, 2017].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS040422
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 04, April-2017

397

