
Performace Evaluation In Object Oriented Metrics

Mr. S. Pasupathy

1
and Dr. R. Bhavani

2

1
Associate Professor, Dept. of CSE, FEAT, Annamalai University, Tamil Nadu, India.

2
 Professor, Dept. of CSE, FEAT, Annamalai University, Tamil Nadu, India.

Abstract:

This paper presents the results derived from our survey on metrics used in object oriented

environments. Our survey includes a small set of the most well known and commonly applied traditional

software metrics which could be applied to object oriented programming and a set of object oriented

metrics. In short, the metrics based assessment of a software system and measures taken to improve its

design differ considerably from tool to tool. To support our case, we conducted an experiment with a

number of commercial and free metrics tools. We calculated metrics values using the same set of standard

metrics for three software systems of different sizes. These metrics were evaluated using object oriented

metrics tools for the purpose of analyzing quality of the product, encapsulation, inheritance, message

passing, polymorphism, reusability and complexity measurement. It defines a ranking of the classes that

are most vital note down and maintainability. The results can be of great assistance to quality engineers in

selecting the proper set metrics for their software projects and to calculate the metrics, which was

developed using a chronological object oriented life cycle process.

Index: Software Engineering, Object Oriented Programming Concepts, Reusability, Performance

Estimation.

1. INTRODUCTION

In software development, a metric

(noun) is the measurement of a particular

characteristic of a program's performance or

efficiency. Similarly in network routing, a

metric is a measure used in calculating the next

host to route a packet to. A metric is sometimes

used directly and sometimes as an element in an

algorithm . In programming, a benchmark

includes metrics. Metric (adjective) pertains to

anything based on the meter as a unit of spatial

measurement. One metric alone is not enough to

determine any information about an application

under development. Several metrics must be

used in tandem to gain insight into

improvements during a software process. There

are several software packages that can be used to

determine the metrics on a software applications.

The data harvesting mechanism gathers

data daily from the production system, and loads

it into a reporting warehouse. Reports are

generated based on the warehouse data. The host

administrator can schedule the time for the daily

data harvesting operation. Changes in Project

Tracker artifacts or Subversion activity are not

immediately available for Metrics reports. They

can be reported on only after a data harvesting

operation has occurred. When a report is

generated, the results page shows the date of the

last data harvesting operation. Users with the

"Project - Edit" permission can define reports

and store them on the Project Metrics landing

page [1,2]. Users with the "Project Content -

Edit" permission can define reports and store

them using the Metrics report component types.

For a domain-level Subversion report, you can

measure activity across the entire domain or in

select projects in the domain. For Subversion

reports, only projects in a domain that use

Subversion for their version control system are

listed as available for reporting.

The software metrics literature often

describes complex models purporting to help

predict various properties of software products

and processes by measuring other properties. It

527

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

also contains lots of controversy about the value

of the models and their predictions. But even if

we remain theoretically skeptical of some of the

models, we shouldn't throw away the

corresponding measurements. The very process

of collecting these measurements leads (as long

as we confine ourselves to measurements that

are meaningful, at least by some informal

criteria) to a better organization of the software

process and a better understanding of what we

are doing. This idea explains the attraction and

usefulness of process guidelines such as the

Software Engineering Institute's Capability

Maturity Model, which encourage organizations

to monitor their processes and make them

repeatable, in part through measurement [4].

2. METRICS MEASUREMENT

Metrics are units of measurement. The term

"metrics" is also frequently used to mean a set of

specific measurements taken on a particular item

or process. Software engineering metrics are

units of measurement that are used to

characterize:

 software engineering products, e.g.,

designs, source code, and test cases,

 software engineering processes, e.g., the

activities of analysis, designing, and

coding, and

 software engineering people, e.g., the

efficiency of an individual tester, or the

productivity of an individual designer.

If used properly, software engineering metrics

can allow us to:

 quantitatively define success and failure,

and/or the degree of success or failure,

for a product, a process, or a person,

 identify and quantify improvement, lack

of improvement, or degradation in our

products, processes, and people,

 make meaningful and useful managerial

and technical decisions,

 identify trends, and

 make quantified and meaningful

estimates.

Object-oriented software engineering metrics are

units of measurement that are used to

characterize:

 object-oriented software engineering

products, e.g., designs, source code, and

test cases,

 object-oriented software engineering

processes, e.g., the activities of analysis,

designing, and coding, and

 object-oriented software engineering

people, e.g., the efficiency of an

individual tester, or the productivity of

an individual designer.

3. WHY ARE OBJECT-ORIENTED

SOFTWARE ENGINEERING METRICS

DIFFERENT?

OOSE metrics are different because of:

 localization,

 encapsulation,

 information hiding,

 inheritance, and

 object abstraction techniques.

3.1 Localization is the process of placing items

in close physical proximity to each other:

 Functional decomposition processes

localize information around functions.

 Data-driven approaches localize

information around data.

 Object-oriented approaches localize

information around objects.

In object-oriented software, however,

localization is based on objects. This means:

 Although we may speak of the

functionality provided by an object, at

least some of our metrics identification

and gathering effort (and possibly a

great deal of the effort) must recognize

the "object" as the basic unit of

software.

 Within systems of objects, the

localization between functionality and

objects is not a one-to-one relationship.

528

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

For example, one function may involve

several objects, and one object may

provide many functions.

3.2 Encapsulation is the packaging (or binding

together) of a collection of items:

 Low-level examples of encapsulation

include records and arrays.

 Subprograms (e.g., procedures,

functions, subroutines, and paragraphs)

are mid-level mechanisms for

encapsulation.

 In object-oriented (and object-based)

programming languages, there are still

larger encapsulating mechanisms, e.g.,

C++'s classes, Ada's packages, and

Modula 3's modules.

3.2.1 Objects Encapsulate

 knowledge of state, whether statically

maintained, calculated upon demand, or

otherwise,

 advertised capabilities (sometimes

called operations, method interfaces,

method selectors, or method interfaces),

and the corresponding algorithms used

to accomplish these capabilities (often

referred to simply as methods),

 [in the case of composite objects] other

objects,

 [optionally] exceptions,

 [optionally] constants, and

 [Most importantly] concepts.

In many object-oriented programming

languages, encapsulation of objects (e.g., classes

and their instances) is syntactically and

semantically supported by the language. In

others, the concept of encapsulation is supported

conceptually, but not physically [10,11].

Encapsulation has two major impacts on

metrics:

 The basic unit will no longer be the

subprogram, but rather the object, and

 We will have to modify our thinking on

characterizing and estimating systems.

3.2.2 Information hiding is the suppression (or

hiding) of details.

 The general idea is that we show only

that information which is necessary to

accomplish our immediate goals.

 There are degrees of information hiding,

ranging from partially restricted

visibility to total invisibility.

 Encapsulation and information hiding

are not the same thing, e.g., an item can

be encapsulated but may still be totally

visible.

Information hiding plays a direct role in

such metrics as object coupling and the degree

of information hiding

3.3 Inheritance is a mechanism whereby one

object acquires characteristics from one, or

more, other objects.

 Some object oriented languages support

only single inheritance, i.e., an object

may acquire characteristics directly

from only one other object.

 Some object-oriented languages support

multiple inheritance, i.e. an object may

acquire characteristics directly from

two, or more, different objects.

 The types of characteristics which may

be inherited, and the specific semantics

of inheritance vary from language to

language.

Many object-oriented software engineering

metrics are based on inheritance, e.g.:

 number of children (number of

immediate specializations),

 number of parents (number of

immediate generalizations), and

 class hierarchy nesting level (depth

of a class in an inheritance

hierarchy).

3.4 Abstraction is a mechanism for focusing on

the important (or essential) details of a concept

or item, while ignoring the inessential details.

529

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Abstraction is a relative concept. As we

move to higher levels of abstraction we

ignore more and more details, i.e., we

provide a more general view of a

concept or item. As we move to lower

levels of abstraction, we introduce more

details, i.e., we provide a more specific

view of a concept or item.

 There are different types of abstraction,

e.g., functional, data, process, and object

abstraction.

 In object abstraction, we treat objects as

high-level entities (i.e., as black boxes).

There are three commonly used (and different)

views on the definition for "class,":

 A class is a pattern, template, or a

blueprint for a category of structurally

identical items. The items created using

the class are called instances. This is

often referred to as the "class as a

`cookie cutter'" view.

 A class is a thing that consists of both a

pattern and a mechanism for creating

items based on that pattern. This is the

"class as an `instance factory'" view.

Instances are the individual items that

are "manufactured" (created) by using

the class's creation mechanism.

 A class is the set of all items created

using a specific pattern, i.e., the class is

the set of all instances of that pattern.

A metaclass is a class whose instances are

themselves classes. Some object-oriented

programming languages directly support user-

defined metaclasses. In effect, metaclasses may

be viewed as classes for classes, i.e., to create an

instance, we supply some specific parameters to

the metaclass, and these are used to create a

class. A metaclass is an abstraction of its

instances.

A parameterized class is a class some or all

of whose elements may be parameterized. New

(directly usable) classes may be generated by

instantiating a parameterized class with its

required parameters. Templates in C++ and

generic classes in Eiffel are examples of

parameterized classes. Some people differentiate

metaclasses and parameterized classes by noting

that metaclasses (usually) have run-time

behavior, whereas parameterized classes

(usually) do not have run-time behavior.

Several object-oriented software engineering

metrics are related to the class-instance

relationship, e.g.:

 number of instances per class per

application,

 number or parameterized classes per

application, and

 ratio of parameterized classes to non-

parameterized classes.

3.5 Coupling in software has been linked with

maintainability and existing metrics are used as

predictors of external software quality attributes

such as fault-proneness, impact analysis, ripple

effects of changes, changeability, etc. Many

coupling measures for object-oriented (OO)

software have been proposed, each of them

capturing specific dimensions of coupling. This

paper presents a new set of coupling measures

for OO systems – named conceptual coupling,

based on the semantic information obtained

from the source code, encoded in identifiers and

comments. A case study on open source

software systems is performed to compare the

new measures with existing structural coupling

measures. The case study shows that the

conceptual coupling captures new dimensions of

coupling, which are not captured by existing

coupling measures; hence it can be used to

complement the existing metrics.

3.5.1 Types Of Coupling

Coupling can be "low" (also "loose" and

"weak") or "high" (also "tight" and "strong").

Some types of coupling, in order of highest to

lowest coupling, are as follows:

Content Coupling (High)

Content coupling is when one module

modifies or relies on the internal workings of

another module (e.g., accessing local data of

another module). Therefore changing the

530

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

way the second module produces data (location,

type, and timing) will lead to changing the

dependent module.

Common Coupling

Common coupling is when two modules

share the same global data (e.g., a global

variable).Changing the shared resource implies

changing all the modules using it.

External Coupling

External coupling occurs when two

modules share an externally imposed data

format, communication protocol, or device

interface. This is basically related to the

communication to external tools and devices.

Control Coupling

Control coupling is one module

controlling the flow of another, by passing it

information on what to do (e.g., passing a what-

to-do flag).

Stamp Coupling (Data-Structured Coupling)

Stamp coupling is when modules share a

composite data structure and use only a part of

it, possibly a different part (e.g., passing a whole

record to a function that only needs one field of

it). This may lead to changing the way a

module reads a record because a field that the

module doesn't need has been modified.

Data Coupling

Data coupling is when modules share

data through, for example, parameters. Each

datum is an elementary piece, and these are the

only data shared (e.g., passing an integer to a

function that computes a square root).

Message Coupling (Low)

This is the loosest type of coupling. It

can be achieved by state decentralization (as in

objects) and component communication is done

via parameters or message passing.

No Coupling

Modules do not communicate at all with

one another.

3.5.2 Object-Oriented Programming

Subclass Coupling Describes the relationship

between a child and its parent. The child is

connected to its parent, but the parent isn't

connected to the child.

Temporal Coupling When two actions are

bundled together into one module just because

they happen to occur at the same time.

3.5.3 Coupling Between Objects (Cbo)

1) coupling = class x is coupled to class y

iff x uses y’s methods or instance

variables (includes inheritance related

coupling)

2) CBO for a class is a count of the number

of other classes to which it is coupled

3) High coupling between classes means

modules depend on each other too much

4) Independent classes are easier to reuse

and extend

5) High coupling decreases

understandability and increases

complexity

6) High coupling makes maintenance more

difficult since changes in a class might

propagate to other parts of software

7) Coupling should be kept low, but some

coupling is necessary for a functional

system

3.5.4 Coupling Versus Cohesion

Coupling and Cohesion are the two

terms which very frequently occur together.

Together they talk about the quality a module

should have. Coupling talks about the inter

dependencies between the various modules

while cohesion describes how related functions

within a module are. Low cohesion implies that

module performs tasks which are not very

related to each other and hence can create

problems as the module becomes large.

Advantages

Whether loosely or tightly coupled, a

system's performance is often reduced by

message and parameter creation, transmission,

translation and interpretation overhead. They

will improve four type of performance.

531

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

3.6 Complexity Metrics

Complexity is everywhere in the

software life cycle: requirements, analysis,

design, and of course, implementation. is usually

an undesired property of software because

complexity makes software harder to read and

understand, and therefore harder to change; also,

it is believed to be one cause of the presence of

defects. In a use net debate

surrounding Intelligent Design, the issue of

measuring complexity kept coming up. Are there

any good objective metrics for "complexity"?

"Number of parts" is limited because it could be

a result of repetition, chaos, or waste. "Number

of different parts" can be fudged and requires

meaningful difference metrics.

All the artifacts produced in a software

project, source code is the easiest option to

measure complexity. However, several decades

of software research have failed to produce a

consensus about what metrics best reflect the

complexity of a given piece of code. It’s hard

even to compare two pieces of code written in

different programming languages and say which

code is more complex. Because of this lack of

resolution, a myriad of possible metrics are

currently offered to measure the complexity of a

program. What does the research say are the best

metrics for each particular case? Are all these

metrics any better than very simple source code

metrics, such as lines of codes? We take

advantage of the huge amount of open source

software available to study the relationships

between different size and complexity metrics.

To avoid suffocating in the myriads of attributes

and metrics, we focus only on one programming

language: C, a “classic” in software

development that remains one of the most

popular programming languages.

3.6.1 Types Of Complexity Metrics

 Cyclomatic complexity (or conditional

complexity)

 hierarchical complexity.

 Computational complexity.

 Kolmogorov complexity.

 Non-hierarchical object complexity.

 Non-hierarchical process complexity.

 hierarchical object complexity.

Cyclomatic

Complexity
Risk Complexity

1-10
a simple program, without

much risk

11-20
more complex, moderate

risk

21-50 complex, high risk

51+ untestable, very high risk

Table 1. Standard Values of Cyclomatic

Complexity

5. CONCLUSION AND FUTURE SCOPE

 The above results can be used in order

to determine when and how each of the above

metrics can be used according to quality

characteristics a practitioner wants to emphasize.

Make sure the software quality metrics and

indicators they employ include a clear definition

of component parts are accurate and readily

collectible, and span the development spectrum

and functional activities. Survey data indicates

that most organizations are on the right track to

making use of metrics in software projects. For

organizations which do not reflect “best

practices”, and would like to enhance their

metrics capabilities, the following

recommendations are suggested to Measure the

“best practices” list of metrics more consistently

across all projects. Focus on “easy to

implement” metrics that are understood by both

management and software developers, and

provide demonstrated insight into software

project activities. We have described in detail

six metrics, chosen among the ones most widely

known and used. They are relative to different

phases of software development. In the

requirements phase, we can use Function Points

to measure the functionality starting from the

user requirements. In the high-level design

phase, the suite of metrics can be used: we have

concept of measures for cohesion and coupling,

which are important attributes of design.

 A number of object oriented metrics

have been proposed in the literature for

measuring the design attributes such as

532

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

inheritance, polymorphism, message passing,

complexity, Hiding Factor, coupling, cohesion,

reusability etc,. In this paper, A metrics program

that is based on the goals of an organization will

help communicate, measure progress towards,

and eventually attain those goals. People will

work to accomplish what they believe to be

important. Well-designed metrics with

documented objectives can help an organization

obtain the information it needs to continue to

improve its software products, processes, and

services while maintaining a focus on what is

important. A practical, systematic, start-to-finish

method of selecting, designing, and

implementing software metrics is a valuable aid.

The number of methods and the complexity of

methods involved is a predictor of how much

time and effort is required to develop and

maintain the class.. While in the past the focus in

research was on inventing new metrics, now the

focus is more on measurement theory, in

particular on the definition of new validation

frameworks or of new set of axioms.

6. REFERENCES

[1] Kaur Amandeep, Singh Satwinder, K. Kahl.

“Evaluation and Metrication of Object Oriented

System”, International Multi Conference of

Engineers and Cmputer Scientists, 2009 vol. 1.

[2] J. Alghamdi, R. Rufai, and S. Khan.

Oometer: A software quality assurance tool.

Software Maintenance and Reengineering, 2009.

CSMR 2009. 9th European Conference on,

pages 190{191, 21-23}, March 2010.

 [3] S. Conte, H. Dunsmore, V. Shen, Software

Engineering Metrics and Models,

Benjamin/Cummings, Menlo Park, CA.

[4] S. Chidamber, C. Kemerer, A Metrics Suite

for Object Oriented Design, IEEE Trans.

Software Eng., 20/6), 2000, pp. 263-265.

[5] A. Albrecht and J. Gaffney: Software

Function, Source Lines of Code, and

Development Effort Prediction: A Software

Science Validation; in IEEE Trans. Software

Eng., 9(6), 2008, pp. 639-648.

[6] B. Bohem, Software Engineering

Economics, Prentice Hall, Englewood Cliffs,

1981 [Briand et al 94] L. Briand, S. Morasca, V.

Basili, Defining and Validating High- Level

Design Metrics, Tech. Rep. CS TR-3301,

University of Maryland, 2009.

[7] S. Morasca, Software Measurement: State of

the Art and Related Issues, slides from the

School of the Italian Group of Informatics

Engineering, Rovereto, Italy, September 2008.

[8] H. Bsar, M. Bauer, O. Ciupke, S. Demeyer,

S. Ducasse, M. Lanza, R. Marinescu, R. Nebbe,

O. Nierstrasz, M. Przybilski, T. Richner, M.

Rieger, C. Riva, A. Sassen, B. Schulz, P.

Steyaert, S. Tichelaar, and J. Weisbrod. The

FAMOOS Object-Oriented Reengineering

Handbook, Oct. 2006.

533

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

