

Performance Analysis Of Different Data Compression Techniques On Text File

 P.Yellamma Dr.Narasimham Challa

Amrita sai institute of science and Amrita sai institute of science and

Technology, India Technology India.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

Abstract

Data Compression is the science and art of

representing information in a compact form.

Compression is the process of coding that will

effectively reduce the total number of bits needed to

represent certain information.Data compression

has been one of the critical enabling technologies

for the ongoing digital multimedia revolution .data

compression also called as source coding or bit-

rate reduction. There are different compression

algorithms which are available in different formats.

Data compressions are generally lossless and lossy

data compression. In this paper, we study different

methods of lossless data compression algorithms

and calculating the entropy on English text files:

Shanon-Fano coding, Huffman Encoding, Run-

Length Encoding (RLE), Lempel-Ziv-Welch (LZW).

 Keywords: lossless data compression, lossy data

compression, Entropy, Shannon-Fano coding,

Huffman encoding, RLE, LZW.

1. Introduction
 Data compression refers to reducing the

amount of space needed to store data or reducing

the amount of time needed to transmit data. The

size of data is reduced by removing the excessive

information. Data compression can be lossless,

only if it is possible to exactly reconstruct the

original data from the compressed version [4]. To

compress something means that you have a piece of

data and you decrease its size.

 There are different techniques who to do that

and they all have their own advantages and

disadvantages. Examples of such source data are

medical images, text and images Preserved for

legal reason, some computer executable files, etc.

 The general principle of data compression

algorithms on text files is to transform string of

characters into a new string which contains the

same information but with new length as small as

possible. The efficient data compression algorithm

is chosen according to some scales like:

compression size, compression ratio, processing

time or speed, and entropy. [1]

1.1. Lossless compression vs lossy

compression:

 1.1.1. Lossless compression: Reduces bits by

identifying and eliminating statistical redundancy

.no information is lost in lossless compression. In

these schemes before the compression after the

compression data must be same. [13]

 1.1.2. Lossy compression: Reduces bits by

identifying marginally important information and

removing it. In these schemes some loss of

information is acceptable depending upon the

application [5].

 Compression ratio=B1/B0*100%.

 B0=no. of bits before compression.

 B1= no. of bits after compression

2. Shanon-fano coding
 In Shannon–Fano coding, the procedure is done

by a more frequently occurring string which is

encoded by a shorter encoding vector and a less

frequently occurring string is encoded by a longer

encoding vector. Shannon-Fano coding[1].

 Relied on the occurrence of each character or

symbol with their frequencies in a list and is also

called as a variable length coding.

 The Shannon-Fano Algorithm

This is a basic information theoretic algorithm [3].

A simple example will be used to illustrate the

algorithm.

 Example: Alice_has_sent_a_message_to_bob.

2.1. Algorithm

 Encoding for the Shannon-fano algorithm:

It follows a top-down approach [9].

Step1: Create table providing frequencies / counts

Step2: sort symbols according to their frequencies/

Probabilities in descending order.(table1)

Step3: Recursively divided into two parts, each

with

approx (binary) same number of counts.

Step4: Add a binary 0 to the code words of the

upper part and a binary 1 to the lower part.

Step5: Search for the next part containing more

than two symbols, repeat the step3 and step4.

Step6: Coding of the origination data according to

code words in the table2.

Step7:Create the coding tree(figure1).

Step8: Transmit Codes instead of Tokens

“Table1.Symbol table frequencies in descending

order.”

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

“Table2. Shannon-fano code words table.”

“Figure1.Shannon-fano coding tree.”

“Table3.Result of performing Shannon-fano.”

Total number of used bits=116.

Before compression (B0) =32*8=256bits.

After compression (B1) =116bits.

Compression ratio=B1/ B0 *100%

 =116/256*100%=45.3% from the original size.

It means that it saves 54.7% in space[1].

 Generally, Shannon-Fano coding does not

guarantee that an optimal code is generated.

Shannon – Fano algorithm is more efficient when

the probabilities are closer to inverses of powers of

2.

3. Huffman Encoding

 The Huffman coding algorithm [4] is

named after its inventor, David Huffman, who

developed this algorithm as a student in a class on

information theory at MIT in1950. It is a more

successful method used for text compression. It is a

compression algorithm used for loss-less data

compression.

 A more efficient approach is to use a

variable-length representation, where each

character can have a different number of bits to

represent it. More specifically we first analyze the

frequency of each character in the text, and then we

create a binary tree (called Huffman tree) giving a

shorter bit representation to the most used

characters, so that they can be reached faster[3].

 3.1. Algorithm

 Step1: Compute the probability of each character.

Step2: Sort the set of data in ASCENDING order.

Step3: Create a new node where the left child is

the lowest in the sorted list and the right is the

second lowest in the sorted list.

Step4: Chop-off those elements in the sorted list as

they are now part of one node and add the

probabilities. The result is the probabilities for the

new node.

Step5: Perform insertion sort on the list with the

new node.

Step6: Repeat steps 3, 4, 5 until, only have one

node left.

Step7: Calculate Entropy

Example: Alice_has_sent_a_message_to_bob.

“Table1.Symbol table frequencies in Ascending

order.”

 It is based on building a full binary tree

for the different symbols that are in the original file

after calculating the probability for each symbol

and put them in ascending order. After that, we

derive the code words for each symbol from the

binary tree, giving short code words for symbols

with large probabilities and longer code words for

symbols with small probabilities.

 By applying Huffman algorithm on the

given example. We get the probability table [2].

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

“Table5. Ascending probabilities for symbols”.

“Figure 2: Huffman encoding tree”.

 Huffman Method of Code Generation and

average code length per character computation is

calculating in this example [7].

“Table 6: Huffman code words symbols”.

 Average code word

length=entropy=~3.6 bits/symbols. Huffman

weighted path in this example is:

Weighted path=∑ (no. of counts*no. of code

words).[5]

Compression ratio=B1/B0*100%=116/256*100%

 =45.3% from the original size. it

means that it saves 54.7% in space.

4. Run-length encoding (RLE)

 Run Length Encoding (RLE) is a simple

and popular data compression algorithm. It is based

on the idea to replace a long sequence of the same

symbol by a shorter sequence and is a good

introduction into the data compression field for

newcomers.RLE requires only a small amount of

hardware and software resources. Therefore RLE

was introduced very early and a large range of

derivates have been developed up to now.

 Run-length encoding is a data compression

algorithm that is supported by most bitmap file

formats, such as TIFF, BMP, and PCX.

4.1. General Principle of RLE [16]

Instead of the original data so-called runs will be

stored. In the general form a run is a sequence of a

certain length containing only one symbol. The

length of the sequence is called run count and the

symbol run value

4.2. Algorithm.

step1: Pick the character from source string.

step2: Append the picked character to the

destination string.

step3: Count the number of subsequent occurrences

of the picked character and append the count to

destination string.

step4: Pick the next character and repeat steps 2, 3

and 4 if end of string is NOT reached.

Example: Alice_has_sent_a_message_to_bob.

“Table7: RLE data compression hypothetical scan

line”.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

 If we apply the run-length encoding (RLE)

data compression algorithm to the above

hypothetical scan line, we get the following:

6_4a4e4s2t2o2b1l1i1c1h1n1m1g1.

Compression ratio=B1/ B0 *100%

 =30/32*100%=93.7%from the

original size. It means that it saves 6.3% in space

only. Does not work well for English text however,

is almost always a part of a larger compression

system.

5. Lempel–Ziv–Welch (LZW)

 LZW is a universal lossless data

compression algorithm [10] created by Abraham

Lempel, Jacob Ziv,and Terry Welch. It was

published by Welch in 1984 as an improved

implementation of the LZ78 algorithm published

by Lempel and Ziv in 1978. The algorithm is

simple to implement, and has the potential for very

high throughput in hardware implementations [6].

 LZW is referred to as a dictionary-based

encoding algorithm. The algorithm builds a data

dictionary (also called a translation table or string

table) of data occurring in an uncompressed data

stream. Patterns of data (substrings) are identified

in the data stream and are matched to entries in the

dictionary. If the substring is not present in the

dictionary, a code phrase is created based on the

data content of the substring, and it is stored in the

dictionary. The phrase is then written to the

compressed output stream [1].

 Code table compression is the basis of the

popular LWZ compression method. Encoding

occurs by identifying sequences of bytes in the

original file that exist in the code table. The 12 bit

code representing the sequence is placed in the

compressed file instead of the sequence. The first

256 entries in the table correspond to the single

byte values, 0 to 255, while the remaining entries

correspond to sequences of bytes. The LZW

algorithm is an efficient way of generating the code

table based on the particular data being

compressed.

5.1. LZW encoding algorithm:

 Encoding input consists of the following steps:

Step 1. Initialize dictionary to contain one entry for

each byte. Initialize the encoded string with the

first byte of the input stream.

Step 2. Read the next byte from the input stream.

Step 3. If the byte is an EOF goto step 6.
Step 4. If concatenating the byte to the encoded

string produces a string that is in the dictionary:

 Concatenate the the byte to the encoded

string.

 Go to step 2.

Step 5. If concatenating the byte to the encoded

string produces a string that is not in the dictionary:

 Add the new sting to the dictionary.
 Write the code for the encoded string to

the output stream.

 Set the encoded string equal to the new

byte.

 Go to step 2.

Step 6. Write out code for encoded string and exit.

Example: alice_has_sent_a_message_to_bo.

 The LZW algorithm stores in a “dictionary”.

The first 255 entries are used to contain the values

for individual.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

e_ but this has already been included in the

dictionary in entry 260.this means we now set up

the three-character string “e_t”.

 By using LZW compression algorithm our

examples is not suitable. Generally LZW is suitable

for the images. In this example Compression

ratio=31/32*100=96.8% from the original size. it

means that it saves 3.2% in space only or storage

of new file. [4]

6. Analysis

 In this section, tests are made on the four

compression techniques on same text file. The

results are tabulated and analyzed in order to reach

to the best technique, advantage and disadvantage

for each one, and when each one is best to use.

First compare the Shannon-fano and Huffman

coding, the compression ratio is almost same. By

using these compression algorithms it saves the

54.7%space.Second compare the Run length

encoding and Lempel-ziv-welch algorithms of the

compression ratio is low as compare with the

Huffman and Shannon-fano algorithms.

According to my observation Huffman encoding

algorithm is best result for the text files.

7. Conclusion
 Data compression is most consideration thing

of the recent world. We have to compress a huge

amount of data so as to carry from one place to

other or in a storage format. These proposed

compression technique are improved the efficiency

of compression on text. Huffman encoding

Algorithm is suitable for the given text.

8. References

[1]. Haroon A, Mohammed A “Data Compression

Techniques on Text Files: A Comparison Study”

International Journal of Computer Applications (0975 –

8887) Volume 26– No.5, July 201.

[2]. Mohammed Al-laham & Ibrahiem M. M. El Emary

“Comparative Study between Various Algorithms of

Data Compression Techniques” Proceedings of the

World Congress on Engineering and Computer Science

2007WCECS 2007, October 24-26, 2007, San Francisco,

USA.

[3]. Mamta Sharma “Compression Using Huffman

Coding”. IJCSNS International Journal of Computer

Science and Network Security, VOL.10 No.5, May 2010

[4].Senthil Shanmugasundaram, Robert Lourdusamy ”A

Comparative Study Of Text Compression Algorithms”.

 International Journal of Wisdom Based Computing, Vol.

1 (3), December 2011

[5]. 2shared.document Chapter 7”Lossless Compression

Algorithms”.ppt.

[6]. Draft Lecture Notes”compression Algorithms:

Huffman and Lempel-Ziv-Welch (Lzw)”. Last Update:

February 13, 2012.

[7].Double Compression Of Test Data Using

Huffman Code

[8].Dave Marshall ” Lossless Compression Algorithms”.

[9]. Roger seeck ” Shannon-Fano Coding”

[10].Roger seeck”General Principle of RLE”

[11].S.Aarthi, D. Muralidharan, P. Swaminathandouble

”Compression Of Test Data Using Huffman Code”

Journal Of Theoretical And Applied Information

Technology 15 May 2012. Vol. 39 No.2.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

