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Abstract — This paper deals with a novel algorithm - SOCP, 

which is used to design sparse FIR filters. The focus of the 

design problem is to reduce the number of non-zero valued filter 

coefficients. Due to the presence of l0 norm of filter coefficients 

in objective function, the design problem is highly non-convex. 

In order to tackle this problem, an iterative procedure is used to 

obtain sparsity pattern, which is then used to compute final 

solution in a convex optimization problem. In each iterative step, 

sparse design problem is changed to sub problems. The optimal 

solutions of these sub problems can be obtained by solving their 

dual problems. The design procedure is repeated to improve the 

sparsity. The performance of proposed algorithm is compared 

with previous algorithms to find efficient one. 

 

Keywords—Second order cone programming (SOCP); sparse 

filters 

I.  INTRODUCTION  

 

In the design and analysis of communication systems and 

signal processing, convex optimization methods are widely 

used. Convex optimization refers to minimizing a convex 

objective function subject to convex constraints. Convex 

optimization has been used in signal processing for long time 

in the design of linear and non-linear filter designs. It was 

considered that optimization problems were highly 

expensive, but these misconceptions are overruled now. The 

results that justified gave increased computational power. 

The objective of this paper is to reduce the number of 

non-zero valued filter coefficients. The proposed design is 

inspired from iterative shrinkage/thresholding [IST] [3] 

algorithms. In order to obtain a sparse FIR filter design, the 

number of non-zero filter coefficients is minimized subject to 

set of error constraints. This main problem is then converted 

to dual problems to obtain the optimal solutions. In such a 

sparse filter obtained, the multipliers corresponding to zero 

valued coefficients can be omitted. This in turn results in 

reduction of complexity. In general l0 norm of a filter 

coefficient is considered as a measure of sparsity. This leads 

to non-convex optimization problems. 

Mixed integer linear programming [MILP] [4] algorithm 

is proposed that uses cost of arithmetic operations and delays 

and is formulated as a weighted l0 norm of filter coefficient  

 

 

 

 

vector. In orthogonal matching pursuit [OMP] [5] 

algorithm makes use of active indices. This set get expands 

by one in each iterative step and is used to reduce 

optimization error. 

This paper also deals with a comparative study of SOCP 

and Linear programming [LP] [2] algorithm for sparse filter 

designs. In LP, two methods are being employed. The first 

method is successive thinning algorithms which turns the 

impulse response to zero until the given specifications are 

violated. The second method makes use of l1 norm which is 

the convex relaxation of l0 norm. In this, two types of 

approximation algorithms for sparse filter design are used. 

Both approaches make extensive use of linear programming, 

and the existence of efficient techniques for solving linear 

programs contributes significantly to their efficiency. In 

particular, the presented techniques use linear programming 

as a significant algorithmic component in determining both 

the subset of coefficients permitted to be nonzero as well as 

their values. Ongoing advancements in the execution times of 

linear program solvers may therefore be used extensively by 

the presented techniques. 

II. PROBLEM FORMULATION 

A. Second Order Cone Programming 

The sparse FIR filter design can be expressed as a convex 

optimization problem as 

min||h||0 (1) 

s.t |W(wk)[H(e
jwk

) –D(wk)]|  ≤  δ(wk), k=1,2….K 

The impulse response h is the objective function which is 

minimized under the constraints. The constraints is obtained 

by multiplying a weighting function W(wk) with difference of 

frequency response of FIR filter and ideal frequency response 

D(w). δ(wk) is the upper bound of constraints. The ||.||0 

represents l0 norm that gives the idea about number of non-

zero valued coefficients 

SOCP problem of the corresponding (1) is given as 

min t (2) 

s.t ||Fkh–dk||2   ≤ δ(wk)+t, k=1,2….K 

The sparse filter design equation (1) is first converted to a 

Euclidean norm, where Fk and dk represents real and 
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imaginary parts of impulse response respectively, which is 

further converted to SOCP problem in (2). 

To obtain a sparsity pattern is the main objective of our 

design problem. Our algorithm consists of two steps. In first 

step iteration is used to obtain the sparsity. Then (2) is solved 

to redefine the result. Our proposed algorithm starts from an 

initial point h
(0)

.Suppose that in l
th

 iteration, we obtain a 

feasible point for (1),then a design problem is constructed 

with same objective function whereas constraints are 

modified as in (3). 

 
TABLE I. SPARSITY AND ERROR IN ONE-NORM DESIGN 

Sparsity Error 

0 0 

20 0.0253 

22 0.0502 

24 0.0752 

26 0.1002 

26 0.1250 

28 0.1501 

28 0.1751 

28 0.2001 

 
TABLE II. SPARSITY AND ERROR IN MINIMUM INCREASE RULE 

Sparsity Error 

0 0 

23 0.5010 

23 0.5010 

23 0.5010 

23 0.5010 

23 0.5010 

23 0.5010 

23 0.5010 

23 0.5010 

23 0.5010 

 

The iterative procedure continues until l0 norm stops 

decreasing. Our algorithm is inspired from IST and in each 

iterative step, l0 norm can be decomposed into sub problems. 

In l+1iteration,  

min ||h||0 (3) 

s.t ||h–bk
(l)

||2 ≤  uk
(l) 

bk
(l)

 =Fk
T 

Vk
(l)

 + h
(l) 

uk
(l)

 =[δ
2
(wk) –vk

(l) T
(ckI–Fk Fk

T
) vk

(l)
] /Ck 

vk   = [dk–Fkh
(l)

]/ Ck 

Ck is the maximum eigen value of Fk.The optimal solution 

of (3) can be obtained from  

hn
(l+1) 

=T(λ
*
) 

where T(λ) =bn if  (qn
T 

λ)
2 
˃ 1

T 
λ 

=0 if (qn
T 

λ)
2  

≤ 1
T 

λ 

where λ is the lagrangean multiplier and qn is the set of all 

bn. Various parameters of design are compared with linear 

programming algorithms to check the efficiency. 

 To achieve a better result, we can run the design 

algorithm for several times. All stages start from the design 

output of the previous stage except the first aarep. This 

procedure continues until the sparsity of the design result 

cannot be further increased.At the end of each stage the 

design problem (2) is solved to refine the solution. This 

operation essentially pushes the final solution obtained in the 

previous iterative procedure away from the boundary of the 

feasibility domain.In this way, it is possible to achieve 

sparser designs in the successive stages. A large number of 

experiments is conducted to confirm that this multistage 

design strategy can largely improve the sparsity of design 

results. 

III. DESIGN EXAMPLE 

 An LPF is designed with an order 32.It is then converted 

to convex optimization problem where l1 norm is taken to 

obtain the sparsity. SOCP problem is implemented and 

compared with linear programming algorithms on the 

grounds of sparsity and error. The number of zero valued 

coefficients is displayed in the Tables. We conduct three sets 

of designs with weighting function varying from0 to 2.The 

proposed algorithm achieve better results in terms of sparsity. 

The techniques presented in this work can be extended to 

design nonlinear-phase FIR filters and IIR filters. Fig.1 shows 

the output of a LPF performed under the three algorithms 

mentioned in this paper.The performance analysis of three 

algorithms shows that SOCP overrules the other two 

algorithms.Sparsity of SOCP is good enough as per the 

simulation results.Fig.2 shows the magnitude spectrum of 

SOCP.The approach retains the overall structure of the 

algorithms while modifying optimization problems 

concerned, namely the minimization of the frequency-domain 

error with certain coefficients constrained to zero and the 

minimization of the 1-norm of the coefficients. This approach 

is likely to be successful for nonlinear-phase FIR filters since 

the optimization problems remain convex with respect to the 

coefficients. 

 
TABLE III. SPARSITY AND ERROR IN SOCP 

Sparsity Error 

16 2.8280 

18 12.5322 

19 17.1858 

20 18.1961 

20 19.7063 

22 19.7063 

23 19.8920 

26 20.1791 

31 20.4240 

 

IV. CONCLUSION 

 

In this paper, a new algorithm is proposed for sparse FIR 

filter designs. The sparsity pattern is obtained by the iterative 

procedure. In each iterative step, sub-problems are created. 

By solving its dual problem, optimal solution can be found 

out. In order to improve the sparsity the iteration can be 

repeated for several times. Analyses indicate that the 

proposed algorithm can efficiently and reliably deal with the 

l0-norm design problem with multiple quadratic 

constraints.Simulation results also reveal that in many 

designs,the proposed algorithm outperforms existing design 

algorithms.Besides sparse FIR filter designs discussed in this 

paper, the proposed algorithm can be applied to any 

optimization task which is formulated in the form of (1). 
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Fig. 1. Comparison of the three design methods 

 

 

Fig. 2.

 

Magnitude response of the proposed algorithm
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