
Performance-Aware Design Of Dynamically Reconfigurable System-On-

Chips With Quality Of Service Guarantees

1
Manjula M, PG Scholar,

2
Mrs. J. Nalini, Asst..Professor,

Department of Electronics and Communication Engineering,

PSN College of Engineering and Technology,

Tirunelveli, Tamil Nadu, India,

Abstract-Network-on-Chip (NoC) architecture has

evolved as a promising solution and also provides an

alternative to the bus-based communication mechanism

that can meet the challenging requirements of

performance, scalability and flexibility in a System-on-

chip (SOC) based embedded design. The three major

phases in a NOC design flow are scheduling, mapping

and routing. This paper proposes a unified approach

for solving the first two sub problems of NOC design

rather solving them sequentially. Also the solution has

been made scalable and generic to suit any random

bench marks. In addition, a performance aware routing

algorithm has been proposed to ensure quality of

service guarantees with reduced time complexity. Thus

the complete NOC design is addressed and the results

show that time, delay and energy are improved

compared to the previous approaches.

Index terms: Mapping, Network-on-chip,

routing,Scheduling.

I INTRODUCTION:

Multicore architectures have become an

emerging trend in the embedded systems technology

and too prominent component to meet the functional

and performance requirements of complex

applications. These multi-core designs or system-on-

chip besides offering high performance and

flexibility ensures low cost and power efficient

implementations. An important issue to be considered

in improving the performance of these systems is the

communication infrastructure available to interact

between these many cores. Thus the design has

evolved from a computation centric to a

communication centric design. On Chip Networking

proves to be a promising solution for such kind of

design needs in the recent years. This Network-on-

Chip (NOC) technology applies networking theory

and methods to on-chip communication thus

achieving notable improvements over the

conventional bus and crossbar interconnects.

The conventional steps in the design flow of

a NOC are task scheduling, core mapping and

network routing. Task scheduling is the mapping of

the application tasks to the processing elements of the

system-on-chip. Core mapping deals with the

placement of the processing elements on to the

network tiles such that the communication latency

and energy is utilized at its lowest possible level.

Routing of data paths is the movement of network

traffic on NOC architecture. This paper deals with the

design of a NOC. The efforts have been made to

make the proposed approach scalable to larger

benchmarks and generic to all the architectures

irrespective of its complexity. The main aim is to

unify the steps involved in the design flow so as to

obtain a more accurate result in the final design. The

reason behind this unified approach is that the

sequential approach proves to be faulty at times since

the decision taken at an earlier phase may prove to

have several disadvantages at a later phase. Thus to

obtain better performance and lower the energy

requirements, it is necessary to consider the

scheduling and mapping as a single process.

II RELATED WORKS:

Many previous works addressed task

scheduling and core mapping separately. The

algorithms used were Genetic algorithm [1], Ant

colony algorithm [2] and Integer Linear

Programming [3]. Varatkar et al. [4] proposed a

communication aware algorithm for task scheduling

based on the inter-processor communication volume.

Some works available on the unification process [5],

[6] considered only regular mesh architectures.

Ghosh et al. [7] used MINCOL algorithm for the

unification problem but still that applies to regular

mesh only.

III ORGANIZATION OF THE WORK:

This work proposes an approach to unify the

processes of the design phase even with highly

irregular architectures and also proposes a method to

speed-up the entire process. Though the available

methods[5] took into account only the first two

phases of the process ,this paper guarantees

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

performance oriented design at every stage of the

design by including a fuzzy logic and deadlock-free

design in the routing phase too.

The methodology is organized as follows:

(i) Section-A explains a novel graph model

which is used to calculate the energy

spent on the communication of cores

irrespective of the high irregularity of

the network.

(ii) Section-B deals with a special heuristic

employed to accelerate the entire

process.

(iii) Section-C explains the MILP

formulation and unification of the

processes.

(iv) Section-D explains a performance

aware routing algorithm for both

congestion avoidance and deadlock free

routing.

A. Latency graph:

Highly irregular NOC architectures are

much common in the complex chips with highly

complex functionalities. To cope up with the high

network irregularity while calculating the energy and

communication latency during core mapping, a brand

new communication graph model called latency

graph is proposed. This approach proves to have

lesser time complexity than the previously available

methods[8].

Steps to build a latency graph:

Problem formulation:

Let us consider a network topology represented by a

graph G= {V, E} such that

V-> denotes the network tiles

E->denotes the energy consumption on each link

Procedure to build latency graph:

1. For any two nodes or network tiles, the

minimal energy between Vi and Vj is

calculated using Floyd-warshall algorithm.

2. Choose a root node and label it as „0‟

3. Using Dijkstra algorithm, a new sub graph is

formulated which defines the energy

required to communicate from the tile

chosen as the root node to all other tiles in

the network.

4. If there is no node Vi € V such that it aids in

finding the communication energy Ecjk=(Lk
(i)

-Lk
(j)

),then node Vi is chosen as the root

node and the procedure is repeated from the

previous step. This is continued until unless

all the negative loops are eliminated and a

finite solution is obtained.

The example shown in fig 1 can be illustrated as

follows:

Initially tile „d‟ is picked up as the root node

and the shortest path from node „d‟ to all the other

network tiles is calculated(fig 2).Then by making use

of the latency cost available from this calculation, the

energy required to communicate between any two

cores is calculated by subtracting the labels available

on those cores in the previously obtained sub graph.

Since we find certain values in the third column (fig

2) are negative, it indicates that the energy is not

available still in the calculation. Thus we start off

with the tile „a‟ and again all the values are

calculated. This procedure will be repeated until no

negative values are found. Finally, the maximum

value among the available values is chosen as the

communication latency. This is given by the theorem

which states that among a set of available sub graphs

of latency graph the communication energy is given

by

ECij = max {available energies calculated through

latency graph}

In the example, it is given by,

ECij = max{ latj
(d)

-lati
(d)

, latj
(a)

-lati
(a)

, latj
(b)

-lati
(b)

}

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

(a) (b)

 FIG 1: a,b,c,d – Steps in building latency graph

 (c) (d)

i->j ECij latj
(d)

-lati
(d)

 latj
(a)

-lati
(a)

 latj
(b)

-lati
(b)

 Max

a->b 2 1 2 -2 2

a->c 1 -1 1 0 1

a->d 2 -2 2 1 2

b->c

2 -2 -1 2 2

b->d

3 -3 0 3 3

c->d 1 -1 1 1 1

b->a 2 -1 -2 2 2

c->a 1 1 -1 0 1

d->a 2 2 -2 -1 2

c->b 2 2 1 -2 2

d->b 3 3 0 -3 3

d->c 1 1 -1 -1 1

Fig 2 : Table illustrating the values found through latency graph

the total number of latency sub graphs is constrained

by the inequality[8]

 2≤k≤M

Where K->total number of latency sub graphs

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

B. Acceleration technique:

A task graph is the representation of the

applications that are to be executed on a multi core

system which consists of independent or dependent

tasks of the applications. If the task graph is much

larger to be executed on a SOC, then it will not be

efficient to perform a search for a promising solution

in the exhaustive space in terms of runtime

complexity. Thus a partitioning approach which

divides the larger task graphs into smaller sub graphs

is utilized. The min-cut partitioning approach is

explained as follows:

A threshold value is set for either

partitioning the larger task graphs into smaller sub

graphs or grouping the smaller graphs to a larger one.

Then if the number of applications is greater than a

threshold, they will be clustered to this threshold. On

the other hand, if the number of the applications is

less than the threshold, they will be partitioned to this

threshold. The threshold value is set to

max (3,[M/4]) in this paper

Where M -> number of available cores

Then a set of cores and network tiles are

related to a sub graph group depending on the nature

of the application and the cores that are capable of

executing it. Each task has a runtime denoted as rij

associated with it when executed on a core. After

partitioning the graph based on the mincut approach,

the partitioned applications will be run on the core

which consumes least run time compared to the other.

Steps in grouping cores and network tiles:

Fig 3 illustrates this min cut approach.

(i) Sort the task groups in ascending order

by the number of sub-tasks in the

application.

(ii) Find the cores that are capable of

executing the tasks.

(iii) Construct a bipartite graph with

communication volume within each

group.

(iv) Find a weighted bipartite matching with

least communication latency including

network tiles for mapping.

C. Mixed integer programming formulation:

After partitioning the task graphs into smaller

ones and calculating the communication energy using

latency graph, these sub graphs along with cores

capable of executing it and the energy spent on the

computation and communication will be set as input

to the MILP solver where we find a appropriate result

for scheduling and mapping [3].Mathematically, a

mixed-integer program is the minimization or

maximization of a linear function subject to

linear constraints. Here, the variables involved in the

function are

(i) Execution time of the task, t.

(ii) Total energy consumption which

incorporates mathematically both inter

core and intra core communication, E.

(iii) Total time margin before task deadline,

d

Fig 3 (a): A larger task graph

Fig 3 (b): Partitioned sub graphs of fig 3(a)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

Thus the objective cost function to be minimized by

the solver is

C=α0T+α1E+α2d

=> C=α 0T+α1(Ecore+Ecomm)+α2t

Where C -> Cost function

α0, α1, α2 -> weight factors assigned

Further the values of Ecore and Ecomm are

 M-1 N-1

Ecore=∑ (∑ XijWijPj)

 0 0

Where M -> total number of tasks

 N -> total number of cores

 Pj -> Power of the core j

Ecomm= ∑ (Cijeij)

(i,j)€E

Where Cij and eij ->communication volume and

communication energy from task i to task j

D. Routing:

While modeling the communication latency

,it is necessary to incorporate the latency due to

router‟s congestion. But it is hard to precisely

estimate the congestion. Thus a heuristic based on

fuzzy logic is employed to alleviate the congestion

and assure the QOS guarantees thus making the

approach performance aware. Complex applications

such as Cloud computing, server consolidation, and

real-time applications demand on-chip QOS support

for security, performance isolation, and guarantees.

Thus to avoid the problem of congestion and hotspots

in Network on Chip a fuzzy logic control system is

proposed. Fuzzy system normally substitutes or

replace a skilled human operator with a rule-based

system. The fuzzy logic uses linguistic descriptions

to define the relationship between the input

information and the output action with the help of an

expert. In a network, the various metrics like

collisions, traffic level and buffer occupancy are

considered for congestion avoiding routing

algorithm. First we have to fuzify the inputs or create

membership values and put them into the fuzzy sets

which are normalized in the range of (0, 1). The

inference mechanism applies reasoning to compute

fuzzy output. Fuzzification transforms the crisp value

of the input variable into the fuzzy sets. It applies a

predetermined set of linguistic rules shown in fig 5

and produces the fuzzy sets of the output linguistic

variables. For the inference mechanism, the max-min

method is used .Finally the defuzzification phase is

done by using Center of gravity method to produce

real numbers. The whole idea is shown in fig 4.

Deadlock occurs when two packets are

waiting each other to be routed forward. Both of the

packets reserve some resources and both are waiting

each other to release the resources. Routers do not

release the resources before they get the new

resources and so the routing is locked. By finding

neighbors and gathering available free slots buffer

and considering this parameter as one of the input

parameter for fuzzy controller, helps the proposed

fuzzy routing algorithm to be deadlock free. It does

not try to send a packet to a network path that is in

the process of getting congested few hops after, but

not yet propagated to the current switch[9]. By

considering this parameter and crossbar demand as

two input metrics and cost calculation by the fuzzy

controller for each selective output channels, the

output port with the minimum cost is selected.

 Fig 4: FUZZY Controller

Fuzzification

Rule Base

Defuzzification Inference

system

Input

Output

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

 FIG 5: Fuzzy Rules

Results and Discussion:

All the experiments were performed on an

3*3 irregular mesh. Mesh dimension 3*3 for MPEG4

and MWD applications and 4*4 mesh was used for

heavy traffic scenarios. The parameters energy, time

and delay are taken for test and the results were

provided for different structures.

Conclusion:

Thus an unified approach for scheduling and

mapping is proposed. This utilizes a graph based

approach which can cope with any degree of

irregularity in the architecture. The QOS guarantees

were provided with a performance aware design. The

results show a 10% and 13.5% improvement in

energy and QOS compare to the previous approaches.

P

o

w

e

r

i

n

W

Fig 6 a, b, c: Results showing power, delay reduction and increase in speed respectively

 (a)

 (b)

 (c)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

References:

[1] V. Kianzad, S. S. Bhattacharyya, and G. Qu,

“CASPER: An integrated energy-driven approach

for task graph scheduling on distributed embedded

systems,” in Proc. IEEE Int. Conf. Appl.-Specific

Syst., Arch. Processors, 2005, pp. 191–197.

[2] P. C. Chang, I. W. Wu, J. J. Shann, and C. P.

Chung, “ETAHM: An energy-aware task allocation

algorithm for heterogeneous multiprocessor,”in Proc.

Design Autom. Conf., 2008, pp. 776–779.

[3]C. Ostler and K. S. Chatha, “An ILP formulation

for system-level application mapping on network

processor architectures,” in Proc. Conf.Design,

Autom., Test Eur., 2007, pp. 99–104.

[4] G. Varatkar and R. Marculescu,

“Communication-aware task scheduling and voltage

selection for total systems energy minimization,”in

Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,

2003, pp.510–517.

[5]H. C. Chi, C. M. Wu, and J. H. Lee, “Integrated

mapping and scheduling for circuit-switched

network-on-chip architectures,” in Proc. 4
th

 IEEE Int.

Symp. Electron. Design, Test, Appl. (DELTA), pp.

415–420.

[6] H. Yu, Y. Ha, and B. Veeravalli, Communication-

aware application mapping and scheduling for NoC-

based MPSoCs,” in Proc. IEEE Int.Symp. Circuits

Syst. (ISCAS), pp. 3232–3235.

[7]P. Ghosh, A. Sen, and A. Hall, “Energy efficient

application mapping to NoC processing elements

operating at multiple voltage levels,” in Proc.

ACM/IEEE Int. Symp. Netw. Chip, 2009, pp. 80–85.

[8] Ou He, Sheqin Dong, Wooyoung Jang, Jinian

Bian and David Z. Pan ,” UNISM: Unified

Scheduling and mapping for General Networks on

Chip"in Proc. IEEE Int conf. VLSI systems,2012.

[9] Ascia G, Catania V, Palesi M and Patti D (2008)

Implementation and analysis of a new selection

strategy for adaptive routing in network-on-chip.

IEEE Transac. Comp. 57(6), 809-820.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

