
Performance Comparison of Different

Multipliers using Booth Algorithm

Snehal R Deshmukh

Dept of E&TC

SSGMCOE

Shegaon, India (MS)

Dinkar L Bhombe

Dept of E&TC

SSGMCOE

Shegaon, India (MS)

Abstract— Low power consumption and smaller area are

some of the most important criteria for the fabrication of DSP

systems and high performance systems. Optimizing the speed

and area of the multiplier is a major design issue. However,

area and speed are usually conflicting constraints so that

improving speed results mostly in larger areas. In this paper

we try to determine the best solution to this problem by

comparing a few multipliers. The parallel multipliers like radix

2 and radix 4 modified booth multiplier does the computations

using lesser adders and lesser iterative steps. As a result of

which they occupy lessr space as compared to the serial

multiplier. This a very important criteria because in the

fabrication of chips and high performance system requires

components which are as small as possible.

Keyswords: multiplier, radix-R, booth algorithm.

I. INTRODUCTION

Multipliers play an important role in today‘s digital signal

processing and various other applications. With

advancements in technology, many researchers have

already tried and are still trying to design multipliers which

provides either greater speed, less power consumption,

regularity of layout and hence small area or even

combination of them in one multiplier which makes them

suitable for various increased speed, minimized power and

compact VLSI implementation. The usual multiplication

method is ―add and shift‖ algorithm. In parallel multipliers

number of partial products that needs to be added is the

main parameter that defines the performance of the

multiplier. In order to minimize the number of partial

products to be added, Booth algorithm and Modified Booth

algorithm is one of the most popular algorithms [1].

II. MULTIPLIERS

A Binary multiplier is an electronic hardware circuit that

used in digital electronics or a computer or other electronic

devices to perform rapid multiplication of two numbers in

binary representation. It is obtained using binary adders.

The rules for binary multiplication are as follows

1. If the multiplier digit is a 1, then the product will be same

as multiplicand and simply it will be copied down.

2. If the multiplier digit is a 0 the product is also 0.

The multiplication algorithm for an N bit multiplicand by N

bit multiplier is shown in fig1.

Y= Yn-1 Yn-2........................Y2 Y1 Y0 Multiplicand

X= Xn-1 Xn-2 X2 X1 X0 Multiplier

Figure 1. Multiplication algorithm for N*N bit

III. TYPES OF MULTIPLIER

 Basically there are three types of multipliers. They are as

follows.

a. Serial Multiplier

Serial multiplier generates partial products sequentially and

adds each newly generated product to previously

accumulated partial product.

Figure 2.Serial Multiplier

1957

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21104

Figure 3

Serial multiplier is used where area and power is important,

&delay can be tolerated.

Circuit uses one adder to add the

m *n partial products. The circuit is shown for m=n=4.

Multiplicand and Multiplier inputs have to be arranged in a

special manner synchronized with circuit

behavior as shown

in the fig

2.

The inputs could be presented at different rates

depending on the length of the multiplicand and the

multiplier.

Two clocks are used, one to clock the data & one

for the reset. A first order

approximation of the delay is 0

(m,n). With this circuit arrangement the delay is given as

D=[(m+1)n+1] tfa. As shown in fig

3 the individual PP is

formed. The addition of the PPs are performed as the

intermediate values of PPs,

addition are stored in the D

Flip

Flop, circulated and

then added together with the newly

formed PP

[2].

Disadvantage

This approach is not suitable for larger

values of M &

N.

b.

Parallel multiplier

Generates partial products in parallel, accumulates using a

fast multi-operand adder.

Serial/Parallel Multiplier

Figure 4.Serial/Parallel

Multiplier

One operand is fed to the circuit in parallel while the other

is

in serial. N partial products are formed for each cycle.

On

successive cycles, each cycle does the addition of one

column of the multiplication table of M*N PPs. The final

results are then stored in the output register after

completing

N+M cycles.

Disadvantage

Area required is N-1 for

M=N.

Figure

5.

Generation of individual PP and their addition

c.

Array Multiplier

Array of identical cells generating new partial products and

accumulating them simultaneously

is as shown in figue 6.

No separate circuits for generation and accumulation is

required. This

implementation reduces execution time but

increases hardware complexity.

Figure 6.

Array Multiplier

Array multiplier is well known due to its regular structure.

Multiplier is based on add and shift algorithm. Each and

every partial product is generated by the multiplication of

the multiplicand with one multiplier bit. The partial product

are shifted according to their bit orders and then added. The

addition can be performed with normal carry propagate

adder. N-1 adders are required where N is the multiplier

length. Although the method is simple as it can be seen from

this example, the addition is done serially as well as in

parallel.

Disadvantage

1958

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21104

Hardware complexity increases with N*M.

Now as both

multiplicand and multiplier may be positive or negative, 2‘s

complement number system is used to represent them. If the

multiplier operand is positive then essentially the same

technique can be used but care must be taken for sign bit

extension.

The reason for dealing with signed number

incorrectly is the absence of sign bit expansion in this

multiplier.

IV.

MULTIPLICATION ALGORITHM

A circuit that multiplies two unsigned n bit binary numbers,

uses a 2 dimensional array of identical subcircuits. Each of

which contains a full adder and an ―and‖ gate. For large

number of bits this approach may not be appropriate

because of the large number of gates needed. Another

approach is to use shift register in combination with an

adder to implement the traditional method of multiplication.

[1]

P=0;

For i=0 to n-1 do

If bi=1 then

 P=P+A;

 End if;

 Left shift A;

End for;

Figure 7. Data circuit of multiplier

V.

BOOTH MULTIPLIERS

This algorithm was invented by Andrew Donald Booth in

1950 while doing study on crystallography. Booth used

reception desk calculators that shifts faster than adding and

formed the algorithm to increasing the speed. Booth's

algorithm is important in the study of computer

architecture.[3] . It is a powerful algorithm for signed-

number multiplication, which considers

both positive

and

negative numbers uniformly [4]. Booth‗s Algorithm is a

smart move for multiplying signed numbers. It starts

with

the ability to both add and subtract.[5]

An algorithm that

uses two‗s complement notation of signed binary numbers

for multiplication.[6]

VI.

MODIFIED BOOTH‗S ALGORITHM

Modified Booth‗s is two times

faster than Booth‗s

algorithm. Modified Booth encoding algorithm is an

efficient way to reduce the number of partial

products

by grouping consecutive bits in one of

the two operands

to form the signed multiples.

The operand that is Booth

encoded is

called the multiplier and the other operand is

called the multiplicand. [7]

1.

Radix-2

Booth algorithm gives a procedure for multiplying binary

integers in signed –2‘s complement representation. [3]

Illustration of the booth algorithm with example:

Example, 2

ten
x (-

4)

ten

 0010

two
* 1100

two

Example, 2

ten
x (-

4)

ten

 0010

two
* 1100

two

Step 1: Making the Booth table [3]

I. From the above two numbers, pick the number with the

smallest difference between a series of consecutive

numbers, and make it a multiplier.

Therefore, multiplication of 2 x (–

4), where 2

ten
(0010

two
)

is the multiplicand and (–

4)

ten
(1100

two
) is the multiplier.

Table

1

Let X = 1100 (multiplier)

Let Y = 0010 (multiplicand)

2‘s complement of Y; –Y = 1110

Load the X value in the table.

Load 0 for X-1 value it should be the previous first least

significant bit of X .

Load 0 in U and V rows which will have the product of X

and Y at the end of operation.

Make four rows for each cycle; this is because we are

multiplying four bits numbers.

Step 2: Booth Algorithm

Booth algorithm requires examination of the multiplier bits,

and shifting of the partial product. Prior to the shifting, the

multiplicand may be added to partial product, subtracted

from the partial product, or left unchanged according to the

following rules:

1959

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21104

Table 2.

Look at the first least significant bits of the multiplier ―X‖,

and the previous least significant bits of the multiplier ―X -

1‖.

0 0 Shift only

1 1 Shift only.

0 1

Add Y to U, and shift

1 0 Subtract Y from U, and

shift or add (-Y) to U and shift.

Take U &

V together and shift arithmetic right shift which

preserves the sign bit of 2‘s complement number. Thus a

positive number remains positive, and a negative number

remains negative. Shift X circular right shift because this

will prevent us from using two registers for the X value.

Repeat the same steps until the four cycles are completed.

[8]

Table 3.

2.

Radix-4

Radix-4 Booth algorithm scans strings of 3 bits with the

algorithm given below Append a 0 to the right side of the

LSB of the multiplier consider the bits in groups of three, in

a way that each group overlaps with the previous group by

one bit. Grouping starts from the LSB and the first group

only uses 2 bits of the multiplier.

According to the value of

each vector, Partial Product will be 0, +Y, –Y, +2Y,–2Y.

The negative values of y are considered by taking the 2‗s

complement to the Booth recode the multiplier term, we

have to consider the bits in groups of three, in a way that

each group overlaps with the previous group by one bit.

Grouping starts

from the LSB and the first group only uses 2

bits of the multiplier. [7] Multiplier is equal to 0 1 0 1 1 10

then a 0 is placed to the right most bit which gives

0 1 0 1 1 10 0

the 3 digits are selected at a time with

overlapping left most bit as follows:

Figure 8

Grouping of three bits

Table 4.

Encoding of Radix-4 Booth Multiplier[9] [10] [11]

VII.

CONCLUSION

We found that the parallel multipliers are much faster

than

the serial

multiplier. In case of parallel multipliers, the total

area is much less than that of serial multipliers.

Hence the

power consumption is also less. This

speeds up the

calculation and makes the system faster.

While comparing

the radix 2 and the radix 4 booth multipliers we found that

radix 4

Consumes

lesser power than that of radix 2. This is

because it uses almost half number of

iteration and adders

when compared to radix 2. When all the multipliers were

compared we found that array multipliers are most

power

consuming and have the maximum area. This is because it

uses

a large number of

adders. As a result it slows down the

system because now the system has to do a lot of

calculation. Multipliers are one the most important

component of many systems. So we always need

to find a

better solution in case of multipliers. Our

multipliers should

1960

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21104

always consume

less power and cover less area. In the end

we determine that radix 4 modified booth

algorithm works

the best.

REFERENCES

[1]

Prasanna Raj P, Rao, Ravi, ―VLSI Design and Analysis of

Multipliers

For Low Power‖, Intelligent Information Hiding and

Multimedia Signal

Processing, Fifth International Conference, pp.: 1354-1357, Sept.

2009.

[2]

R.I.Hartle, K.K.Pardhi, Digit-Serial Computation,Kluwer
Academic,Boston,MA 1995

[3]

Jayashree Taralabenchi, Kavana Hegde, Soumya

Hegde,

―Implementation of Binary Multiplication using Booth and Systolic
Algorithm on FPGA using VHDL,‖ International Conference &

Workshop on Recent Trends in Technology, (TCET) 2012

Proceedings published in International Journal of Computer
Applications® (IJCA) .

[4]

Louis P. Rubinfield, ―A Proof of the Modified Booth's Algorithm for

Multiplication‖, Computers, IEEE Transactions,vol.24, pp.: 1014-
1015,

Oct. 1975

[5]

Depth:In More Booth‗s Algorithm,

staff.ustc.edu.cn/~han/CS152CD/Content/COD3e/inmoredepth/IMD3
-Booths-Algorithm.pdf -

-

[6]

Abenet Getahun, ―Booth Multiplication Algorithm,‖ Fall 2003 CSCI
401

[7] Sandeep Shrivastava*, Jaikaran Singh* and Mukesh Tiwari*,

―Implementation of Radix-2 Booth Multiplier and Comparison with
Radix-4 Encoder Booth Multiplier,‖ International Journal on

Emerging Technologies 2(1): 14-16(2011) ISSN : 0975-8364

[8]

Abenet Getahun, ―Booth Multiplication Algorithm,‖ Fall 2003 CSCI
401

[9]

Fabrizio Lamberti, Nikolaos Andrikos,Elisardo Antelo, Paolo

Montuschi, ―Speeding-up Booth Encoded Multipliers by Reducing
the Size of Partial Product Array," Internal

Report Dauin/Delen-

Politecnico

Di Torino and

University De Santiago De Compostela,

2009

[10]

S. Shafiulla Basha1, Syed. Jahangir Badashah2, ―Design and

Implementation

of Radix-4

Based High Speed

Multiplier

For

ALU‗S Using Minimal

Partial

Products,International Journal of
Advances in Engineering & Technology, July 2012. ©IJAET ISSN:

2231-1963

[11]

H. S. Krishnaprasad Puttam1, P. Sivadurga Rao2 & N. V. G. Prasad3,
― Implementation of Low Power and High Speed Multiplier-

Accumulator

Using SPST Adder and Verilog,International Journal of

Modern Engineering Research (IJMER) www.ijmer.com Vol. 2,
Issue. 5, Sep.-Oct. 2012 pp-3390-3397 ISSN: 2249-6645.

[12]

J.Umamageshwari M.Yeni Saranya M.tech, ―Asic implementation

of low power high radix booth

encoded multiplier using spst,

international journal of communications and engineering volume 05–

no.5, issue: 02 march2012 .

[13]

Stephen Brown Zvonko Vranesic, Fundamentals of Digital Logic
Degin with VHDL, Tata mcgraw-Hill

1961

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21104

