
Performance Evaluation of CPU Scheduling by Using Hybrid Approach

Jyotirmay Patel

Research Scholar, Bhagwant University,

Rajasthan, India.

A.K.Solanki

Professor, Department of Computer Sc. &

Engg, Bundelkhand University, India.

Abstract

Central Processing Unit (CPU) scheduling plays

crucial role by switching the CPU among various

processes. The problem of scheduling which

computer process run at what time on the central

processing unit (CPU) or the processor is explored.

Some CPU scheduling algorithms has been

elaborated and assessed on the basic CPU

scheduling objectives i.e; average waiting time,

turnaround time etc. These will form the base

parameters in making a decision for the suitability

of the given algorithm for a given objective. Many

algorithms have been developed for the CPU

scheduling of a modern multiprogramming

operating system. Our research work involves the

design and development of new CPU scheduling

algorithm (the Hybrid Scheduling Algorithm). This

work involves a software tool which produces a

comprehensive simulation of a number of CPU

scheduling algorithms. The tool’s results are in the

form of scheduling performance metrics.

Index terms: CPU scheduling, turnaround time,

Hybrid algorithms, waiting time.

1.0 Introduction

 Scheduling is a fundamental function of

an operating system. The main concept is to share

computer resources among a number of processes.

Almost each computer resource is scheduled before

use. The CPU is one of the primary computer

resources, so its scheduling is essential to an

operating system‟s design. CPU scheduling decides

which processes execute when there are multiple

run-able processes. CPU scheduling is important

because it plays an important role in effective

resource utilization and the overall performance of

the system. Scheduling is a branch of the topic of

Operational Research. In terms of scheduling, we

are considering how best to schedule multiple jobs

for processing by a single machine (CPU). It is a

relatively easy problem as compared to the problem

of scheduling multiple jobs for multiple machines.

Some idea of the difficulties associated with this

latter problem can be garnered by studying „job

shop‟ and „flow shop‟ scheduling problems.

2.0 Related Work

 There are many existing CPU scheduling

algorithm simulators. Some are more user-friendly

than others. Some are command-line driven whilst

others have a GUI (Graphical User Interface). Let

us briefly mention some of the simulators that are

available.

 Suranauwarat developed a simulator

which produces a simulation of various scheduling

algorithms for a single CPU. A user can run this

simulator with predefined scheduling parameters

and can also customize parameters for a set of

processes. The simulator works in two operating

modes. The first mode is „simulation mode‟ and the

second one is called „practice mode‟. In simulation

mode, the user can interact with the simulation

during process execution. A user can start and stop

the simulation whenever he or she likes. A user can

also monitor the simulation straight through from

the beginning until the end. By using the simulator

in simulation mode, the user could achieve a better

conceptual understanding of the CPU scheduling

algorithms. In practice mode, the user can predict

when and for how long each process is in a

particular state. The user is also able to predict why

a process is in that state through a very good

graphical user interface. The user is also provided

with the facility to check whether his or her answer

is correct or not at any time during practice. One

drawback of this research work is that it is only

limited to traditional scheduling policies.

 Another drawback is that it does not

provide any comparative results of different

scheduling policies. A scheduling simulator named

CSCI 152 CPU Scheduling Algorithm Simulator.

This simulator is a server-side program that allows

the user to interact with it via its web form. It

provides a very good graphical web-based

interface. It gives a comparison of the performance

of three scheduling algorithms (the FCFS, RR, and

SJF scheduling algorithms) for the same set of

processes. The limitations of this simulator are that

it only works for three scheduling algorithms and

that the comparative analysis only relates to

response times. The Tran’s Scheduling Algorithm

Simulator supports a number of scheduling

algorithms such as FCFS, RR, SJF, SRTF and

HRR. The time quantum is program coded and

taken as 1 for each set of processes. It lets the user

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

1www.ijert.org

create a personal set of processes. However, this

simulator uses a simple process model, that is, there

is only one CPU burst per process. The drawback

of this simulator is that the programmed time

quantum is one and this causes a number of context

switches. This simulator does not produce a

comparative performance analysis of the different

CPU. Each of the above simulators uses a Gantt

chart to animate which process is using the CPU at

what time. This approach is fine when the process

model is one CPU burst per process.

 The author decided to develop their own

scheduling simulator. A new program was

necessary as no system was available to offer the

desired functionality. The resultant program needed

to be an efficient, pictorial and user friendly

simulation to depict a multiprogramming

environment on a PC-based platform. There existed

a strong need for such a system which would

enable a PC-based user to analyze a

multiprogramming operating system environment,

for the purpose of either analyzing the design of a

CPU scheduling system or studying the science of

process scheduling. The system described here has

been designed with a view to fill the gap, offering a

modest simulation of a PC-based

multiprogramming environment. The simulator is

unique in a number of respects. It should be

emphasized that there is a valuable „spinoff‟ to this

part of our work in that the simulator can be used in

the classroom.

3. 0 Scheduling Objectives

 Many objectives must be considered in the

design of a scheduling discipline. In particular, a

scheduler should consider fairness, efficiency,

response time, turnaround time, throughput, etc.

3.1 Fairness

 Fairness is important under all

circumstances. A scheduler makes sure that each

process gets its fair share of the CPU and no

process can suffer indefinite postponement. Note

that giving equivalent or equal time is not fair.

Think of safety control and payroll at a nuclear

plant.

3.2 Policy Enforcement

 The scheduler has to make sure that

system's policy is enforced. For example, if the

local policy is safety then the safety control

processes must be able to run whenever they want

to, even if it means delay in payroll processes.

3.3 Efficiency

 Scheduler should keep the system (or in

particular CPU) busy cent percent of the time when

possible. If the CPU and all the Input/Output

devices can be kept running all the time, more work

gets done per second than if some components are

idle.

3.4 Response Time
 A scheduler should minimize the

response time for interactive user.

3.5 Turnaround Time

 A scheduler should minimize the time

batch users must wait for an output.

3.6 Throughput

 A scheduler should maximize the number

of jobs processed per unit time. A little thought will

show that some of these goals are contradictory. It

can be shown that any scheduling algorithm that

favours some class of jobs hurts another class of

jobs. The amount of CPU time available is finite,

after all.

4.0 Brief Overview of Scheduling

Algorithms

4.1 First-Come, First-Served (FCFS):
Processes are assigned the CPU in the order they

request it.

4.2 Round-Robin (RR): Each process is given a

limited amount of CPU time, called a time slice, to

execute. If the required CPU burst of the process is

less than or equal to the time slice, it releases the

CPU voluntarily. Otherwise, the scheduler will

preempt the running process after one time slice

and put it at the back of the ready queue, then

dispatch another process from the ready queue.

4.3 Shortest-Job-First (SJF) Non-

preemptive: When the CPU is available, it is

allocated to the process that has the smallest next

CPU burst. SJF Preemptive: When the CPU is

available, it is allocated to the process that has the

shortest remaining CPU burst. When a process

arrives at the ready queue, it may have a shorter

remaining CPU burst than the currently running

process. Accordingly, the scheduler will preempt

the currently running process.

4.4 Multilevel Feedback Queues (MLFQ):
 There are several ready queues, each with

different priority. When the CPU is available, the

scheduler selects a process from the highest-

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

2www.ijert.org

priority, non-empty ready queue. Within a queue, it

uses RR scheduling. The scheduler adjusts the

priority of a process dynamically, for example, to

reflect resource requirements (e.g., being blocked

awaiting an event) and the amount of resources

consumed by the process (e.g., CPU time).

Processes are moved between ready queues based

on changes in their priority. When a process other

than the currently running process attains a higher

priority, the scheduler will preempt the currently

running process and add it to the appropriate ready

queue.

4.5 Priority Scheduling (PS)
 The PS algorithm associates with each

process a priority and the CPU is allocated to the

process based on their priorities. Usually, lower

numbers are used to represent higher priorities. The

process with the highest priority is allocated first. If

there are multiple processes with same priority,

typically the FCFS is used to break tie.

4.6 Highest Response Ratio Next scheduling

algorithm (HRRN)
 Proposed by Brinch Hansen is a to avoid

limitations of SJF algorithm. It is similar to

Shortest Job Next (SJN) in which the priority of

each job is dependent on its estimated run time, and

also the amount of time it has spent waiting in the

ready queue.

5.0 Research Requirements

5.1 Hardware Requirements

 PC with PENTIUM II & above

 1 GB RAM and above

 120 GB HARD DISK

 STORING DEVICES

5.2 Software Requirements:
 WINDOWS XP and above

 .NET FRAMEWORK

5.2 Platform Used

Choice of platform

The selection of software involves two major

decisions namely

 a) Selection of Front - end

 b) Selection of Back- end

 C# language is the appropriate choice for the Front

-end. For the Back - end, we have used flat file

since this is readily available in all stations.

6.0 Methodology Used

6.1 Algorithm Evaluation

 How do we select a CPU-scheduling

algorithm for a particular system? There are many

scheduling algorithms, each with its own merits

and demerits based on different parameters. As a

result, selecting algorithms can be difficult. The

first problem is defining the criteria to be used in

selecting an algorithm. Criteria are often defined in

terms of CPU utilization, response time or

throughput. To select an algorithm, we must first

define the relative importance of these measures.

Our criteria may include several measures, such as:

 Maximize throughput such that turnaround

is (on average) linearly proportional to

total execution time.

 Once the selection criteria have been

defined, we are then going to evaluate the various

algorithms under consideration.

Basically following are the different evaluation

methods which are commonly used:

 Deterministic Modelling Evaluation

Method

 Queuing Models for Evaluation

 Simulation for evaluation

6.2 Simulation for evaluation

 In our work simulation is being used. This

is used to get a more accurate evaluation of

scheduling algorithms. Simulation involve

programming a model of the computer system.

Software data structures represent the major

components of the system. The simulator has a

variable representing a clock ; as this variable‟s

value is increased, the simulator modifies the

system state to reflect the activities of the devices,

the processes and the scheduler. As the simulation

executers, statistics that indicate algorithm

performance are gathered and printed. The

advantages of simulation are:

 It produces accurate results for its inputs.

 One of the primary advantages of

simulators is that they are able to provide user with

practical feedback when designing real world

systems. This allows the designer to determine the

correctness and efficiency of a design before the

system is actually constructed. Consequently, the

user may explore the merits of alternative designs

without actually physically building the systems.

By investigating the effects of specific design

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

3www.ijert.org

decisions during the design phase rather than the

construction phase, the overall cost of building the

system diminishes significantly.

Disadvantages

 The design, coding and debugging of the

simulator can be a major task.

6.3 Implementation Method

 Even a simulator is of limited accuracy.

The only completely accurate way to evaluate a

scheduling algorithm is to code it, put it in the

operating system, and see how it works. This

approach puts the actual algorithm in the real

system for evaluation under real operating

conditions.

Limitations

 This approach is very expensive. The

expense is incurred non only in coding the

algorithm and modifying the operating system to

support it as well as its required data structure, but

also in the reaction of the users to a constantly

changing operating system.

7.0 Proposed Scheduling Algorithm by

Using Hybrid Performance Parameters

Highest Response Round Ratio Next (HRRRN) =

Highest Response Ratio Next (HRNN) + Round

Robin (RR)

 Highest Response Ratio Next scheduling

algorithm proposed by Brinch Hansen is a to avoid

limitations of SJF algorithm. It is similar to

Shortest Job Next (SJN) in which the priority of

each job is dependent on its estimated run time, and

also the amount of time it has spent waiting in the

ready queue. Jobs which gain higher priority the

longer they wait, which prevents process starvation.

In fact, the jobs that have spent a long time in

waiting, can compete against those jobs estimated

to have short run time.

Response Time= (Waiting Time + Run Time) /(Run

Time).

 We calculate response ratio for all the

processes which are not executed

completely.

 The processes which have the highest

response ratio will be executed next.

 The processes are executed in ROUND

ROBIN manner.

 In our algorithm the quantum for our

algorithm is defined by system

automatically which is calculated by using

the formula.

 Quantum = (average burst time / 1.5)

 Thus processes are executed in ROUND

ROBIN manner but the next process to

execute is of course with highest response

ratio.

 In this way the process which have lower

burst time but already waited for long time

will get the chance to execute in the next

opportunity.

8.0 Market Potential and Competitive

Advantages

 Over time, the computational strength

available to users has rapidly increased through the

development of faster individual CPUs. As this has

occurred, there has continued to be a development

of computationally intensive applications that still

yearn for further extensions of computational

power to do their work more quickly. Faster and

inexpensive networking speeds, expansion of

computer sales, and rapid growth in popularity of

the Internet indicate that, in theory, there exists an

additional supply of reachable computing power for

such applications. It is therefore a possibility that

extra computational capabilities could come from

the collaboration of networked computers willing

to donate their resources, particularly their CPU

cycles. Under this scenario, there would be users

wishing to run their applications and also hosts

with extra CPU cycles to give away. Once these

respective sides are known, there needs to be a

means of matching members of these two parties.

One decision that needs to be made is whether or

not to assign a CPU to a particular task. This is

typically defined as a problem of resource

allocation.

 However, there is also often a need to

know when exactly a computation should be

performed. When this time element is a factor in

addition to the allocation of the resource, this is

termed to be a scheduling problem. As such,

scheduling is just a more specific instance of

resource allocation. Scheduling in distributed

computer systems has long been researched, both in

single and multiple CPU situations. Many proposed

solutions have revolved around the use of

heuristics, and others involve the use of

deterministic mathematical models. Particularly,

research in one branch has involved the use of

economic algorithms in what have been called

market-based scheduling strategies.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

4www.ijert.org

9.0 Screenshot/Output of the Proposed

Algorithm

Let us consider three examples/case:

Example1:-

Screenshot 1& 2

Example2:-

Screenshot 3& 4

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

5www.ijert.org

Example 3:-

Screenshot 5& 6

Bar Graphs of Average Turn Around Time of

Different Algorithms

Figure 1: Average Turn around Time for different

algorithms for example-1

 Figure 2: Average Turn around Time for different

algorithms for example-2

Figure 3: Average Turn around Time for different

algorithms for example-3

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

6www.ijert.org

Bar Graphs of Average Waiting Time Of

Different Algorithms

Figure 4: Average Turn around Time for different

algorithms for example-1

Figure 5: Average Turn around Time for different

algorithms for example-2

Figure 6: Average Turn around Time for different

algorithms for example-3

 Originally, such strategies were used in

single CPU set-ups but more recently, they have

been applied in networked, multi-CPU setups.

Within this branch even, researchers have taken

various approaches, each with their own goals and

assumptions.

10. Future Scope

The work presented in this report can be expanded

in many directions. Some of the directions are:

 Employing different performance criteria

for comparison such as the makespan. The

makespan is defined as maximum time

needed to complete the execution of all the

tasks arriving to the system .

 Applying scheduling technique on tasks

that have dependencies among each other.

 Studying performance in real time

applications where tasks have priorities

and deadline constraints.

 Applying scheduling technique on

distributed system. A distributed system is

defined as a collection of independent

computers that appear to the users of the

system as a single computer.

 It is recommended that any kind of

simulation for any CPU scheduling algorithm has

limited accuracy. The only way to evaluate a

scheduling algorithm to code it and has to put it in

the operating system, only then a proper working

capability of the algorithm can be measured in real

time systems. Hence in future the proposed

algorithm will be implemented and can be tested in

open source (LINUX).

11. Conclusion

 Results have shown that the execution of

FCFS produces smaller computational overheads

because of its simplicity, but it gives poor

performance, lower throughput and longer Average

Waiting Times. SJF is an optimal scheduling

discipline in terms of minimizing the average

waiting time of a given workload. However, the

preferred treatment of short processes in SJF tends

to result in increased waiting times for long

processes in comparison with FCFS. Thus, there is

a possibility that long processes may get stuck in

the ready queue because of the continuous arrival

of shorter processes in the queue. RR achieves fair

sharing of the CPU. Short processes execute within

a single time quantum and thus exhibit good

response time. It tends to subject long processes to

relatively longer turn around and waiting times. In

the case of priority-based scheduling there is a

possibility that low priority processes will, in

effect, be locked out by the higher priority ones. In

other words, completion of a process within a finite

time of its creation cannot be guaranteed with this

scheduling policy. In RR there is fairness across the

jobs, i.e. the jobs get equal time. However, upon

completion of the time quantum, the PCB is linked

to the tail of the ready queue and waits in the ready

queue until it again gets the time quantum (after a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

7www.ijert.org

complete circle). The processes with very small

burst lengths also wait for a long time in the ready

queue. HRRN provides optimized results for

turnaround time, response time and waiting time.

There is no starvation for any jobs when using the

HRRRN. The proposed algorithms HRRN is better

in average turnaround time (as shown if figure 1, 2,

3). HRRN is also better in average waiting time (as

shown in figure 4, 5, and 6).

11. References

Books

[1] A. Silberschatz, P. B. Galvin, G. Gagne,

“Operating System Concepts”, 7th ed., John

Wiley & Sons, 2005.

[2] Milan Milenkovic, “Operating System

Concepts and Design”, Second Edition

McGraw Hill International, 1992.

[3] Leland L. Beck, “System Software”, 3rd Ed.,

Addison Wesley, 1997

[4] Milenkovic, M.(1992), Operating System

Concepts and Design, McGraw Hill,

International Edition.

[5] Silberschatz,A. and P.B. Galvin(1997)

Operating System concepts, Fifth Edition, John

Wiley & Sons, Inc.,

[6] Stallings,W., (1996) Computer Organization

and Architecture; Designing for Performance,

Fourth Edition, Prentice Hall

[7] Andrew S. Tanenbaum , and Albert S.

Woodfhull(2005) , Operating Systems Design

and Implementation,Second Edition.

Journals/Proceedings /Reports

[1] Patel J. & Solanki A.K. ,“CPU Scheduling: A

Comparative Study” in the proceedings of the

5TH National Conference on Computing for

Nation Development(INDIACom-2011)

(supported by AICTE, CSIR) organized by

Bharati Vidyapeeth‟s Institute of Computer

Applications and Management, New Delhi,

(11th -12th March 2011),587-589, ISSN 0973-

7529, ISBN 978-93-80544-00-7.

[2] C. Acosta et al., “The MPsim Simulation

Tool,” Technical Report UPC-DAC-RR-CAP-

2009-15, Computer Architecture Dept., UPC,

2009.

[3] R.L. Arndt et al., “Method and Apparatus for

Frequency Independent Processor Utilization

Recording Register in a Simultaneously Multi-

Threaded Processor,” US Patent 7,870,406, to

IBM Corp., Patent and Trademark Office,

2011.

[4] F.J. Cazorla et al., “Predictable Performance in

SMT Processors: Synergy between the OS and

SMTs,” IEEE Trans. Computers, vol. 55, no. 7,

pp. 785-799, July 2006.

[5] S. Eyerman and L. Eeckhout, “Per-Thread

Cycle Accounting in SMT Processors,” Proc.

14th Int‟l Conf. Architectural Support for

Programming Languages and Operating

Systems (ASPLOS), pp. 133-144, 2009.

[6] S. Eyerman et al., “A Performance Counter

Architecture for Computing Accurate CPI

Components,” Proc. 12th Int‟l Conf.

Architectural Support for Programming

Languages and Operating Systems (ASPLOS),

pp. 175-184, 2006.

[7] A. Fedorova, M. Seltzer, and M. Smith,

“Improving Performance Isolation on Chip

Multiprocessors via an Operating System

Scheduler,” Proc. 16th Int‟l Conf. Parallel

Architecture and Compilation Techniques

(PACT), pp. 25-38, 2007.

[8] M.S. Floyd et al., “System Power Management

Support in the IBM POWER6

Microprocessor,” IBM J. Research and

Development, vol. 51, no. 6, pp. 733-746,

2007.

[9] Standard Performance Evaluation Corporation,

“SPEC CPU 2000 Benchmark Suite,”

http://www.spec.org, 2011.

Online References

[1] http://www.capricorn.org/~akira/cgi-

bin/scheduler/index.html.

[2] http://www.utdallas.edu/~ilyen/animation/cpu/

program/prog.html

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

8www.ijert.org

