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Abstract:A standard queueing models gives a 

survey of main results for both single server 

M/G/1 type and multiserver M/M/C type 

retrial queues and discuss similarities and 

differences between the retrial queues and 

their standard counterparts.Queueing theory 

is usually assumed that a customer who can't 

get service immediately, after arrival either 

joins the waiting line or leaves the system 

forever, Retrial Queues, that is, queues with 

returning customers, repeated orders, etc. 

have been introduced to solve this 

deficiency.Most queueing systems with 

retrials are motivated by computer and 

telecommunication applications where a 

repeated attempt appears due to blocking in a 

system with limited service capacity. 

Keywords: Queueing Theory Models, Retrial 

Queues,  

 

1.INTRODUCTION : 

Operations Research is a scientific 

approach to problems solving for executive  

management. In 1951, the first book on the 

subject methods of operation research by Morse 

and Kimball was published. Operation Research 

uses the method of science to understand and 

explain the phenomena of operating systems. In 

Operation Research, we are going to discuss 

about the Queueing systems.Queue is a common 

word that means a waiting line or the act of 

joining a line. It is formed when the number of 

customers arriving is greater than the number of 

customers being served during a period of time. 

Queueing theory is usually assumed that a 

customer who can't get service immediately after 

arrival either joins the waiting line or leaves the 

system forever. Retrial queues that is, queues 

with returning customers, repeated orders, etc. 

have been introduced to solve this 

deficiency.Retrial queueing systems are 

characterized by the feature that arriving calls 

who find the server busy join the retrial group for 

their requests in random order and at random 

intervals. Retrial queues have been widely used 

to model many problems in telephone switching 

systems, computer and communication systems. I 

consider a trial queueing systems with batch 

arrivals in which the server is subject to 

controllable interruptions and random 

interruptions. The main characteristic of retrial 

queues is that if an arriving customer finds all 

servers busy, he leaves the service area, but after 

some random time repeats his demand.  

 

2. STANDARD AND RETRIAL QUEUEING 

SYSTEMS 

 A standard queueing models gives a 

survey of main results for both single server 

M/G/1 type and multiserver M/M/C type retrial 

queues and discuss similarities and differences 

between the retrial queues and their standard 

counterparts. 

 

 Queueing theory is usually assumed 

that a customer who can't get service 

immediately, after arrival either joins the waiting 

line or leaves the system forever, Retrial Queues, 

that is, queues with returning customers, 

repeated orders, etc. have been introduced to 

solve this deficiency. 

 

In the most general form these networks contain 

two nodes : 

 The main node where blocking is 

possible and a delay node for repeated 

trials. 

 To describe specific retrial queues with 

a certain structure and queueing 

discipline more nodes have to be 

introduced. 

 

 The single server has intrinsic interest 

for the stochastic modeling of communication 

protocols arising from local area networks.The 

classical retrial policy assumes that the 

probability of a repeated attempt during the 

interval (t, t+dt), given that j calls are in orbit at 

timetis j  dt + o(dt).Most queueing systems 

with retrials are motivated by computer and 

telecommunication applications where a 

repeated attempt appears due to blocking in a 

system with limited service capacity.It is clear 

that there exists a rich variety of different single 

server and multiserver queueing systems with 

retrials. In many other cases an extended 

investigation based on the methods developed 

for the M/M/C and M/G/1 retrial queue may be 

carried out for structural complex retrial models.  

 

 

2.1The M1, M2/G/1/K Retrial Queueing 

Systems with priority : 
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 Consider an M1, M2/G/1/K retrial 

queueing system with a finite priority queue for 

type I calls and infinite retrial group for type II 

calls where blocked type I calls may join the 

retrial group. 

 

 Retrial queueing systems are 

characterized by the feature that arriving calls 

who find the server busy join the retrial group 

for their requests in random order and at random 

intervals. 

 

 Retrial queues have been widely used to 

model many problems in telephone switching 

systems, computer and communication systems. 

 

 Retrial queues with two types of calls 

are the typical model of telephone exchange with 

subscriber line modules and base station in a 

mobile cellular radio communication system. 

 

 Consider M1, M2/G/1/K retrial queue 

with two type calls where blocked type I calls 

may allow to join the retrial group. Type I calls 

and type II calls arrive independently of each 

other according to poisson processes with rate  

1 and 2 respectively. 

 An arriving type I call joins the priority 

queue if there is a waiting position, but if there 

are no waiting positions in the priority queue, he 

enters the retrial group with probability α or 

leaves the system with probability 1 - α . If an 

arriving type II call finds the server busy, then he 

joins the retrial group in order to seek service 

again after random random amount of time. A 

call in the retrial group always returns to the 

retrial group when he find the server busy on his 

retrial attempt to the server. 

The retrial time (the time interval 

between two consecutive attempts made by a 

call in the retrial group) is exponentially 

distributed with mean 1 and is independent of 

all previous retrial times and all the other 

stochastic process in the system. 

     The service times of calls are independent 

and identically distributed with distribution 

function B(x) and mean 1/.  
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2.2Applications of Ergodicity 
 For an irreducible and aperiodic Markov 

chain {Zn} with state space S, a sufficient 

condition for ergodicity is the existence of 

a non-negative function f(s), s S and ε > 

0 such that the mean  

 

 xs=E    s Zn  | )f(Z - )f(Z
n1+n

 

 for all s S and xs< - for all s S  

except perhaps a finite number. 

 Let {Zn} be a irreducible Markov chain 

with countable state space S. If there 

exists a non-constant function f : S  

[0, )    

 such that 

 

 a)    E  i Zn  | )f(Z - )f(Z
n1+n

 > 0    

for all i S 

 b)   there is an M > 0 such that 

       E  i = Z || )f(Z - )f(Z|
nn1+n

< 

M   for all i S 

       then {Zn} is not ergodic. 

 

 The imbedded Markov chain {Zn = (Xn, 

Yn) | n = 1,2,.....} is ergodic and  

h(1) = 
-K

0
a  det ( Â ) < 1. 

 

2.3. Queue size distribution in steady state 

 If the distribution of service time is not 

exponential, then the stochastic process {(Nq(t), 

Nr(t) ; t > 0} is not Markov process. Let X(t) and 

I(t) be a random variables. Where X(t) is the 

elapsed service time of the call in service at time 

t and I(t) is the server state, I(t) = 0 if the server 

is idle at time t and I(t) = 1 otherwise then 

 {(Nq(t), Nr(t), X(t), I(t) ; t > 0} 

 

is Markov process with state space 

 {(i, j, x, ℓ) ;i = 0, 1, ..... K,  j = 0, 1, 

.....,0 < x <, ℓ= 0,1} 

 

define the probabilities, 

 qj(t) = P {Nq(t) = 0, Nr(t) = j, I(t) = 0} 

Pi,j(t, x) dx = P {Nq(t) =i, Nr(t) = j, x < X(t) < x + 

dx, I(t) = 1} 

  i = 0, 1, ..... K 

 

2.4. NUMERICAL EXAMPLES: 

            Assume that the mean service time is 1 

and the retrial rate =0.3. the service time 

distribution was taken as hyper-expomential 

with parameter(1/3,2/3).The loss probability of 

type  calls for two cases (α=0 and α=0.3) verses 

the capacity K and arrive rate of type  calls 

under a fixed λ2=0.1. the loss probability 

decreases as the capacity K increases and the 

arrival rate of type calls decreases.The loss 

probability of type  calls as functions of the 

arrival rate λ2 under the parameters:  K=8  and 

λ1=0.4λ2 . the loss probability increases as the 

arrival rate of type  calls increases, and 
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decreases as the probability α of entering group 

increases.  

 The mean waiting time of type  calls in 

priority queue as functions of the arrival rate  λ1  

under the parameters:  K=8 and λ2 =0.2λ1. the 

mean waiting time of type  calls increases as the 

arrival rate of type  calls increases,but has no a 

great difference according  to the probability α.     

 
Figure  Loss probability of type I calls H exp 

(1/3, 2/3) service time, 

 v = 0.3 ,2=0.1 

 
Figure  Loss probability of type I calls H exp 

(1) service time, K = 8 , 1=0.42 

 

3. CELLULAR MOBILE NETWORKS 

USING MOSEL 

 The retrial queues investigates a 

multiserver infinite - source retrial queueing 

system for the performance modeling of cellular 

mobile communication networks. 

 

 The objective is to demonstrate how 

performance tool MOSEL (Modeling 

specification and Evaluation Language) can be 

efficiently used in the modeling of cell based 

networks. In our analysis the blocked and 

dropped users are treated separately, i.e. redial 

with different probabilities and different rates, 

with reducing the state space by maximizing the 

number of redialing customers with 

appropriately large values. 

 

 Queueing network models are widely 

used in the traffic modeling of cellular mobile 

systems, such as GSM (Global System for 

Mobile communications). GPRS (General 

Packet Radio Service) and UMTS (Universal 

Mobile Tele Communication System). 

 

 Tran-Gia and Mandjes described a model 

which demonstrated in the context of cellular 

systems that the retrial phenomenon is not 

neglectable because of the significant negative 

influence on the system performance measures 

into consideration in their cellular mobile 

network model. 

 

 The main characteristic of retrial queues 

is that if an arriving customer finds all servers 

busy, he leaves the service area, but after some 

random time repeats his demand. 

         Cellular systems with customer redials are 

treated in [MARSAN ET AL,2001] , where an 

approximate  technique is proposed for finite and  

infinite Markovian models. The authors reduce 

the state space of the continuous time Markov 

chain model by registering only that if there are 

retrying blocked and dropped customers in the 

system or not . 

 In the works [ONUR ET AL,2002; ALFA 

AND LI ,2002], various infinite –source 

queueing models are studied.In [ONUR ET 

AL,2002], not only customer redials,but also 

automatic retrials by the cellular system are 

taken  into consideration , but the dropped 

customers redials handled as generating new 

fresh call attempts in the new cell and incase of 

blocking the cell is treated as a blocked  fresh 

call. It is probably less realistic , because an 

interrupted customer may try to restablish the 

call with higer probability in shorter time 

intervals. In [ALFA AND LI ,2002], the blocked 

new and dropped handoff calls are not 

distinguished, but the involved random variables 

have general phase type distribution. 

 The blocked and dropped users are treated 

separately , that is they redial with different 

probabilities  and different  rates , like in 

[MARSON ET AL,2001], but reduce the state 

space by maximizing the number of redialing 

customers with appropriately large values (i.e. 

when the ignored probability mass can be 

neglected).  

 In [TRAN-GIA AND MANDJES 

,1997;ONUR ET AL,2002; ALFA AND 

LI,2002], these two types of redialing customers 

were not distinguished. Furthermore , in our 

model we allow not only the active but also both 

types of redialing cutomers  to depart to other 

cells , the current stydy can be considered as an 

initial step towards the analysis of more complex 

third generation systems focusing on the quality 

of service issues.             

 In cellular networks, the most important 

quality of service measures are the following : 
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 The fresh call blocking probability (Pf), 

i.e. the fraction of new all requests in 

the cell that can't be served due to the 

lack of free channels. 

 The handoff call dropping probability 

(Ph), that is the average fraction of 

incoming handoff calls that are 

terminated because of the lack of free 

channels.  

 The grade of service (GOS) is generally 

defined as the combination of these two 

probabilities, for example as  

 GOS =
11

p10p
hf


 

 Because of the fact , that handoff call 

dropping probability has more significant impact 

on the  grade of service, It is important to reduce 

it even at the expense of prioritize handoff calls , 

several channel allocation schemes are utilized. 

One of the most popular policies is the guard 

channel scheme] 

 [DHARMARAJA ET AL 

,2003;TRAN-GIA AND MANDJES,1997; 

MARSAN ET AL ,2002;ALFA AND LI,2002], 

where some channels are reserved  for the calls 

that move across the cell boundary , that is if 

there are g  reserved channels in the cell, a new 

fresh call is only accepted if there are  at least  

g+1 available channels . A handoff call is 

rejected only if all the channels in the cell are 

occupied.   

 

3.1. Model Description : 
 The model description is translated step 

by step into the description language of MOSEL, 

and it is automatically converted into the other 

tool - specific system descriptions and analyzed 

by the appropriate tools. 

In cellular network model treat only one 

cell.the cells are considered identical and to have 

the same traffic  parameters , so it is enough to 

investigate one cell, and the handoff effect from 

the adjacent cells to this cell and from this cell to 

adjacent  cells is described by handoff  

processes. Instead of the frequently used  single 

arrival  stream model distinquish the fresh call 

and handoff call arrivals . if investigate complex 

call handelling policies. 

             The number of channels in the cell is C, 

and the number of guard channels  is g,  where 

gC.   

 

 The arrival process of the fresh calls is 

a poisson process with rate f. If the number of 

the active users is smaller than c - g, the 

incoming call starts to be served. It is blocked 

and it starts generation of a poisson flow of 

repeated calls (redialing) with probability 1 or 

leaves the system with probability 1 - 1.  

A blocked customer repeats his call 

after a random time which is exponentially 

distributed with mean 1/bl , and it can be served 

or blocked again like the fresh calls. The call 

duration time is exponentially distributed with 

mean 1/μ. 

 The arrival process of the handoff calls 

is a poisson process with rate h. If the number 

of the active users is smaller than C, the 

incoming call starts to be served. It is dropped 

and it starts generation of a poisson flow of 

repeated calls with probability  2 or leaves the 

system with probability 1 - 2 . 

         A dropped customer  tries to repeat his call 

after a random time which is exponentially 

distributed  with mean 1/vdr. if it is blocked it 

continues  redialing with probability 2. the call 

duration time for handoff calls is also 

exponentially distributed with mean 1/ . 

 

 The active, redialing blocked and 

dropped customers leave the cell after an 

exponentially distributed time with mean 1/a, 

1/b, 1/d respectively.  

 

 The number of redialing users because 

of blocking and dropping is limited to an 

appropriately large values of Nbl and Ndr to make 

the state space finite in orders to the tools in the 

steady state.     

 

3.2.The underlying Markov Chain 

The stochastic process X(t) = (C(t); N(t); M(t) 

where  

C(t) is the number of active customers,  

N(t) is the number of blocked new customers 

M(t) is the number of dropped customers. 

 

the exponentiality of the involved random 

variables the describing process is a Markov 

chain with a finite state space S = {0, .........C} x 

{0,..............Nbl} x  {0,..............Ndr} 

Since its state space is finite, the process is 

ergodic for all values of the rate arrival of 

handoff calls. 

 

Define the stationary probabilities : 

 

P (i ; j ; k)  = Lim  P (C(t) = i, N(t) = j, M (t) = k) 

i = 0, ..............C, j = 0, ...........Nbl,      k = 0, .Ndr. 

 

Because of the fact the state space of (x 

(t), t > 0) with sufficiently large  Nbl and  Ndr is 

very large and the functioning of the system is 

complex . it is very difficult  to calculate the 

steady state probabilities. To simply these 

calculations and to make our study more usable 

in practice, we use the software tool MOSEL to 

formulate  the model and to calculate these 

probabilities and the system measures. MOSEL 
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has already been used ,and it has proved its 

applicability for the modeling of serval computer 

and communication system. The MOSEL 

description can be translated automatically into 

the language of various performance tools and 

then analyzed by the appropriate  tools  (at 

present SPNP-stochastic perti net package and 

time NET are supported and suitable for this 

model ) to get these measures. 

 

4. MODEL CONVERSION TO MOSEL: 

 

We discuss the translation of the model 

into the language of the MOSEL tool. The full 

MOSEL program can be assembled from the 

following program parts among  the  model 

description  in the order of the  part numbers. 

 

The number of  channels  in the cell  is 

C, which is denoted  as N_CHS in the program, 

and the number of guard channels is g , which is 

denoted as N_G_CHS. 

 

In the first part of the MOSEL 

description , we have to define some other 

system parameters  too, these will be introduced 

at the appropriate program parts. 

 

CONST  N_CHS := 15; 

CONST  N_ G_ CHS := 1; 

CONST  MAX_BL_ USERS :=25; 

CONST  MAX_DR_USERS :=25; 

CONST call_arrive :=1.5; 

CONST call_retry_bl :=5; 

CONST call_retry_dr :=6; 

CONST call_duration :=0.05; 

CONST handoff_ arrive :=0.4; 

CONST handoff_dep_ac :=1/3; 

CONST handoff_dep_bl :=1/3; 

CONST handoff_dep_dr :=1/3; 

CONST p_retry_ bl :=0.7; 

CONST p_retry_dr :=0.9;  

 

The state of the system is described by 

the number of active users , the number of 

blocked users who redial after some random 

time, and the number of users whose calls are 

dropped at handoff and who are redialing.  

 

It can be wrote down in MOSEL as 

defining the nides of the system . the number of 

active users is denoted by active _users. Its 

maximum value is the number of channels , and 

it is 0 at the starting time.the number of redialing 

users because of blocking and dropping is 

limited  to MAX_BL_       

 

              USERS and MAX_DR_USERS, which 

are defined in (1). 

 

NODE active_users [N_CHS] : =0; 

NODE redialing _users_br 

[MAX_BL_USERS]: =0; 

NODE redialing _users_dr 

[MAX_DR_USERS]: =0;  

 

The arrival process of the fresh calls is 

a poisson process with rate λf , that is denoted in 

the program as call_arrive , that is defined in (1) 

like the other parameters. If the number of active 

users is smaller than  c-g, the incoming call starts 

to be served . otherswise it is blocked and it 

starts generation of a poisson flow of repeated 

calls (redialing) with probability 1  (denoted by 

p_retry_ bl )  or leaves the system with 

probability 1-1. 

 

IF active_users_N_CHS_N_G_CHS 

FROM EXTERN TO active_users 

RATE call_arrive ; 

IF active_users> - N _CHS_ N_G_CHS 

FROM EXTERN RATE  call_arrive THEN  {  

TO  redialing _ users_ bl  

WEIGHT  p_retry_bl ;  

TO EXTERN WEIGHT 1- P_retry_bl ; 

}    

The blocked user redials can be handled 

similar to the fresh call arrivals. If a user is 

blocked , he repeats his call after a random time 

which is   exponentially distributed with mean 

1/br.bris denoted as call_retry_bl. 

It can be served or blocked as the 

fresh calls in the previous part . 

 

IF active_users< N_CHS_N_G_CHS 

FROM  redialing_users_bl  TO active_users 

RATE   call_retry_bl*  redialing _users_bl ; 

If active_users>= N_CHS_N_G_CHS 

FROM  redialing_users_bl 

RATE call_retry_bl*  redialing _users_bl 

THEN  { 

TO  redialing _users_bl 

                               WEIGHT P_retry_bl ; 

TO EXTERN WEIGHT 1- P_retry_bl ; 

} 

The call duration time is exponentially 

distributed with mean 1/ .  is denoted as 

call_duration . 

 

FROM active_users TO EXTERN  

RATE call_duration * active_users ; 

 

             The arrival process of the handoff calls 

is a poisson with rate λh. λh is denoted in the 

program as handoff_arrive. If the number of 

active users is smaller than C, the incoming call 

starts to be served . otherwise it is dropped and it 

starts generation of a poisson flow of repeated 

calls with probability 2 (denoted by p_retry_dr)  

or leaves the system with probability 1-2 .    
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IF active_users< N_CHS 

FROM EXTERN TO active_users 

RATE handoff_arrive ; 

IF active_users = N_CHS 

FROM EXTERN RATE  handoff_arrive 

THEN  { 

TO redialing _ users_dr 

WEIGHT P_retry_dr ; 

TO EXTERN WEIGHT 1-P_retry_dr ; 

}  

 

The dropped user redials can be 

handled like the blocked fresh call redials. The 

customer repeats his call after a random time 

which is exponentially distributed with 1/dr. dr 

is denoted as call_retry_ dr. If it is blocked it 

continues retrying with probability 2  

(p_retry_dr). 

 

IF active_users< N_CHS-N_G_CHS 

FROM  redialing_users_dr  TO active_users 

RATE call_retry_dr* redialing_users_dr ; 

IF active_users>= N_CHS-N_G_CHS 

FROM redialing_users_dr 

RATE call_retry_dr* redialing_users_dr 

THEN  { 

TO redialing_users_dr 

WEIGHT  p_retry_dr ;  

TO EXTERN WEIGHT 1-p_retry_dr ; 

}  

 

The active and redialing customers 

leave the cell after an exponentially distributed 

time with parameters a,b ,and d . denoted as 

handoff_dep_ac ,handoff_dep_bl and 

handoff_dep_dr ,  respectively.  

FROM active_users TO EXTERN  

RATE handoff-dep-ac* active_users ; 

FROM redialing_users_bl TO EXTERN  

FROM handoff_dep_bl* redialing_users_bl;  

FROM redialing_users_ dr TO EXTERN 

RATE handoff_dep-dr* redialing_ users_dr ; 

 

After describing the system functioning 

, we can define the system measures we would 

like to calculate, such as the mean number of 

active and redialing customers because of 

blocking and handoff failure, the fresh call 

blocking and handoff call dropping probabilities 

.  

 

PRINT mean_active_users_bl=  

MEAN (active-users) ; 

PRINT mn_redialing_users_bl= 

MEAN (redialind_users_bl) ; 

PRINT mn_redialing_users-dr= 

MEAN (redialing_users_dr) ; 

PRINT call_blocking_prob= 

PROB (active_users>= N_CHS-N_G_CHS) ; 

PRINT handoff_call_dropping_prob= 

PROB (active_users>= N_CHS)  

 

Finally, We define two pictures that 

show the changing of the blocking and dropping 

probabilities depending on the number of 

channels. If we use N_CHS as parameter, we 

have to define it in (1) as follows: 

 

PARAMETER N_CHS:= 6,7,8,9,10 ;  

PICTURE “Blocking probability vs  N_CHS “ 

PARAMETER N_CHS 

CURVE call_blocking_prob;  

PICTURE “Dropping probability vs  N_CHS “  

PARAMETER N_CHS 

CURVE handoff_call_dropping_prob ; 

 

2.5 Numerical Examples 

 Consider a sample numerical results to 

illustrate graphically the sysem measures depend 

on variable system parameters. 

 The fresh call blocking and hand-off 

call dropping probabilities are displayed versus 

the number of channels with and without user 

redials. The system parameters belonging to the 

curves without redials are the same as in 

[Dharmaraja et al,2003]. Where a similar model 

is studied without customer redials  

(g = 3,  f  = 05,    = 0.05,  a  = b  = d  = 1/3  

h  = 0.4, bl=dr=106, 1,= 2=10-6 

and for other curve  

 

vbl=vdr=6,  1=2=0.9  

 

 Further more the maximum number of 

redialing customers is 25 respectively). These 

results are in agreement with theirs in the 

exponential case. 

 

 The fresh call blocking and handoff call 

dropping probabilities are displayed versus the 

mean handoff call arrival rate. The system 

parameters are the same as in figure,except of 

that C=8,and λhis on the x axis .like in 

[Dharmaraja et al,2003]. 

 

 The negative influence of the retrial 

phenomenon is shown in each figures, and we 

can see that it increases as the handoff call 

arrival rate increases. 

 The fresh call blocking probability, the 

handoff call dropping probability and the grade 

of service as the mean fresh call arrival rate 

increases. The following system parameters were 

used: 

 

            C=7, g=1, =0.05, a=b=d=1/3,  

 

λh=0.4, vbl=6, vdr=7, 1=0.8, 2=0.9 
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 The fresh call blocking and handoff 

dropping probabilities and the GoS are displayed 

versus the number of guard channels. We can 

see that a very few number of guard channels 

can improve the grade of service significantly , 

but then only very small handoff dropping 

advance can be achieved on the great expense of 

fresh call blocking probability, and the GoS 

declines. The system parameters are the 

following: 

 

                            C=15,  λf=3,  =0.05,   

a=b=d=1/3,  

 

λh=0.4,  vbl=6, vdr=7,  1=0.8  and 2= 0.9   

 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

5. NUMERIAL ILLUSTRATIONS : 

 The effect of parameters (retrial, 

vacation, and breakdowns) on system 

performances. In the remainder of the basic data 

of [ ARTALEJO , 1997] : 

 = 1,   g1= 1,   g1 = 0,   h1= 0.25,   h2  = 1  

maintenance parameters W1 = 0.1,  W2 = 1.  

The effect of failure rate on the retrial parameter 

 . the function () for different retrial  PDF 

with mean  r1 =1. 

 

(i) Hyperexponential  (H2). 

(ii) Exponential  (EXP) :  

(iii) Determinist  (D) :  

We  observe that parameter    increases in the 

case (i) and decreases in the case  

(iii) as the failure rate increases. (ii) the 

parameter  is independent of the failure rate. 

This can be easily understood from exponential 

nature of retrial time. 

The expontation E(M) versus failure 

rate  and ratio 2 /1. E(M) decreases when  

and  2/1 increases and increases otherwise.  
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Effect of breakdowns and vacations on Mean 

system size 

 

The effect of failure rate on the optimal 

threshold for different values of CS/Ch=10,50 

and 100. we have considered a 2-Erlangian 

retrial distribution (E2) with  r1=0.5;  the optimal 

threshold increases with the ratio CS/Ch . 

 

Lower and upper bounds on the optimal 

value N* for different parametric (Exp,D,H2) 

and non parametric  (NBCE) retrial PDF which 

typify some PDF observed in Practice. For each 

of these choices we varied the ratio CS/Ch from 

0.5 to 105 . 

 Behaviour of the bounds as a function 

of the mean retrial time for different values of   

CS/Ch =10,1,0.1. For a given value of this ratio , 

the dot-dashed curve corresponds to a lower 

bound and the continous curve to an upper 

bound. The lowest pair of curve  corresponds  to 

the case CS/Ch=0.1.  We see that lower bound 

tends to be more closed to the upper bound curve 

for small values of r1 and CS/Ch.  

 

 
 Finally, the joint effect of retails and 

breakdowns upon the optimal value N* and its 

corresponding minimum expected cost. The 

optimal value N* increases and the cost 

decreases when both  and  increases.      

 

6. QUEUEING SYSTEM  

 

ON optimal and equilibrium retrial rates 

in a single-server queueing model. Calls arrive 

according to a poisson process with average rate 

per unit time. Compare the two rates and suggest 

ways in order to equate the equilibrium rate with 

the socially optimal one. The rate minimizes the 

total expected cost by a customer. 

 

A retrial rate defines a Nash 

equilibrium it is used by all customers then an 

individual minimizes its own expected cost by 

using the rate itself. The rest of the costs as 

structural costs that can't be changed by the 

decision maker, that excluding the part of the 

costs, and waiting costs, retrial costs are 

coincide. The Nash equilibrium rate coincides 

with the social optimal rate. This resembles the 

economic order quantity inventory control 

model, where holding costs and the setup costs 

coincide under the optimal ordering policy. 

 

4.2 THE EQUILIBRIUM RETRIAL 

RATE : 

 The social optimal and the equilibrium 

rates depend on the ratio w/c and not an the 

individual cost parameters. 

 

 Let   =  be the system's utilization 

factor and denote 2 + 2 by S2. We denote  by 
1/, where  is the service rate,  be the poisson 

process with average rate per unit time. 

 The server is busy, the call is repeated 

later, between retrials, the call is said to be orbit. 

The times between retrials are independent and 

exponentially distributed with an expected value 

of 1/ ( is the retrial rate). Each retrial costs C 

and the cost of waiting is W per unit of time. 

 

CONCLUSION 

A Multiserver infinite – source retrial 

queueing system is studied for the performance 

modeling of GSM networks. It is easily 

efficiently the tool MOSEL can be used, and 

some numerical examples are presented to the 

impact of the retrial phenomenon and some 

system parameters on the quality of service 

measures and on the grade of service.The current 

study is an initial step towards the analysis of 

more complex third generation cellular systems. 

These hierachical systems may consist two or 

more layers, and varius dynamic channel 

allocation schemes can be utilized and 

analyzed.Furthermore, other than exponential 

distributions can be treated that are supported by 

both MOSEL and the applied tools . 

I have studied the effect of retrials, 

vacations and breakdowns on the performance 

metrices of queueing service systems. I have 

showed how to control the vacation and retrial 

mechanisms. A similar study can be provided to 

control the maintenance actions.   
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Effect of retrial rate  and failure rate of the 

optimal threshold N* 
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