
Performance of Multiprocessor Architecture

using Nios II Processor

Tran Hoang Vu

 Danang College of Technology,

 The University of Danang, Vietnam

Abstract- This paper presents the performance of
multiprocessor architecture for an embedded system. Firstly,
we will design a three-core embedded system using Nios II
processors with shared memories on FPGA platform.
Secondly, we implement the partition sequential program and
Fast Fourier Transform (FFT) on multiprocessor system and
measure exactly the execution time of these algorithms. As a
result, using multiprocessor, the execution time for sequential
program is three times faster and it is also six times faster for
FFT algorithm. The result is the evidence to show the
performance of multiprocessor architecture on executing
programs.

 Keywords- Multiprocessor Architecture, embedded system,
Nios II processors , FPGA

I. INTRODUCTION

Embedded Systems has witnessed tremendous growth in
the last one decade. Almost all the fast developing sectors
like automobile, aeronautics, space, rail, mobile
communications, and electronic payment solutions have
witnessed increased use of embedded technologies. Greater
value to mobility is one of the prominent reasons for the
rise and development of embedded technologies. [1]

Embedded system contains processing cores that are
either microcontroller or digital signal processors (DSP). A
processor is an important unit in the embedded system
hardware. It is the heart of the embedded system and has a
great impact to system’s performance.

Multiprocessor systems possess the benefit of
increased performance, but nearly always at the price of
significantly increased system complexity. For this reason,
the use of multiprocessor systems has historically been
limited to workstation and high-end PC computing using a
complex method of load-sharing often referred to as
symmetric multiprocessing (SMP). While the overhead of
SMP is typically too high for most embedded systems,
the idea of using multiple processors to perform different
tasks and functions on different processors in embedded
applications (asymmetrical) is gaining popularity. Altera
FPGAs [2] provide an ideal platform for developing a
symmetric embedded multiprocessor system,because the
hardware can easily be modified and tuned using the SOPC
Builder tool [3] to provide optimal system performance.
Recent increases in the size of Altera FPGAs make
possible system designs with many Nios II processors [4]
on a single chip. Furthermore, with a powerful
integration tool like SOPC Builder, different system
configurations can be designed, built, and evaluated very
quickly.

For the reason mentioned above, we design the
multiprocessor system using Nios II processor to improve the
performance on execution the programs. The main
contributions of our work are the following:

 We design the multicore architecture using Nios II
processor base on DE2 Altera board.

 We implement the algorithms including sequential
caculation and Fast Fourier Transform Algorithm to
evaluate the performance of our design.

 The rest of the paper is organized as follows. Section
II describes hardware design. Section III presents sofware
design including algorithms. Section IV describes system
design and experimental results. Conclusions are drawn
in section V.

II. HARDWARE DESIGN

A. System Block Diagram
In this paper, we design the hardware system as Fig. 1.

Our system includes three processors (Nios II/s, Nios II/e
and Nios II/f). There are three timers connected to each
processor. Every processor has a onchip memory and a
shared on chip memory is connected to all three processor.
Similarly, a performance counter core is connected to each
processor and a system performance counter core that is
connected to all three processor. Processor 1 also connected
to LEDs and Switches pins. Meanwhile, processor 2
connected to a JTAG module. SDRAM will be used for all
three processors to store data. The shared memory will be
controlled by three mutex cores and six mailbox cores.

Figure 1. System Block Diagram

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060126
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

180

B. Nios II Processor Core
A Nios II processor system is equivalent to a

microcontroller or “computer on a chip” that includes a
processor, a set of on-chip peripherals, on-chip memory, and
interfaces to off-chip memory [4]. Like a microcontroller
family, all Nios II processor systems use a consistent
instruction set and programming model. The Nios II
architecture describes an instruction set architecture (ISA).
The ISA in turn necessitates a set of functional units that
implement the instructions. A Nios II processor core is a
hardware design that implements the Nios II instruction set
and supports the functional units described in this document
(Fig 2). The processor core does not include peripherals or
the connection logic to the outside world. It includes only the
circuits required to implement the Nios II architecture.

Figure 2. Nios II Processor Core Block Diagram [4]

C. Shared Memory

Shared memory can be used for anything from a simple
flag whose purpose is to communicate status between

processors, to complex data structures that are collectively
computed by many processors simultaneously as Fig 3.

Figure 3. Multiprocessor System with Shared Memory [5]

D. SDRAM Controller Core
The SDRAM controller core with Avalon interface

provides an Avalon Memory-Mapped (Avalon-MM)
interface to off-chip SDRAM [6]. The SDRAM controller
allows designers to create custom systems in an Altera
device that connect easily to SDRAM chips.

SDRAM is commonly used in cost-sensitive
pplications requiring large amounts of volatile memory.
While SDRAM is relatively inexpensive, control logic is
required to perform refresh operations, open-row
management, and other delays and command sequences. The
SDRAM controller connects to one or more SDRAM chips,
and handles all SDRAM protocol requirements. Internal to
the device, the core presents an Avalon-MM slave port that
appears as linear memory (flat address space) to Avalon-MM
master peripherals.

The core can access SDRAM subsystems with
various data widths (8, 16, 32, or 64 bits), various memory
sizes, and multiple chip selects. The Avalon-MM interface is
latency-aware, allowing read transfers to be pipelined. [7].

Figure 4. SDRAM Controller with Avalon Interface Block Diagram [7]

Fig. 4 shows a block diagram of the SDRAM
controller core connected to an external SDRAM chip.
SDRAM will be used to store code section of all three CPUs.
Therefore this core connects to both Data Master and
Instruction Master for all three CPUs.

III. SOFTWARE DESIGN

This section will present about the performance of
multicore system in comparison with single core system.

A. Acceleration

In this section, we start from the file sequential.c. For
parallel implementation purpose, we have to rewrite from
two recursive functions series1 and series 2 to two
corresponding normal functions using for loop. Each CPU in
multiprocessor system will execute a different part of these
loops.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060126
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

181

 Series 1
int series1(int y, int x)
{
 int result = 0;
 int i;
 for (i = y; i <= x; i++)
 {
 result = result + 2*i;
 }
 result = result - 1;
 return result;
}

 Series 2
int series2(int y, int x)
{
 int result = 0;
 int i;
 for (i = y; i <= x; i++)
 {
 result = result + i*i;
 }
 return result;
}

 Parallel Implementation 1

This program will run and calculate the total
execution time of function series1 and series2 for each case
of k by single core. Fig 5 shows the flow chart of the parallel
implementation.

Begin

Start Counter

Run Series 1 Run Series 2

End Counter

End

Figure 5. Paralled Implementation 1 Flow Chart

 Parallel Implementation 2

In order to reduce the execution time of the program,
we will select two candidates implementation. CPU2 and
CPU3 will execute these function concurrently, each CPU
will do half of for loop as Fig 6.

Figure 6. Parallel Implementation 2 Flow Chart

This program will be executed by two processors at the
same time, therefore if for loop has to execute k times, CPU 2
will execute the loop from 1 to k/2 + 1, and CPU 3 will
execute the remaining loop, from k/2 + 2 to k.

 Parallel Implementation 3

In this sector, we expand the program so that it can be
executed parallel by three CPUs, each CPU will execute one-
third of for loop as Fig.7.

Figure 7. Parallel Implementation 3 Flow Chart

Similar to the program that using two cores, if for
loop executes k times, CPU 1 will perform the loop from 1 to
k/3 + 1, CPU 2 will perform the loop from k/3+ 2 to 2k/3 +
1, and CPU 3 will perform the remain loop, from 2k/3 + 2 to
k.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060126
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

182

B. Fast Fourier Transform Algorithm

We will use multiprocessor system to calculated 64-
point Fast Fourier Transform. We will use Cooley-Turkey
Radix-2 algorithm [8][9] to calculate 64-point Fast Fourier
Transform [10].

Figure 8. The example 8-point FFT using Radix-2 diagram

Fig 8. shown the example 8-point FFT using Radix-2
diagram. 8-Point FFT using Radix-2 has to be calculated in
three stages. In our case, we need six stages to calculated 64-
point FFT and another stage to re-order results. For each
stage (except reorder stage), we use for loops to calculate the
result follow the diagram. Fig.9 shown the flow chart of stage
1.

Figure 9. Radix-2 64-point FFT - Stage 1

Using multipcore, in each stage, for loops are independent
(Fig. 10). Therefore we can divide these for loops into two
other loops. CPU2 will be used for synchronization and for
I/O operations, while CPU 1

and CPU 3 are used for calculate the FFT. CPU 1 and CPU 3
start the calculation at the same time and they execute the
same for loop but on different data. After they finish the
calculation, they signal to CPU 2.

Figure 10. Radix-2 64-point FFT Algorithm using Multicore.

IV. EXPERIMENTAL RESULTS

A. Multipcore System Design

 Our hardware system is built by SoPC builder tool [3]
based on DE2 Altera board [11]. Table. 1 shown the size of
our design. Our system possesses 45% in total logic elements
of DE2 board, and maximum clock frequency is about 61.16
MHz.

TABLE 1. HARDWARE DESIGN SIZE SUMMARY

B. Measuremental Results for Acceleration

In the Parallel Implementation 1, only CPU 2 execute
these function and calculate the performance time using
API functions of performance counter core.

In the Parallel Implementation 2 and 3, to get the exactly
result of execution time, it is important that CPU1, CPU 2
and CPU 3 start calculate these functions at the same time.
Shared variable start will be used for that. After CPU 3
finishes each function series1 and series2, they store result in
shared memory and increment the done variable, then CPU 2
will calculate the total result. We set 9 diffirent values of k
and run with four implementations including Sequential,
Parallel Implementation 1, 2 and 3. The results compares in
the Table. 2.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060126
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

183

TABLE 2. ACCELERATION RESULTS (S)

From Table 2, if the value of k is small, the program will
perform faster using single core. Because the time need to
accessing shared memory instructions and waiting time takes
a considering amount of time in comparison with the time
need to execute series1 and series2 functions. However, if
k is great, the program is faster if using more mulprocessor. If
we use the parallel implementation 3, the execution time is
three times faster compared to sequential implementation.

C. Measuremental Results for FFT

In order to calculate the executed time of this
algorithm, we use performance counter core. Firstly, we
run FFT algorithm on CPU1 and capture the executed time.
Fig. 11 shows the executed time that performance counter
calculated.

Figure 11. The result for Fast Fourierm Transform using single
processor

 As the result, using single processor needs about 9
seconds to execute 64-point Fast Fourierm Transform using
Radix-2 algorithm.

 Using multipcore, both CPU 1 and CPU 3 have to start
calculation of each stage at the same time. Shared variable
start will be used for that. Initially start variable equals zero,
each CPU have to increment this variable before they start the
functions.

When a processor calculate completely one stage, it will
increment done variable and wait for the increment of the
other CPU. Fig. 12 shows the execution time that
performance counter calculated.

Figure 12. The result for Fast Fourierm Transform using multiprocessor

 Interestingly, the execution time decreases significantly
from about 9 seconds to 1.5 seconds when we use three
cores.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we design successfully the multiprocessor
architecture using Nios II processor. We also execute the
sequential program and FFT algorithm on single core and
multicore in order to compare the performance of our system.
As the result, the execution time of these algorithm reduces
considerably when we use the multiprocessor architecture.

In the future, we will research and propose the
multiprocessor architecture for image processing technology
using FPGAs that could decrease significantly the execution
time compared to use single processor.

REFERENCES

[1] http://www.vectorindia.org/applications_of_embedded_system

s.html

[2] https://www.altera.com/products/fpga/overview.html

[3] SOPC Builder User Guide, December 2010 Altera Corporation.

[4] Nios II Classic Processor Reference Guide, 2016.06.17 Altera

Corporation.

[5] Creating Multiprocessor Nios II Systems Tutorial, June 2011,

Altera Corporation

[6] Using the SDRAM Memory on Altera’s DE2 Board with

VHDL Design, Altera Corporation.

[7] Embedded Peripherals IP User Guide, 2016.06.17, Altera

Corporation.

[8] https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT

_algorithm

[9] The Discrete Fourier Transform, Part 2: Radix 2 FFT By

Douglas Lyon, Vol. 8, No. 5, July-August 2009.

[10] Fourier Transforms and theFast Fourier Transform (FFT)

Algorithm Paul Heckbert, Feb. 1995, Revised 27 Jan. 1998,

Notes 3, Computer Graphics 2, 15-463.

[11] DE2 Development and Education Board User Manual, 2006

Altera Corporation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060126
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

184

