
Performance of Transport Layer Protocals for 
Secure Data Transaction 

 
Mr. M. Arumai Selvam 

HOD, 
 PG and Research Department of Computer Science 

St.Joseph’s College of Arts and Science (Autonomous)  
Cuddalore, Tamil Nadu. 

  

R. Sachidhanandham 
M.Phil Scholar,  

PG and Research Department of Computer Science 
St.Joseph’s College of Arts and Science (Autonomous) 

 Cuddalore, Tamil Nadu. 

  

C. Victor Vimal Raj 
M.Phil Scholar,  

PG and Research Department of Computer Science 
St.Joseph’s College of Arts and Science (Autonomous) 

 Cuddalore, Tamil Nadu. 
 

R. Sangeetha 
M.Phil Scholar,  

PG and Research Department of Computer Science 
St.Joseph’s College of Arts and Science (Autonomous) 

 Cuddalore, Tamil Nadu. 
  
 

Abstract - The transport layer protocols are most used in 
computer networks. The transport layer is the heart of the 
whole protocol hierarchy. Protocols are used to transferring the 
data between two hosts through the internet. In this paper will 
discuss on combining the two protocols they are transmission 
control protocol and User datagram protocol. The TCP where 
loss of a single data unit it makes the hole data transfer unless 
such as file Transfer, so the TCP is reliability. UDP is unreliable 
and can be used where little loss is acceptable and sender does 
not need a confirmation of successful delivery to the receiver. In 
this paper discuss on incensing the performance and security 
without affecting the complexity level on client and server side. 
 
Keywords: Data Transaction, Security, Layer, TCP, UDP 

1. INTRODUCTION 
 
The data can be transmitted various protocols here two 
protocols mainly focused. First one is TCP for reliability and 
second one is UDP for fastness of data transaction. The UDP 
does not secure and does not guarantee the deliver the packet. 
TCP does not fast and secured. So combining the two 
protocols and transmit the data. Now a day the security has 
become an impartment issue, so the data security has become 
a basic necessity. In this paper involves the security of data 
through 6 layers[1].The data will pass the 6 layers of security 
on the sender’s side. The first layer defines compress of any 
encryption algorithms[2]. The encryption service is 
impartment because it is needed for transmission of 
information and authentication for verify excess level of user. 
The second layer involves compression technique. The third 
layer involves a new technique of key generation. The forth 
layer the data traversed in any one of the 9 existing patterns. 
The fifth layer adds the data with any one of text, audio, 
video, image or file. The last layer combines both UDP and 
TCP. The byte array of this file will be send through the 
UDP. After key generated and sent it through the TCP. The 
transmission of data and Key in different protocols and 
improve the security to a most extend. Improvement will be 
increasing the client and server side without affecting the 
complexity level and [2]increase the performance and 

security of transaction and generate dynamic key and parallel 
encryption and decryption. 

2. PROPOSED WORK 
 
From the last year various protocols have been developed. 
Among them various connectionless and connection protocol 
provide data transmission over the network. Mainly the data 
transfer using the two protocols they are UDP and TCP for 
implement the snake horizontal traversal[1] or any other 
traversal. This technique can be extending by implementing 
all 9 varieties of traversals in such a way that the traversal to 
be performed has to be selected at random as the security 
increases. Similarly, this paper has been implemented by 

using the any longer word for key generation. 

3. EXPERIMENT 
 
First select the file or data that has to be transmitted to the 
destination. This file or data has to be encrypted and 
compressed, which forms the first 2 layers of security to be 
implemented. 

3.1 ENCRYPTION AND DECRYPTION 
There is huge number of encryption and decryption algorithm 
available in computer science. In this paper is implemented 
by RSA encryption and decryption algorithm. 
Encryption: F (m, e) = me mod n=c, where m is the 
message, e is the public key and c is the cipher. 
Decryption: F (c, d) = cd mod n=m. 
First generate the public key.  It has two public keys that is P 
and Q. the public key must be a prime number.  
n= P x Q 
We have to consider two prime numbers. 53 and 59 that is 
n=3127. 
Also we have to one exponent e. the e must be, Be an integer, 
not be a factor of n and 1<e<φ(n). 
Example: 3. 
Our public key is made up of n and e. 
n=3127 and e=3. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETCS - 2016 Conference Proceedings

Volume 4, Issue 05

Special Issue - 2016

1



And second generate the private key. To calculate the φ(n). 
φ(n)=(P-1)(Q-1) 
φ(n)=(53-1)(59-1) 
φ(n)=3016. 
Now calculate the private key d.  

d=  

d =  

d = 2011 
Now the public key is n(3127) and e(3), and the private key is 
2011. 
Example: 
Let’s encrypts the HI, 
Converts the Text into Number, 
H-8, I-9, 
C is the encrypt data. 
C = DATAe mod n 
C=893mod 3127 
C=1394. 
Next decrypt the Data with Encrypted data c, public key n 
and private key d. 
The decrypt the data is equal to the encrypt data, 
Decrypt data=cd mod n 
Data=13942011mod 3127 
Result is 89. 
 
3.2 COMPRESSION AND DECOMPRESSION 
The compression of reducing the volume of data by applying 
a compression technique a compression technique is called 
compression. The resulting data is called compressed data. 
The reverse process of reproducing the original data from 
compressed data is called decompression. 
Compression is based on the average value concept. The 
ASCII values of all characters are obtained, and then each 
obtained value will be subtracted from a constant value 
97.Average of first 2 values will be calculated andthe 
corresponding character will be replaced from the character 
set. Similarly, all characters will be replaced by the character 
corresponding to its average value. All the substituted 
characters are appended together to get the final compressed 
text. If the length of the original text is odd then the last left 
character can be appended directly with the compressed 
string[1].For example, consider a word “configuration” which 
will be compressed to “ijhtklh”. The complete flow of the 
process is defined with the same example. 
First the ASCII value of each alphabet in the word compress. 
c- 99, o- 111, n- 110, f- 102, i- 105,  g- 103, u- 117, r- 114, a- 
97, t- 116, i- 105, o- 111, n- 110. Subtract the ASCII value 
with a constant 97. So the obtained values will be  
21413586201701981413. 
Then calculate the average of the neighboring 2 alphabets. If 
the length is an odd value then use the last alphabet directly.  
2+14=16/2=8 
13+5=18/2=9 
8+6=14/2=7 
20+17=37/2= ceil (18.5) = 19 
0+19=19/2= ceil (9.5) = 10 
8+14=22/2=11 
13=13/2= ceil (6.5) = 7 
Substitute the character corresponding to the obtained value  

8- I, 9- j, 7- h, 19- t, 10- k, 11- l, 7- h. 
So the compressed text is “ijhtklh”.  
The client side is decompression will be done, it happens 
prior to decryption. The decompression is define by 
mathematical concept that is A+B=C and A-B=C. During 
compression process the difference between the neighboring 
characters will be obtained[3].  Those values will be used to 
perform decompression. Consider the above example 
compressed text “ijhtklh”. During Compression the differ-
ence between neighboring values are as below, 
c – o = 2 – 14 = abs (-12) = 12 
n – f = 13 - 5 = 8 
i – g = 8 – 6 = 2 
u – r = 20 -  17= 3 
a – t = 0 – 19 = abs (-19) = 19 
i – o = 8 – 14 = abs(-6) = 6 
n =13 
On the client side, the respective number for each alphabet in 
the received compressed text will be multiplied by 2. This 
manipulation is similar to finding the sum of the neighboring 
characters. The received text will be “ijhtklh” in our case. So,  
i – 8 * 2 = 16 
j – 9 * 2 = 18 
h – 7 * 2 = 14 
t – 19 * 2 = 38 
k – 10 * 2 = 20 
l – 11 * 2 = 22 
h – 7 * 2 = 14 
Above obtained results will be similar to  
o + c= 14 + 2 = 16 
f + n = 5 + 13 = 18 
g + i = 6 + 8 = 14 
r + u = 17 + 20 = 37 + 1 = 38 
t + a = 19 + 0 = 19+1 = 20 
o + I = 14 + 8 = 22 
n= 13 +1 = 14 
The differences will be used to generate key (will see in 
detail at key generation). So these differences can be 
extracted from the key in client side and can be used to find 
the original characters. In this example on client side values 
12, 8, 2, 3, 19, 6 and 13 will be extracted and values 16, 18, 
14, 37, 19, 22 and 13 will be calculated.  

3.3 KEY GENERATION 
In this key generation process, key based on the user key 
enter for the encryption and the original data will be the 
encrypted. In this output of the key send it through the TCP 
connection. The key must always be protected from 
modification of encrypted files. For the cipher text to be 
transformed to plaintext, the decryption function must use the 
same key used by the encryption function to decrypt the 
cipher text. 
Let us consider the same encrypted letter “ijhtklh” example in 
which length of the compressed text is 7. If consider the same 
public key a and b like 53 and 59. It must be the prime 
number. Its 6 bit format of key is 110101 and 111011. As the 
number of bits in each partition is calculated to be 4, the 
above appended key should be split up into 3 partitions with 
maximum 4 bits each. So the segmented key will be as given 
below 1101 0111 1011. In between each segmented key the 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETCS - 2016 Conference Proceedings

Volume 4, Issue 05

Special Issue - 2016

2



difference calculated in the compression part should be 
embedded[1]. The differences calculated in compression part 
are 12, 8, 2, 3, 19, 6 and 13. The binary representation of all 
these values should be embedded in between each partition. 
In some cases the differences may be a negative value. So if 
the value is negative then add 1 prior to its binary repre-
sentation else add 0. In the above case 12, 19 and 6 will be 
negative values. The final binary representation of differences 
will be 101100, 110011, 100110. These differences will be 
embedded between the key partitions. The final key 
generated by this algorithm  – 
10110000100000001000011001100100110101101 
[1][4][5].This key sends the user to the client. In this key 
even the user can not identify the key. On the client side the 
key will be received.  With the help of the differences 
extracted decompression can be executed. With the original 
key extracted decryption can be done to get the original mes-
sage. 

3.4 TRAVERSAL 
The next layer is 4th its security of traversal, through any 
traversal. It has 9 different shapes of traversals which are 
known as snake lake horizontal, snake lake vertical, raster 
horizontal, raster vertical, z-horizontal, z-vertical, spiral, 
zigzag and diagonal. Data can be read in either of the above 
traversal methodology. So the data will be arranged in a 
different manner from the original manner. The common 
direction of the traversals is listed here.  

A B C D 
E F G H 
I J K L 
M N O P 

 
• Snake Horizontal: A B C D E F G H I J K L M N O P 
• Snake Vertical: A E I M B F J N C G K O D H L P 
To make still more complex and secure random selection of 
traversal can be chosen and the respective reverse traversal 
can be executed on the other end. This random selection will 
make even the sender unknown about the traversal done and 
it will not be easy to predict the traversal undergone by any 
attacker as the data will be misarranged, encrypted and 
compressed[1]. Consider the word “CONFIGURATION”. 
We can consider 4*4 matrixes so compress in 4*4matrixes 
will be arranged like  

C O N F 

I G U R 

A T I O 

N    

 
After the traversal data, the result will look like 
“CONFIGURATION”. The dimension of the matrix can be 
decided by the sender. If that too is made to be random then 
the increase in security will be directly proportional to the 
complexity to perform cryptanalysis. On the client side this 
data should be arranged back to the original order in prior to 
Key extraction, decompress and decryption[4]. 

3.5 HIDING DATA 
The next layer appended the data with text, image or 
multimedia file. After appending the data and send it to the 

client or another end. The client side the file is received but 
the text, image or multimedia files need not to be save as the 
client side because no use of this text or another append file. 
So the appended text can just be extracted and the remaining 
contents of the file can be ignored. The data will be read from 
the text/multimedia file and will be passed to traversal 
module in the client side[1]. As the UDP can support only 
60KB (approximately) large multimedia files need to be 
segmented into packets on server side and integrated on client 
side. We append the data into a multimedia file so obviously 
the size of the file to be transmitted will be above 60KB 
which leads to segmentation[1][4]. In general, Even if one of 
the packets get lost or damaged the integration of file 
wouldn’t be successful.  

3.6 TCP AND UDP TOGETHER 
In this section implement security purpose using the TCP and 
UDP technique. The data to be passed will be passed through 
the UDP and generated key will be passed through the TCP. 
Here, the data is the multimedia file or text file to which the 
traversed data is appended. This file will be segmented into 
packets and each packet will be transferred through Datagram 
Sockets. The generated key will be sent it through TCP 
socket. For example the key generated in above key 
generation technique is 
10110000100000001000011001100100110101101 will be 
transferred through the TCP connection. This technique of 
combining both the connections will make the data high 
secure to transfer from source to destination.  
Here, Let us consider 3 cases  
Case 1: If a cryptanalyst attacks the TCP socket, the 
generated key will alone be obtained by the attacker. To get 
the original key from this generated key the differences 
should be extracted. To extract the differences, length of the 
compressed text should be known from which the number of 
partitions and number of bits in each partition has to be 
calculated[6]. But the compressed text is traversed and 
hidden into a multimedia file which is further being 
transmitted in UDP (i.e.) in a different connection.  
Case 2: If a cryptanalyst attacks the UDP socket, the image 
or audio file contents will be obtained by the attacker. Here, 
in this paper the byte array of the image or audio file is only 
transferred by the UDP socket so as the contents will look 
like combining the special characters, characters and 
numerals it will be difficult to analyze that only the appended 
data will be the original data[1]. If the original data has to be 
obtained by the cryptanalyst then the position of the 
appended data should be identified, then it should be 
traversed in a particular pattern used (pattern will be 
unknown), decompression should be performed, original key 
has to be obtained to perform encryption but the key will be 
passed through TCP connection. So with just the message 
from the socket without the key it is impossible for the 
cryptanalyst to read the message.  
Case 3: Even if both the channels are being observed then it 
would be difficult for the cryptanalyst to extract the key from 
the duplicate key and even all the 6 layers has to be 
performed in reverse order on the entire data to get back the 
original data. This reduces the probability level to obtain the 
real message getting transferred.  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETCS - 2016 Conference Proceedings

Volume 4, Issue 05

Special Issue - 2016

3



These 3 cases, combining TCP and UDP the data can be 
passed in a secure data and even if any loss of packet occur it 
does not affect the flow or execution of the process as only 
the appended data is required. 

3.6.1 FLOW DIAGRAM 

 

3.6.2 PERFORMANCE ANALYSIS 
TABLE 1 

Module 1000 Characters 1500 Characters 
Encryption 20ms 20ms 
Compression 1ms 1ms 
Decompression 1ms 1ms 
Decryption 20ms 20ms 
Key Generation 1ms 1ms 
UDP Time 4s(approx) 6s(approx) 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  CONCLUSION 
 
In this paper, each layer individually performs in an efficient 
manner. After integration, the performance level has no 
degradation and in fact, it imparts better security too. This 
idea is being enhanced to meet further requirements too. 
Improvements will be made refer to increasing the per-
formance and security without affecting the complexity level 
on client and server side. Region based segmentation can be 
used to hide the data in a particular part of the image. The 
implementation of these improvements is in process, to 
enhance the security of the data. 

REFERENCES 

 
[1] K. Rajkumar and P. Swaminathan, “Combining TCP and UDP for 

Secure Data Transfer,” vol. 8, no. May, pp. 285–291, 2015. 
[2] M. Abhinivesh, M. Garg, and D. P. Acharjya, “Secured 

Transaction for Distributed Service System,” vol. 8, no. January, 
pp. 160–164, 2015. 

[3] P. Patel, R. Shah, C. Patel, and V. Vijayarajan, “Reliable 
Connectionless Transport Protocol for Fast Message Delivery,” 
vol. 8, no. January, pp. 284–290, 2015. 

[4] M. Pratim Sarma, “Performance Measurement of TCP and UDP 
Using Different Queuing Algorithm in High Speed Local Area 
Network,” Int. J. Futur. Comput. Commun., vol. 2, no. 6, pp. 
682–686, 2013. 

[5] A. N. Naqvi, A. M. Abbas, and T. A. Chouhan, “A Performance 
Evaluation Of IEEE 802.16e Networks For TCP And UDP 
Traffics,” vol. 1, no. 8, pp. 1–8, 2012. 

[6] M. Anbar, S. Ramadass, S. Manickam, and A. Al-wardi, 
“Connection Failure Message-based Approach for Detecting 
Sequential and Random TCP Scanning,” vol. 7, no. May, pp. 
628–636, 2014.  

 

 

 
 
 
 

Encryption 

Compression 

Key Generation 

Traversal 

Hiding Data 

TCP and UDP 

Decryption 

Decompression 

Extract Key 

Traversal 

Viewing Data 

TCP and UDP 

Sending Process Receiving Process 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETCS - 2016 Conference Proceedings

Volume 4, Issue 05

Special Issue - 2016

4


