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ABSTRACT: 

In this paper we present a 3D U-Net architecture to perform 

segmentation of brain tumors from multi-modal magnetic 

resonance scans. Detecting brain tumors from medical imaging 

scans, particularly magnetic resonance imaging, is vital for timely 

treatment planning and patient care in neuro-oncology. However, 

manual interpretation methods are time-consuming, subjective, and 

vary among clinicians, causing delays in diagnosis and potentially 

inaccurate results. This research work aims to address these 

challenges by creating an automated system for brain tumor 

detection and segmentation using machine learning techniques. Our 

main objective is to develop a reliable solution that accurately 

identifies and outlines tumor regions in MRI scans, enhancing 

diagnostic precision and speeding up clinical processes. Deep 

learning models have been trained using the BraTS2020 dataset. 

Different architectures have been used as the backbone for the 3D-

U-Net model, and comparative results have been presented. 

Keywords: Image segmentation, U-Net Architecture, Convolutional 

neural networks 

1.INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) are 

revolutionizing various sectors globally, offering innovative 

solutions to complex problems. One such area is healthcare, 

where these technologies are enhancing medical diagnostics and 

decision-making. The human brain, an intricate organ that 

controls our bodies, is vulnerable to tumors. These abnormal 

growths can disrupt brain functions, making early detection and 

intervention crucial for patient well-being. 

With the advent of AI and ML, we’re witnessing a paradigm shift 

in our approach to diagnosing brain health issues. AI and ML are 

being increasingly adopted in medicine to improve patient 

outcomes. In the context of brain health, the integration of 

machine learning with medical imaging is redefining our 

diagnostic approach. 

Magnetic Resonance Imaging (MRI), a medical imaging 

technique that uses strong magnetic fields and radio waves, is 

invaluable for examining the brain and detecting brain tumors. 

The MRI scanner captures cross-sectional images of the brain 

from various angles, revealing the different soft tissues in high 

resolution. This allows radiologists to identify any abnormal 

growths or masses that could indicate a tumor. 

 However, analyzing the vast amount of data from MRI scans 

can be challenging and time-consuming for radiologists. This 

has led to a growing interest in using AI and deep learning 

models to assist with the identification and segmentation of 

brain tumors from MRI scans. 

Deep learning algorithms, trained on large datasets of labeled 

MRI images, can automatically identify brain tumors. These AI 

models can discern subtle patterns and irregularities that may 

suggest the presence of a tumor. Some models focus on 

classification tasks, determining whether a tumor is present or 

not. Others are designed for segmentation, outlining the exact 

boundaries and spatial extent of the tumor within the brain. 

Automated tumor segmentation can significantly reduce the 

time radiologists spend on manual outlining. The deep learning 

algorithms can quickly process full 3D MRI volumes to 

segment tumor regions, providing a detailed map of the tumor 

location. This automated segmentation improves consistency 

and reproducibility compared to manual methods and enables 

quantitative analysis of tumor characteristics like volume and 

shape. 

The rest of the paper is organized as follows. Section 2 presents 

the literature review, Section 3 presents the methodology. In 

Section 4 we present our results of experiments, and Section 5 

presents the ablation study where we experiment with the 

augmentation techniques, the dropout and other parameters and 

study their impact on the results. Finally Section 6 concludes 

our work. 

2. LITERATURE REVIEW

Convolutional neural networks (CNNs) were introduced as a 

solution for a variety of computer vision problems, 

demonstrating their accuracy and capability without sacrificing 

efficiency [1]. Deep learning models, such as AlexNet [2], 

VGGNet [3], ResNet [4], and DenseNet [5], have demonstrated 

efficacy in addressing a range of computer vision applications 

in recent times, garnering significant interest from both 

academic and industrial domains. Deep neural networks are 

rapidly being used in analysis of medical images due to their 

remarkable capacity to automatically extract highly 

discriminating characteristics [6–8]. 

Researchers have proposed a number of automatic picture 

segmentation techniques [9]. CNN and U-net are the two most 

widely used architectures for early image segmentation task 

solutions [10]. For instance, Chen et al. [11] proposed an auto-

context version of the VoxResNet whereas, Feng et al. [12] 

created a 3D U-Net for brain tumor segmentation. Lee and 

colleagues [13] suggested a variation of U-Net design that was 

able to retain more local information while overcoming the 

limitations of traditional U-net. Attention gate-trained models 

acquire the implicit ability to emphasize important elements in 
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an input image while suppressing irrelevant areas and such 

models were proposed by Oktay et al [14]and  Noori et al. [15]. 

This multi-class segmentation challenge was broken down into 

three binary segmentation tasks based on subregion hierarchy by 

Wang et al. [16]. An ensemble of numerous UNets can increase 

segmentation accuracy since different models can have different 

error rates, according to Feng et al. [17]. Jun Ma [18] and Henry 

[19] proposed U-Net based architectures to create a

segmentation map of brain tumors. Zahi [20] and his team

proposed a Multi-View Pointwise U-Net (MPV U-Net) for

segmenting brain tumors from multi-modality MRI scans. In the

BRATS 2020 testing dataset, the enhanced tumor had a mean

dice score of 0.715, the whole tumor had a score of 0.839, and

the tumor core had a score of 0.768.

Savadikar [21] and his team used the Probabilistic U-Net to

study the effects of applying various segmentation maps.  The

results from the BRATS 2020 testing data were 0.7988 for the

whole tumor, 0.7771 for the tumor core, and 0.7249 for the

enhancing tumor, while the scores for the validation data were

0.81898, 0.71681, and 0.68893, respectively. In [22] Tibe and

colleagues developed a deep learning model using the 3D U-

Net architecture for brain tumor segmentation from MRI scans

of the BraTS 2020 dataset. Their methodology included

mathematical models like edge detection and fuzzy clustering

for tumor localization and pixel clustering. The model achieved

an impressive accuracy of 98.5% for tumor segmentation, with

high scores on key metrics like the dice coefficient. The

researchers aim to extend their work to detect tumor severity

and growth patterns, making significant contributions to

diagnosis and treatment planning. In 2020, researchers Nagwa

M. Aboelenein, Piao Songhao, and Alam Noor [23] introduced

a novel architecture known as the Hybrid Two Track U-net

(HTTU) for automatic brain tumor segmentation. This model

employs various techniques including N4ITK Bias Correction,

Focal loss, and Generalized dice score functions. It was trained

on the BraTS 2018 dataset and achieved a dice score of 0.865

for the whole tumor. However, it fell short in identifying the

underlying layers of the images used.

Kajal and Mittal’s [24] research introduces a modified U-Net

architecture with a 6-layer encoder-decoder CNN for precise

brain tumor segmentation from MRI scans. Their work

enhances the standard U-Net’s segmentation accuracy by

adding layers. They used the BRATS 2020 dataset for model

training and testing, with preprocessing like cropping

performed on images. The model, which uses focal and dice

loss functions, achieved an impressive accuracy of 97.59% and

an IOU score of 0.6413, surpassing other methods like LinkNet

and FPN. Despite the lack of comparative analysis, their model

contributes significantly to brain tumor segmentation, aiding

diagnosis and treatment planning.

Díaz-Pernas [25] and team have developed a new deep learning

method for identifying and outlining brain tumors. Their

approach uses a multiscale CNN, which works at different

scales, much like our eyes do. They tested their model on MRI

scans from 233 patients with different types of brain tumors.

The best part? No need for pre-processing to remove non-brain

parts, making it more user-friendly for doctors. Their method

outperformed seven other techniques, achieving an impressive

accuracy of 97.3%. This shows the potential of multiscale

learning in medical image analysis. Ranjbarzadeh [26] and

team have developed a new deep learning method for detecting 

brain tumors from MRI scans. Their approach uses smart 

preprocessing and a special network called a C-CNN to extract 

both local and global features. They also consider the tumor’s 

location with a “Distance-Wise Attention” mechanism. Tested 

on BRATS 2018, their model outperformed several others, 

although it struggled with very large tumors. Despite this, their 

method shows great promise for clinical use. Alpeshkumar and 

several others  [27-30] have developed  deep learning methods 

for finding and outlining brain tumors in MRI scans. Their 

results show how effective deep learning can be for analyzing 

brain tumors in medical images. 

3. METHODOLOGY

3.1 Dataset 

For this work, we utilized the Multimodal Brain Tumor 

Segmentation Challenge (BraTS) 2020 dataset, which is a 

widely used and publicly available resource for brain tumor 

segmentation research. The BraTS dataset provides a large 

collection of clinically acquired brain MRI scans along with 

expert-annotated tumor segmentations, making it a valuable 

resource for developing and evaluating brain tumor 

segmentation methods. 

The BraTS 2020 dataset consists of 369 preoperative MRI 

scans from patients diagnosed with glioblastoma (GBM) or 

lower-grade glioma (LGG). These MRI scans were collected 

from multiple institutions, ensuring a diverse and 

representative dataset. Each patient's MRI scan includes four 

different imaging modalities: T1-weighted (T1), post-contrast 

T1-weighted (T1ce), T2-weighted (T2), and T2 Fluid 

Attenuated Inversion Recovery (FLAIR). These different 

modalities provide complementary information about the 

tumor's appearance and characteristics. 

The dataset is divided into a training set (369 cases), a validation 

set (125 cases), and a test set (166 cases). The tumor regions in 

each MRI scan have been meticulously annotated by expert 

radiologists, following a standardized protocol. The annotations 

delineate three distinct tumor sub-regions: the enhancing tumor 

(ET), the peritumoral edema (ED), and the necrotic and non-

enhancing tumor core (NCR/NET). These annotations serve as 

ground truth segmentation masks, which are essential for training 

and evaluating the deep learning models. 

The BraTS 2020 dataset presents several challenges for brain 

tumor segmentation algorithms, such as varying tumor sizes, 

shapes, and locations within the brain, the presence of multi-focal 

tumors and diffuse lesions, heterogeneous intensity distributions 

within tumors and across modalities, and intensity similarities 

between tumor regions and surrounding healthy tissues. By 

working with this diverse and challenging dataset, our proposed 

deep learning model will be trained and evaluated on realistic and 

clinically relevant scenarios, ensuring its applicability and 

robustness in real-world settings. 

3.2 Data Pre-processing: 

In this work, several important data preprocessing steps were 

carried out to prepare the BraTS 2020 dataset for training the 

deep learning model. The first step involved loading the MRI 

images and their corresponding segmentation masks from the 

dataset. The paths to these files were organized into separate 

lists for T1-weighted, post-contrast T1-weighted, T2-weighted, 
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FLAIR, and segmentation mask files. To ensure that the input 

features were on a consistent scale, intensity normalization was 

performed on the MRI images. This step is crucial as it can 

improve the model's training process and convergence by 

preventing any single feature from dominating the others due 

to differences in scale. 

The code then iterates through the dataset, loading each set of 

MRI images (T2, T1ce, and FLAIR) and the corresponding 

segmentation mask. The MRI images were reshaped, 

normalized using a MinMaxScaler, and then stacked together 

along the channel dimension to create a multi-channel input 

volume. Regarding the segmentation masks, a preprocessing 

step was applied to reassign the label value of 4 to 3, as per the 

guidelines of the BraTS challenge. This step was necessary to 

align with the expected label values for the segmentation task. 

To facilitate efficient training and inference processes, the 

combined images and masks were cropped to dimensions that 

were divisible by 64. This step ensured that the input volumes 

could be divided into patches of size 128x128x128 during the 

training process. Furthermore, the segmentation masks were 

one-hot encoded using Keras'  function. This step converts the  

integer labels into a binary matrix representation, which is 

necessary for training the model on multi-class segmentation 

tasks. After the preprocessing steps, the dataset was split into a 

training set (258 samples) and a validation set (86 samples), 

which would be used for training and evaluating the deep 

learning model, respectively. These preprocessing steps 

ensured that the MRI images and segmentation masks were 

properly loaded, normalized, formatted, and prepared for input 

into the deep learning model, enabling efficient and effective 

training and inference processes. 

4. MODEL ARCHITECTURE

This research work leverages a modified 3D U-Net model, 

which is a well-known architecture in the realm of image 

segmentation, as shown in Figure 1 [10]. What makes our 

model unique is the integration of a ResNet50 and ResNet101 

backbone, acting as the encoder in our U-Net model. This 

combination is realized using the segmentation models 3D 

package. 

Figure 1. A model U-Net Architecture [10] 

4.1 Encoder (ResNet50, ResNet101 Backbone) 

The ResNet50 backbone, a pre-trained convolutional neural 

network (CNN), serves as the powerhouse for feature 

extraction in our model. The architecture of this backbone is 

organized into five blocks: 

● Block 1: The input image first encounters a series of

convolutional layers with a 7x7 kernel size and a stride of 2.

This process is repeated four times, shrinking the spatial

resolution of the feature map to a quarter of the original

image.
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● Block 2: The output from Block 1 is then passed through

another series of convolutional layers, this time with a 3x3

kernel size and a stride of 1. After four repetitions, the feature

map’s spatial resolution is reduced to an eighth of the original

image.

● Block 3: The process continues in a similar fashion, with the

output from Block 2 undergoing another series of 3x3

convolutional layers with a stride of 1. After four repetitions,

the feature map’s spatial resolution is now a sixteenth of the

original image.

● Block 4: The output from Block 3 is subjected to yet another

series of 3x3 convolutional layers with a stride of 1. Four

repetitions later, the feature map’s spatial resolution is a

thirty-second of the original image.

● Block 5: Finally, the output from Block 4 goes through a

final series of 3x3 convolutional layers with a stride of 1.

After four repetitions, the feature map’s spatial resolution is

a sixty-fourth of the original image.

4.2 Decoder (U-Net Architecture) 

● The output from the ResNet50 backbone is then processed

through a series of convolutional and Upsampling layers to

generate the final segmentation mask. The architecture of the

decoder is as follows:

● Upsampling Block 1: The output from the ResNet50

backbone is first upscaled by a factor of 2, followed by a 3x3

convolutional layer with a stride of 1.

● Upsampling Block 2: The output from the previous block

undergoes a similar process, with another Upsampling layer

(factor of 2) and a 3x3 convolutional layer with a stride of 1.

● Upsampling Block 3: The process is repeated again with the

output from Block 2, with another Upsampling layer (factor

of 2) and a 3x3 convolutional layer with a stride of 1.

● Upsampling Block 4: The output from Block 3 is upscaled

once more by a factor of 2, followed by a 3x3 convolutional

layer with a stride of 1.

● Upsampling Block 5: The output from Block 4 undergoes the

final Upsampling (factor of 2) and convolutional layer (3x3

kernel size, stride of 1).

● Final Convolutional Layer: The output from Block 5 is passed

through a final 1x1 convolutional layer with a stride of 1 to

generate the final segmentation mask.

     
     4.3 Output: 

● The end product of the model is a segmentation mask that

maintains the same spatial resolution as the input image. Each

pixel value in this 3D array corresponds to the class label of

the respective pixel in the input image. The model accepts an

input of size 128x128x128x3 and generates an output of size

128x128x128x4.

4.4 Model Training 

The training of the model is a crucial step where the model 

learns to segment brain tumors from 3D images. This is 

achieved by adjusting the model’s internal parameters to 

minimize the difference between the model’s predictions and 

the actual data (ground truth). Here’s a more detailed 

explanation: 

Optimizer:The optimizer is an algorithm that adjusts the 

internal parameters of the model to minimize the loss 

function. In this case, the Adam optimizer is used. Adam, 

short for Adaptive Moment Estimation, is a popular optimizer 

because it combines the advantages of two other extensions 

of stochastic gradient descent: AdaGrad and RMSProp. It 

adapts the learning rate for each weight in the model 

individually and computes adaptive learning rates for 

different parameters. 

Loss Function:The loss function, also known as the objective 

function, is a measure of the model’s error. The model’s goal 

is to minimize this function. In this research work, a custom 

loss function based on the Dice coefficient is used. The Dice 

coefficient is a statistical metric that measures the similarity 

between two samples. In this case, it is used to measure the 

similarity between the predicted segmentation mask and the 

true mask. The Dice loss is then calculated as one minus the 

Dice coefficient, meaning that the model is trained to 

maximize the Dice coefficient, or equivalently, to minimize 

the Dice loss. 

Dice Coefficient:The Dice coefficient is a measure of the 

overlap between two samples. In the context of image 

segmentation, it can be used to measure the similarity 

between the predicted segmentation mask and the true mask. 

The formula for the Dice coefficient is: 

  Where: 

 is the cardinality of the intersection of sets X and Y (i.e., the number of common elements 

between X and Y). 

 are the cardinalities of sets X and Y respectively. 
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Callbacks: Callbacks are special functions that are called at 

specific points during the training process, such as at the end 

of each epoch. They are used to save the model, adjust the 

learning rate, stop training early, etc. In this work, several 

callbacks are used: 

● ModelCheckpoint: This callback saves the model after each

epoch. The model weights are written to a file only if the

validation Dice coefficient (as specified by the monitor

argument) has improved compared to the previous epoch.

This ensures that the best model is saved.

● EarlyStopping: This callback stops the training process if the

validation loss does not improve for a specified number of

epochs (as specified by the patience argument). This is useful

to prevent overfitting and to save computational resources.

● TensorBoard: This callback logs the training and validation

metrics for each epoch. These logs can be visualized in

TensorBoard, a tool for visualizing learning curves and other

training metrics.

● ReduceLROnPlateau: This callback reduces the learning rate

if the validation loss does not improve for a specified number

of epochs. Reducing the learning rate can help the model to

overcome local minima in the loss landscape and to converge

to a better solution.

Data Generators: Data generators are used to load and

preprocess the data in batches, allowing for efficient memory

usage. In this work, a custom data generator function is used

that loads the images and masks in batches. This is especially

useful when working with large datasets that do not fit into

memory.

Training Process: The model is trained for a total of 10

epochs. An epoch is one complete pass through the entire

training dataset. The number of steps per epoch is calculated

as the total number of training images divided by the batch

size. The same calculation is done for the validation steps

using the total number of validation images.

During each epoch, the model’s parameters are updated in an

attempt to minimize the loss function. After each epoch, the

validation loss is calculated on a separate validation dataset

that the model has not seen during training. This allows for

monitoring the model’s performance on unseen data and

helps to detect overfitting.

5. RESULTS AND DISCUSSION

In this work, our aim was to compare the performance of 

segmentation models built on two different backbone 

architectures - ResNet101 and ResNet50. Figure 2 presents a 

sample test case of segmentation. The aim was to understand 

the impact of the choice of backbone on the accuracy of 

segmentation. We evaluated the models using several key 

metrics such as Dice Coefficient, Jaccard Index, Precision, 

Recall, and F1 Score. 

5.1 ResNet101 Performance 

Dice Coefficient: The model built on ResNet101 achieved a 

Dice Coefficient of 0.974, indicating a high degree of overlap 

between the predicted and actual segmentations. 

Jaccard Index: The Jaccard Index for the ResNet101 model 

stood at 0.949, demonstrating a strong agreement between the 

predicted and actual segmentations. 

Precision: The precision of the ResNet101 model was 0.974, 

showcasing its ability to accurately identify positive 

predictions. 

Recall: The ResNet101 model had a recall of 0.974, indicating 

its effectiveness in capturing true positive instances within the 

dataset. 

F1 Score: The F1 Score for the ResNet101 model was 0.974, 

reflecting a balanced harmony between precision and recall. 

5.2 ResNet50 Performance 

Dice Coefficient: The model built on ResNet50 scored a Dice 

Coefficient of 0.954, indicating a significant overlap between 

the predicted and actual segmentations. 

Jaccard Index: The Jaccard Index for the ResNet50 model was 

0.912, showing a considerable agreement between the predicted 

and actual segmentations. 

Precision: The precision of the ResNet50 model was 0.954, 

showcasing its ability to accurately identify positive 

predictions. 

Recall: The ResNet50 model had a recall of 0.954, indicating 

its effectiveness in capturing true positive instances within the 

dataset. 

F1 Score: The F1 Score for the ResNet50 model was 0.954, 

reflecting a balanced harmony between precision and recall. 

6. CONCLUSION

The comparative analysis of the segmentation models based 

on ResNet101 and ResNet50 provided some interesting 

insights. Firstly, the ResNet101 model outperformed the 

ResNet50 model across all evaluation metrics, indicating its 

superior segmentation accuracy. This can be attributed to the 

depth and complexity of the ResNet101 architecture, which 

allows the model to capture more complex features within the 

images, leading to enhanced segmentation accuracy. 

While both models demonstrated high segmentation 

accuracy, it’s important to consider practical aspects such as 

computational complexity and resource requirements. The 

ResNet101 model, being deeper, may require more 
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computational resources compared to the ResNet50 model. 

Therefore, the choice of backbone architecture should be a 

careful balance between segmentation accuracy and 

computational efficiency, especially in real-time or resource-

constrained applications. 

In conclusion, the findings highlight the importance of 

choosing the right backbone architecture when designing 

segmentation models. While deeper architectures like 

ResNet101 provide superior performance, shallower 

architectures like ResNet50 can also deliver competitive 

segmentation accuracy. These insights offer valuable 

guidance for researchers and practitioners in the field of 

medical image segmentation and computer vision. Future 

research could explore additional backbone architectures and 

optimization techniques to further enhance segmentation 

accuracy and efficiency, catering to a variety of application 

scenarios and requirements. 

Several challenges need to be overcome, including the 

diverse nature of tumor characteristics across patients and 

imaging types, the scarcity of expertise in brain tumor 

diagnosis, and ensuring the model works effectively across 

different patient groups and imaging protocols. By utilizing 

machine learning algorithms and datasets like the BRATS 

(Brain Tumor Segmentation) dataset, we aim to create a 

scalable solution that supports clinical decision-making, 

alleviates resource constraints, and ultimately improves 

patient outcomes in neuro-oncology. Our vision is to 

revolutionize brain tumor diagnosis and treatment by 

providing healthcare providers with accurate, efficient, and 

scalable tools. 
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