

Performance Optimization of Software Design using Queuing

Networks

R. Aroul canessane,

Research Scholar, Sathyabama University, Chennai.

Dr. S. Srinivasan,

Professor & Head, Dept. Of Computer Science and Engineering,

Anna University , Madurai

Abstract

The difficulty of automatically transforming software

into performance models during the last decade has

been effectively solved through variety of approach. At

a specific point of the software lifecycle, to evaluate

and develop the presentation of a software system

under development still being a research issue. Thus

this work proposes a novel scheme in order to develop

both the software and hardware model into a

performance model based on the performance indices.

The implementation of the model is done using a

visualizing of software design tool which makes

transformation of UML to queuing networks and the

analysis is done using a probabilistic rule based

algorithm which has implemented using java.

Keywords– Visualizing, algorithm, maintainability,

design, transformation.

1. Introduction
The functional and nonfunctional characteristics of

software can be analyzed at the design stage of the

software development. There are many semiformal

methods and notations used in this regards, such as

petrinets, qualitative logics, automata theory and

calculus which can be generically used for UML, which

some of them are still in research. The assessment of

the characteristics can be analyzed at the design stage

by using alternative architectural design which solves

the functional and non functional characterizes.

Performance and their constraints are the major

influential facts that support architectural design

choices. A method has been proposed for improving

and predicting the software architecture performance.

The methodology has many phases where the

performance indices can be assessed for the different

scenarios of software architecture at design level.

On the basis of the indices, it helps to decide to

improve the design or discard the design before

implementing. Thou analysis is independent from

standard notations of architectural design we focus on

visualization design tool which gives a description

based on the functional verification by model checking

and performance evaluation through a rule based

model. On the analysis side this paper employs the

queuing network. The main aim of choosing queuing

network is, it supports the relation between the

elements and components of the architectural

description. The performance indices which we have

analyzed is Response time. The transformation of

visualization tool to queuing network implies a major

set of performance analysis technique on the

architectures. This paper presents a part of

implementation of Probablistic rule and is organized as

follows. Section 2, UML Visualization tool towards

queuing networks. Section 3, queuing networks.

Section 4, the Architecture. Section 5, Implications and

Results and Section 6, Conclusion.

2. VSDT TO QUEUING NETWORKS

A transformation towards queuing networks has been

implemented with the help of VSDT, the idea of

transformation process is done with the help of QNBE

(Queuing network basic elements). The transformation

is detailed hierarchically which has helped us a lot in

our implementation. The hierarchy is the collection of

action, behavior, classification and communication

pattern which is a combination of QNBE.

3390

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121243

2.1 VSDT

Visualization software design tool is a description

language of software architecture based on the process

algebra. The VSDT represents the architectural type

which shares the behavior and topology of the

component as in Table1. The description of VSDT

starts with the name and it has various parameters of

initialization and default values.

Table 1. Behaviour and Topology of Components

The VSDT shows the complete behavior of the

software component and the relations using the

connectors. The sequence behavior shows either the

process to stop or continue. The duration of each

process element is calculated using the stochastic

process which is defined in three categories as passive,

immediate and continue. The interactions that are made

using the behavioral diagrams are classified from

various input and output interactions.The qualifier

communication shows the multiplicity of

communications that has interaction with it, the

parameters and connectors are shown under this

qualifier. The communicating must be noted if and only

if it has an interaction with other components. Using

the state transition graph, the stochastic process can be

evolved using the probabilistic theory.

2.2. QUEUEING NETWORKS

Queuing Networks is a combination of different

interactive centers of services which are represented for

the sharing of resources by the customer classes,

queuing networks are the structured models used for

the performance of the components and their

connection. This is an advantage for the design phase

of software architectures. The average performance is

calculated for the performance indices such as

utilization, throughput, workload, response time etc. at

the entire queuing network service centers. The

diagnostic information can be got for the components,

connectors, interaction and behaviors. At the later stage

an algorithm can be proposed for solving those

diagnostic information’s. Using the queuing networks

we can solve the solutions for the service centers in

respect of individual solutions and we can integrate that

solution later using multiplicity which gives a major

support in performance analysis for the components

used in architectural descriptions. Finally the solutions

can be given using the queuing network solver, thou we

don’t know the actual system performance indices at

the design level, we can use this feature in design level.

The various QNBEs are shown in fig1. Where i denotes

the various destinations, g denoted for the customer

number classes, the arrival and the time required for the

services are done using the phase distribution.

Fig1. Basic elements of Queueing elements

Design type
 Behavior

Behavior elements……..
Input / output
connectors………

 Topology
Instances……….
Interactions…………
CRC……….

End

3391

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121243

The arrival of customer classes are generated, for a

single and multiple arrivals separate unbounded

population instances are created. In case of finite class

an explicit model is created for the customer. A buffer

is created for the waiting queue to get a service at an

instance based on the round robin method. Bounded

buffer is used if any class is not extended. A service

process server is used for the customer’s different

classes. A fork is used for the different child request

process to the appropriate server classes. A routing

process forwards the customers of the classes to

different destinations with respect to the appropriated

connection that has to be made using the connectors.

The approach that we have made is to transformation

mapping between the VSDT to the QNEB as shown in

the fig1. We have followed a starting from the scratch

towards the growth of the implementation which uses

the basic elements of QNEBs. The different QNBEs

that we have used in this approach are Actions and

Behavioral patterns in Table. 2. and their corresponding

QNBEs.

Table 2. Actions and Behavioural Patterns

Actions/

Behaviours

Actions/

Patterns

QNBE

Input return/

return

get/ with

and without

condition

select/

select

visit/ visit

Single client on wait

Buffer capacity

utilized

Fork process

Unbuffered process

Output exit / exit

put/ put

Buffered process

which uses fork,

arrive and routing

Buffered process

Internal Phase/ exit

fork/ join

Single process with

arrival, fork and

routing

Fork and Join

process

2.3. BEHAVIOURAL PATTERN RULES

WITH RESPECT TO QNEB

The rules that are depicted in Table 2 are the same for

the fig1. The rows of Table2. Represents the QNBEs

and the combination of the actions and behavior pattern

rules are defined in the second Colum, the additional

assumptions are considered which has to be verified

before generating the QNBEs. We have certain rules

for depicting the QNBEs multiple arrivals, infinite

arrival, buffered fork and join process.

3. VSDT TO QUEUEING NETWORKS

This analysis model is enabled using the VSDT to

Queuing Network a java tool for transformation of

VSDT to queuing networks. The topology which we

have used has some syntactic restrictions which are

complemented by QNEB. The QNEB is connected to

create a formalized Queuing Networks with respect to

the rules. The instance of the behavioral pattern is

shown in table 2 with the help of QNEB instances. The

Queuing Networks which has been used stores the

performance information, where the VSDT is used as

an interchange format which makes the enough input

for the Queuing networks.

4. THE ARCHITECTURE
We have used architecture for the evaluation of

verification of functions and non functions,

performance evaluation and analysis in turn creates an

optimal method for the evaluation of performance

indices using probabilistic theory. The architecture

shown in the fig2. Shows how performance evaluation

is made with respect to the queuing networks. The

typical architecture shows the UML design to VSDT,

which provides an input for queuing networks.

3392

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121243

Fig 2. The Architecture

The output of the queuing network is evaluated using

the performance indices. If the indices are satisfied we

go for the development else we give a feedback for

changing/ modifying the design to get the desired

output to get better software. We have developed a

queuing network solver using the rules which can

provide a graphical output developed in java

environment. The solutions are given and represented

using a graph.

5. IMPLICATIONS AND RESULTS
This section show an implication for the rule that has

been used on the Design developed for the ATM, a

system made of getting an input through the hardware

and performs the operation with the help of the

software in a distributed system. The common services

that are requested by the hardware are making the

translation such as withdraw, deposit and additional

options on the banking transaction. The ATM hardware

performs these operations and received by a distributed

system. The experiments illustrate the usage of the

hardware, validating the transactions (using the VSTD

to queuing networks) and using probabilistic theory

checks the performance for Response time. The

implementation is not completely shown here since we

have some constraints to show it and partly under

development. The Response time of CPU, Video and

Memory have a service times of 0.5ms, 1ms and 0.5ms

respectively, the values that are shown are approximate

values of the scenarios. The parameter that we have

chosen for the performance analysis is the number of

users N, and the time for the operations as T for each

transaction. Some of the direct measures are listed

below.

Fig3.Response time and improved Response time

3393

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121243

Table 3. actions considered in the ATM

In fig3. We have shown the Response time that we

have got for the ATM. We have applied a probabilistic

theory for the analysis that is shown graphically and it

compared with each iteration of changing the design.

The actions that we have taken in our application for

this implementation are shown in the Table 3 below

with respect to the behavioral of QNBE’s.

6. CONCLUSION
In this paper we have used the VSDT for solving the

queuing network models which supports the

performance analysis for the ATM. Thou our method

try to exploit the queuing network, it tries to solve the

evaluation process for larger architectures in respect of

queuing network solvers. Many approaches are there

for transformation of architectural models to a

performance model, but all of them are not

implemented as working tools. Since we have used an

UML as an architectural description language as source

notation, the future work can be moved using an

architectural description language. We would also like

to compare with those methods without exploiting the

architectural framework.

References
[1] Kai Huang , Wolfgang Haid , Iuliana Bacivarov ,

Matthias Keller , Lothar Thiele, Embedding formal

performance analysis into the design cycle of MPSoCs for

real-time streaming applications, ACM dl., Volume 11 Issue

1, Pp 211 – 220, March 2012 .

[2] André van Hoorn, Et.al, Kieker: a framework for

application performance monitoring and dynamic software

analysis, Proceeding ICPE '12 , ACM dl.,Pp 247-248, 2012.

[3] Christina J. Hopfea,Jan L.M. Hensen,Uncertainty analysis

in building performance simulation for design support,

Volume 43, Issue 10, Pp 2798–2805, October 2011.

[4] Marco Bozzano, Et. Al., Dependability and Performance

Analysis of Extended AADL Models, Computer Journal,

Volume 54, Issue 5,Pp. 754-775,2011.

[5] Vitaly Chipounov, Et.al, S2E: a platform for in-vivo

multi-path analysis of software systems, Proceeding

ASPLOS XVI, Pp 265-278, 2011.

[6] Anne Martens, Heiko Koziolek, Steffen Becker, Ralf

Reussner ,Automatically improve software architecture

models for performance, reliability, and cost using

evolutionary algorithms, Proceedings of the first joint

WOSP/SIPEW international conference on Performance

engineering,Pp 105-116 ,2010

[7] Remco R. Bouckaert,Eibe

Frank,Et.al,WEKA:Experiences with a Java Open-Source

Project,The Journal of Machine Learning, Volume 11,Pp

2533-2541,2010.

[8] Jing Xu,Rule-based automatic software performance

diagnosis and improvement, Elsevier, Volume 67, Issue 8, Pp

585–611, August 2010.

[9] Heiko Koziolek,Performance evaluation of component-

based software systems: A survey,Elsevier, Volume 67, Issue

8, Pp 634–658, August 2010.

[10] R. Aroul canessane, S. Srinivasan, A Study of SSASS:

Methods for Analyzing the Software Architecture, CIIt,

Vol5,No6,pp 212 - 217,2013.

[11] R. Aroul canessane, S. Srinivasan, UML Model

Transformation for a Product Line Design,IJET, Vol 5,No5,

pp 3726-3733, 2013.

Action
Service Time
(ms)

Mapping

1 0.5 Phase

2 0.25 Branch

3 0.25 Phase

4 0.45 Logical

5 0.35 Phase

6 0.3 Branch

7 0.15 Phase

8 0.25 Logical

9 0.75 Logical

10 0.8 Hardware

11 0.2 Phase

3394

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121243

[12] Reza Vaziri, Reza Javidan,A Bayesian Based Model for

Evaluation of Software Architecture Reliability, European

Journal of Scientific Research,Vol.63 No.2, pp.243-254,2011.

[13] Cheung, L., Roshandel, R., Medvidovic, N, Early

prediction of software component reliability, Proceedings of

the 30th international conference on Software engineering,

Leipzig, Germany, 111-120, 2008.

[14] Hendrickson,Et.al., Modeling Product Line Architectures

through Change Sets and Relationships. In Proceedings of the

29th international Conference on Software Engineering.

International Conference on Software Engineering. IEEE

Computer Society,washington, DC, pp. 189-19, 2007.

[15]Wagner, Et. Al., Modeling SoftwarMachines: A Practical

Approach, by Taylor & Francis Group, LLC, 2007.

Authors

R. Aroulcanessane received the M.E.in

Computer Science and Engineering from Sathyabama

University, Chennai , Masters of Computer

Applications from St. Joseph’s College of Engineering,

Chennai, University of Madras. He is presently

pursuing the Ph.D degree in the Department of

Computer Science and Engineering, Sathyabama

University, Chennai, India. He has 13 years of
experience in Teaching. He has also held various

responsibilities as a part of his research. He has

published around 8 research papers in journals and

conferences. He has written books for some of the

universities. His research area is Software Engineering

and also interested in Data Base Management Systems

and Data Warehousing and Mining.

S. Srinivasan received the Ph.D degree in

Computer Science & Engineering from the Sathyabama

University, Chennai, and M.Tech. in Computer Science

& Engineering from the Indian Institute of Technology,

Chennai, and M.B.A. in Systems & Finance from

Sathyabama Engineering College, University of

Madras, Chennai, and the M.Sc. in Mathematics from

the Gobi Arts College, Gobichettipalayam, Bharathiar

University, Coimbatore. He is presently working as

Professor and Head, Department of Computer Science

and Engineering , Anna University, Regional Centre,

Madurai. He has 20 Years of experience in Teaching

and Research. He has also held various positions and

responsibilities in Technical Institutions. He is acting

as expert member at various universities in various

capacities.. He has published more than 40 research

papers in journals, books, conferences, and workshops.

His research interest includes text mining, data mining

& data warehouse, and Software Engineering.

3395

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS121243

