
  

 

 

  
 

Perfunctory Issues Errand to Superfluous Effectual Prophetic System 

Deepak Gaur
1, 

Richa Gaur
2 

# 1
 Assistant Professor, Department of Mechanical Engineering 

#2
 Assistant Professor, Department of Electronics & Communication Engineering 

J.M.I.T, Radaur, Yamunanagar, Haryana, India 
 
 

 

Abstract 
Defy for prophetic technologies from the 

viewpoint of both system chic and consumer will 

be addressed. However, there are still 

methodological and technological matters that 

must be dealt with to provide more effective 

prophetic systems.These defy include 

implementing optimum sensor systems and 

settings, selecting applicable prophetic methods, 

addressing prognostic uncertainties, and 

estimating the cost-benefit implications of 

prophetic implementation. The explore prospects 

are summarized as well. 

“1. Introduction” 
Many names have been used to describe prophetic. 

For example, the prophetic technology used in U.S. 

Army rotorcraft was called the Health and Usage 

Monitoring System (HUMS) [4]. In aerospace, 

Integrated Vehicle Health Management (IVHM) 

was the term given for prophetic of reusable 

rockets, and later for various space applications 

used by NASA [5]. In other fields of the military, 

several prophetic labels have been defined, 

including the Aircraft Condition Monitoring 

System (ACMS), the Engine Monitoring System 

(EMS) [6], [7], the Integrated Diagnostics and 

Prophetic System (IDPS) [8], and the Integrated 

Condition Assessment System (ICAS) [8]. In the 

Joint Strike Fighter (JSF) program, the name 

Prophetic and Health Management (PHM) was 

adopted [9], [10]. Since then, prophetic technology 

has become an area of flourishing international 

research. Many prophetic practices have been 

conducted in various engineering applications, such 

as in the defense and military industry [4]–[11], the 

aerospace industry [12]–[14], wind power systems 

[15], civil infrastructure [2], batteries [16], 

mechanical manufacturing [17]–[23], consumer 

electronics, and computers [24]–[31]. For 

aerospace systems, Pratt & Whitney implements 

advanced prophetic and health management 

systems in their engine for the F135 multipurpose 

fighter [12]. Similar diagnostic and health 

monitoring systems are included in the Airbus 

A380 and Boeing 787 as well. For electronics 

systems, physics-of-failure (PoF) based methods 

have been shown to be effective for prophetic. The 

PoF approach uses a product’s actual 

environmental and operational loads, together with 

PoF models, to calculate the accumulated damage, 

and predict the RUL of the product [24], [25]. The 

PoF-based approach has been successfully applied 

to notebook computers [26], the electronics in the 

NASA space shuttle solid rocket booster [27], 

commercial off-the-shelf (COTS) devices [28], and 

flash memory [29]. On the other hand, data-driven 

methods are also widely used in electronics 

prophetic. Prophetic has been implemented using a 

variety of techniques. The most important 

techniques are Markov chains, stochastic processes, 

and time series analysis. Some applications in 

electronics where data-driven approaches have 

been used for RUL estimation include computer 

servers [32], global positioning systems [33], 

avionics [34], and power electronics devices 

(IGBTs) used in avionics [35]. A fusion prophetic 

approach, which combines data-driven and PoF-

based methods, has been developed to estimate the 

RUL of electronic components and systems [36], 

[37]. From all the applications that use prophetic, 

we can see that implementing prophetic generates 

many benefits. In this paper, the key benefits of 

prophetic are presented in Section II. The current 

barriers and technological defy involved in 

implementing prophetic are discussed in Section 

III, and research opportunities are discussed in 

Section IV. 

 

 “2.Defy for the execution of   

Prophetic’’ 
The implementation of a prophetic system 

generally includes several key processes and 

technologies, such as data acquisition, data 

processing, fault diagnostics, prophetic, and 

decision reasoning (see Fig. 3). Prophetic system 

implementation has its own life cycle process, 

including design and development, test and 

evaluation, verification and validation, production, 

and application [71].Although the list of the major 

benefits of prophetic is impressive, prophetic 

technologies are still not mature enough. The 
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following subsections discuss defy facing the 

implementation of prognostic. 

 

“3. Employing most favorable Sensor 

assortment and Localization” 
Data collection is an essential part of prophetic. It 

often requires the use of sensor systems to measure 

the environmental, Inaccurate measurements 

resulting from improper sensor selection and 

localization (e.g., making sure the sensor is in the 

right position to obtain the right 

 
 

―Figure3. Major gears of prophetic execution‖ 

 

data) or inadequate measurements can degrade the 

prognostic performance. An approach is also 

needed [72] to conduct trade-offs for various types 

of sensors (pressure, speed, thermal, humidity, 

optical, magnetic, electric, sound, gas) in terms of 

precision, sensitivity, stability, power consumption, 

reliability, and sensor networking. Knowledge of 

the appropriate performance parameters or 

precursors to be monitored will help in the 

selection of the right sensor for the product. The 

sensors that are selected should be able to 

accurately measure the change in the parameters 

linked to the critical failure mechanisms. The 

successful implementation of PHM relies on data 

from the system. When sensors are used to collect 

these data, the possibility of sensor failures must 

also be taken into account. Some strategies to 

improve the reliability of sensors have been 

presented, such as using multiple sensors to 

monitor the same system (i.e., redundancy), and 

implementing sensor validation to access the 

integrity of a sensor system and adjust or correct it 

as necessary [13]. 

 

“4. Selecting Applicable Prophetic 

Methods” 
When data are transmitted, it is necessary to 

consider noise and interference in data obtained 

from sensors, which can influence prophetic 

performance and accuracy. Therefore, the data used 

for prophetic need to be preprocessed (through 

processes such as data filtering and reduction). 

There are many filters, but a priority selection 

process has not yet been developed. Generally, 

methods for prophetic can be grouped into data-

driven methods, PoF-based methods, and fusion 

methods [1], [75], [76]. Data-driven methods are 

based on machine-learning techniques, and 

statistical pattern recognition. PoF-based methods 

utilize knowledge of a product’s life cycle loading 

and failure mechanisms to assess its reliability. The 

fusion prophetic approaches combine PoF-based 

and data-driven approaches [32]–[37]. Prophetic 

methods can vary widely for different types of 

products and failure modes. Proper selection of 

prophetic methods for a particular domain is a key 

factor that determines whether a prophetic system 

will be effective. Data-driven methods are based on 

machine-learning and statistical techniques. These 

algorithms can be implemented at the system, 

subsystem, or component levels [77]. In general, 

machine-learning techniques can be classified into 

three categories: supervised, unsupervised, and 

semi-supervised learning approaches. The training 

data used by supervised and semi-supervised 

learning need to be classified correctly, which 

might affect the confidence level of the algorithm. 

Additionally, optimization and search methods are 

often employed in these data-driven methods, and 

their computational complexity and tractability are 

critical for efficient and effective algorithms. On 

the other hand, these data-driven methods often 

address only anticipated faults, in which a fault 

―model‖ is a construct or a collection of constructs, 

such as artificial neural networks (ANNs), support 

vector machines (SVMs), expert systems, etc., that 

must be trained first with known prototype fault 

patterns (data) [2]. For unsupervised learning 

approaches, the given data have no predefined 

classes, and do not include any labeled data. The 

algorithm using unsupervised learning finds 

clusters by itself from its unlabeled data. There are 

different ways of dividing the data into clusters, 

and many different ways to prescribe clusters. The 

same data might be differently clustered according 

to its clustering algorithm. Acquisition of labeled 

input data is costly because an expert needs to 

distinguish the class of data. Statistical techniques 

are divided into parametric and non-parametric 

methods based on whether the information 

regarding the distribution of the data is assumed or 

not. These methods are very mature [78]. However, 

a large amount of failure data is needed to 

implement these approaches to allow for analysis, 

and this can be more problematic if the monitored 

systems exhibit intermittent faults. Most data-

driven approaches depend on historical (i.e., 

training) system data to determine correlations, 

establish patterns, and evaluate data trends leading 

to failure. In many case  there is an insufficient 

amount of historical or operational data to obtain 

health estimates, and determine trend thresholds for 

failure prophetic. This condition is true, for 

example, for stored, standby, and non-operating 
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systems, which are nevertheless subject to 

environmental stress conditions. There are also 

defy in systems where failures are infrequent [2]. 

PoF-based prognostic methods utilize knowledge 

of a product’s life cycle loading and failure 

mechanism models, control models, or some other 

phenomenologically descriptive models of the 

system to assess product reliability, and estimate 

the system’s remaining life [1], [75]. The 

advantage of a PoF-based method is often its ability 

to isolate the root cause(s) that contribute to system 

failure [77]. However, sufficient information about 

the product is needed. For example, in PoF models, 

the materials, geometry, and operational and 

environmental conditions are required. In complex 

systems, these parameters may be difficult to 

obtain. The development of models requires some 

knowledge of the underlying physical processes 

that lead to system failure, but in complex systems 

it is difficult to create dynamic models representing 

the multiple physical processes occurring in the 

system [1]. This is one of the limitations of PoF-

based approaches. As noted, a requirement of the 

PoF-based approach is that system specific 

knowledge, such as geometry and material 

composition, is necessary but may not always be 

available. Further, failure models, or graph-based 

models are not suitable for the detection of 

intermittent system behavior because they are 

modeled for specific degradation mechanisms, or 

for the diagnosis of specific faults, respectively. In 

addition, PoF-based methods 

 
―Figure4. Uncertainties in PoF-based 

electronic prophetic‖ 

cannot be used on every component in a complex 

system due to technical and economic 

considerations. Pecht et al. [32]–[37], [79] 

developed a fusion prophetic approach that 

combines the PoF and the data-driven approaches 

to estimate the RUL of a product in its actual life 

cycle conditions. The combination of the PoF 

approach and the data-driven approach provides a 

means to correlate data trends and precursor events 

with failure mechanisms, and also to isolate the 

root cause of failure. The data-driven approach is 

used to carry out product diagnostics by anomaly 

detection, while information from the PoF models, 

product standards, and specifications is 

incorporated into the data-driven techniques for 

estimation of RUL. The parameters causing 

anomalous behavior are isolated using data-driven 

techniques or knowledge of the PoF. These 

parameters are used to identify the failure 

mechanisms and relevant PoF models, and for RUL 

estimation. This fusion method therefore combines 

the strengths of the individual approaches to 

provide more accurate diagnostics and estimation 

of RUL, as well as information regarding the 

parameters that indicate product failure, thereby 

helping with root-cause analysis.  

 

“5. Dealing with Prophetic vague and evaluating 

Prophetic precision” 

Another major challenge for the use of prophetic is 

the need to develop methods that are capable of 

handling real world uncertainties that lead to 

inaccurate predictions. For example, Gu et al. [74] 

studied various sources of prognostic uncertainty. 

In their study, they found that measurement 

inaccuracies of the sensors were one of the main 

sources leading to uncertainty in their prophetic 

application. Prophetic errors can lead to 

unnecessary preventive maintenance due to 

underestimation of system remaining life (false 

alarms) on the one hand, and unnecessary system 

failures and even catastrophic events due to 

overestimation of RUL on the other hand. Although 

some methods for uncertainty analysis and 

assessment using PoF models have been developed, 

there are several defy to the implementation of 

uncertainty into prophetic [80], [81]. Fig. 4 shows 

some sources of uncertainty for PoF-based 

electronic prophetic [2]. These uncertainties are 

generally grouped into three different categories: 1) 

model (PoF and accumulative damage) uncertainty 

caused by model simplification and model 

parameters, 2)  

 
―Figure 5. Schematic illustration of prognostic 

accuracy concept‖ 
 

[2]. measurement and forecast uncertainty induced 

by life cycle environmental and operational loads, 

and 3) uncertainties with the characteristic 

parameters (geometry and materials) of products 

mainly caused by the production process. These 

uncertainties can lead to the significant deviation of 
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prophetic results from the actual situation. For data-

driven methods, long prognostic distance (as shown 

in Fig. 2.) prediction of RUL or time to failure 

increases the uncertainty bounds due to various 

sources, such as measurement or sensor errors, 

future load and usage uncertainty, model 

assumptions and inaccuracies, loss of information 

due to data reduction, prediction under conditions 

that are different from the training data, and so on 

[1]. Hence, the development of methods that can be 

used to describe the uncertainty bounds and 

confidence levels for values falling within the 

confidence bounds is required. Another research 

area is uncertainty management, where methods are 

being investigated to reduce the uncertainty bounds 

by using system data as more data become 

available [82], [83]. Prognostic accuracy 

assessment technologies are necessary for building 

and quantifying the confidence level of a prophetic 

system. Methods to impartially evaluate the 

effectiveness and accuracy of prophetic are 

required. As mentioned above, uncertainties can 

affect the prediction of actual failure time for field 

products, which are characterized by an actual life 

distribution interval rather than an actual life 

single-point value [84], [85]. On the other hand, 

with the consideration that the geometry and 

material parameters of field products cannot be 

measured one by one, and that future loads are 

inherently uncertain, the prognostic life of PoF 

models should be expressed as a distribution (i.e., 

prognostic life distribution). Fig. 5 illustrates the 

difference between an actual life distribution and a 

prognostic life distribution. An ideal prognostic 

accuracy and effectiveness case is one where the 

prognostic life probability density function (PDF) 

is narrow (i.e., has a small distribution span) and is 

fit to the actual life PDF (i.e., a prognostic 

distribution curve consistent with the actual 

distribution curve).There is no general agreement 

as to an appropriate and acceptable set of metrics 

that can be employed effectively to assess the 

technical performance of prognostic systems [84]. 

Leão [87] proposed a set of metrics to evaluate the 

performance of prophetic algorithms, including 

prophetic hit score, false alarm rate, missed 

estimation rate, correct rejection rate, prophetic 

effectivity, etc. Saxena [88] also suggested a list of 

metrics to assess critical aspects of RUL 

predictions, such asprognostic horizon, prediction 

spread, relative accuracy, convergence, 

horizon/precision ratio, etc. Although efforts have 

been made to cover most PHM requirements, 

further refinements in concepts and definitions are 

expected as prophetic  matures. 

 

 

“6. Scrutinizing expenditure-profit of 

Prophetic relevance” 
The benefits of prophetic are many, but prophetic 

also costs money in terms of acquisition and 

installation costs, implementation costs, and 

changes in business practices. Apart from those 

PHM costs, the cost of re-design of host product 

can be a big investment. For example, to deploy a 

sensor and microprocessor on a ball bearing or 

gearbox, the original cables need to be re-wired to 

supply power to the sensor. The casting must also 

be re-designed to take in the sensor and protect it 

from the environment. These implementation costs 

need to be accounted for. If there is no economic 

benefit (or too high of a perceived risk, particularly 

regarding consequential damages), system vendors 

may not wish to implement PHM. Cost-benefit 

analysis (CBA) and quantitative assessment are 

therefore essential for assessing the effectiveness of 

prophetic [89]–[92]. There are many financial 

metrics that can be used in a cost benefit 

quantitative analysis, including net cash flow, 

cumulative cash flow, payback, return on 

investment (ROI), net present value (NPV), and 

internal rate of return (IRR) [45], [93].Among all 

these metrics, ROI is one of the most selective 

metrics. ROI tells us the rate of return on the 

investment in prophetic, which enables the 

investment in prophetic to be compared with other 

competing investments [63], [88]. The benefits as 

mentioned above help the prospective user of 

prophetic understand the practical drivers of this 

technology, but the user still needs more 

information to justify their investment in the 

technology. The information that is most useful to 

the user is a calculated ROI for their particular 

system that provides a financial assessment of the 

benefit of the investment. ROI involves an analysis 

of the cost avoidances made possible by using 

prophetic technology against the costs associated 

with the development, manufacture, installation, 

and implementation of prophetic technology in 

selected systems [89]. The determination of ROI 

allows system managers to include quantitative, 

readily interpretable results in their decision 

making. ROI analysis may be used to select 

between different types of prophetic technology, 

optimize the use of a particular prophetic approach, 

or determine whether to adopt prophetic versus 

more traditional maintenance approaches. For 

instance, the Pacific Northwest National 

Laboratory (PNNL) conducted an initial CBA 

assessment to aid in decisions about whether or not 

to develop a prototype prophetic system for the 

AGT1500 gas turbine engine on the M1 Abrams 

Tank [13]. The results of the analysis indicated that 

the development and deployment of an engine 

prophetic system with approximately a dozen 
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auxiliary sensors (thermodynamic and vibration 

sensors installed via a wiring harness) would result 

in a benefit-to-cost ratio of about 11:1. One of the 

most significant defy when conducting a cost-

benefit analysis is the iterative process of selecting 

the appropriate prophetic technology based on 

assumptions of estimated benefits. For example, a 

given prognostic technology may be effective for 

assessing five of the eight possible failure modes 

for batteries; this technology would account for 

62.5% of the failures, but would cost $200 per 

battery to implement. Another technology may be 

effective for assessing the other three failure 

modes, accounting for 35% of the failures, but 

costing $150 per battery to implement [93]. This 

technology allows for the evaluation of 

technologies as a function of cost versus the 

effectiveness of the technology, because not all 

technologies have an equivalent capability. For 

example, Feldman et al. [94] analyzed the ROI of a 

precursor-to-failure prophetic approach relative to 

unscheduled maintenance, but it may not be 

consistent with the ROI of using life consumption 

monitoring methods (LRU independent methods), 

and is not specific to a particular precursor to 

failure device. Another challenge when conducting 

CBA is determining what values to select for all of 

the variables in the CBA model. The Applied 

Research Laboratory (ARL) Trade Space 

Visualizer (ATSV) provides the ability to 

iteratively solve for all of the statistically 

dependent and independent variables in the CBA 

model, and visually present all of the data for 

assessment. This tool is used to analyze the benefits 

of implementing battery prophetic on military 

ground combat vehicles [93]. The third challenge 

for determining ROI in prophetic is that it is 

difficult to quantify the benefits of prophetic 

results. Standard measures of performance need to 

be well defined in order to assess and justify the 

anticipated ROI [59], [94]–[96]. The cost benefit is 

related not only to prophetic opportunity, the 

warning lead-time interval, and user requirements, 

but also to affordable cost and acceptable safety 

risk. Additionally, the overall logistics support 

system, spare parts supply, supply chain 

management, and other related resources are also 

related to prophetic cost benefit. This system 

introduces a challenging multi-objective and multi-

attribute tradeoff, and a complex decision-making 

problem that must be dealt with. 

 

                  “8.Conclusion” 

In this paper, we have provided explanations of 

some of the key benefits of prophetic in terms of 

system life-cycle processes. It is important to 

highlight the advancements in the field of PHM 

that will enhance the practical engineering 

applications of prophetic technologies. However, 

there are still methodological and technical issues 

that must be dealt with to provide more effective 

prophetic systems. In this paper research can be in 

establishment of field prophetic system design and 

development guidelines, including hardware-

related sensor selection (e.g., sensor types, sensor 

performance, sensitivity, stability, power 

consumption, reliability, and sensor networking), 

wireless or wired data transmission, software-

related diagnostics, prophetic, and decision 

reasoning algorithms and programs. Investigate 

methods and procedures to cost-effectively 

integrate prophetic into existing systems. 

Determine how to integrate prophetic system 

design with the host system design process. 

Develop metrics and methods to impartially 

measure and evaluate the performance of a 

prophetic system.Conduct more studies on the life 

cycle return on investment attached to the 

implementation of prophetic technologies. 
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