
  

 

 

 

  

 

 

Abstract 

 
        The conventional linear controllers such as PI, PID 

can no longer satisfy the stringent requirement placed on 

high performance drive applications. These controllers are 

sensitive to plant parameter variation and load disturbance. 

Considering the lumped uncertainties with parameter 

variations and external disturbance for an actual PMLSM 

drives, a Non Linear control technique is proposed an 

Adaptive Back Stepping Sliding Mode Control(ABSMC). 

The proposed Non-linear control scheme is valid to 

compensate the lumped uncertainty with parameter 

variations and external disturbance for PMLSM drives. The 

system performance is evaluated by Matlab/simulink. The 

Result is compared with the result obtained by PI 

controller. 

 

1. Introduction  
Permanent magnet linear synchronous motors 

(PMLSMs) have been widely used for industrial robots, 

machine tools, semiconductor manufacturing equipment, 

automatic inspection machines etc. The main features of 

PMLSM are high force density, low losses, high dynamic 

performance and most importantly, high positioning 

precision associated with mechanical simplicity. However, 

since mechanical transmission devices are eliminated, the 

effects of model uncertainties such as parameter variations 

and external perturbation in PMLSM drives are directly 

transmitted to the load. In order to achieve high positioning 

precision in spite of the effects, some appropriate control 

strategies must be adopted in PMLSM drives. 

An adaptive back stepping sliding mode control (ABSMC) 

scheme which combines both merits of adaptive back 

stepping control [7-8] and sliding mode control [9], is 

proposed to control mover position of PMLSM. 

Considering the lumped uncertainty with parameter 

variations and external disturbance for the actual PMLSM 

drives, the lumped uncertainty can be observed by an 

adaptive uncertainty observer and considered to be a 

constant during the observation. Digital processing is 

feasible in practice since the sampling period of the 

observer is short enough comparing with the variation of 

the lumped uncertainty. 

 

 

 

    

 
 

 

 

              The simulated results show that the proposed 

scheme is valid to compensate the lumped uncertainty with 

parameter variations and external disturbance for actual 

PMLSM drives. 

 

2. Modelling of PMLSM 
 

Neglecting the longitudinal end effect, the mathematical 

model of PMLSM under the d-q rotating coordinate is 

written in [1] 

 

                                                                     (1)                       

                                                                          

                                         

                                                                   (2)                            

 

 

Where d & q axis flux linkages are given as:  

 

PMddd ψiLψ  

 

 

Where PMψ  
is the flux linkage of the permanent magnet.  

Thrust force of PMLSM: 

 

                                                                               (3)           

 

Where p=No. of Pair Poles, τ = PM pole pitch 

 

The relation between ω (angular synchronous speed) & 
    

Linear velocity:  

 

 

 The motion equation of PMLSM is described as follows: 

          Le FDvvMF                                     (4) 

Where M is the total mass of moving elements, D 

represents the viscous coefficient; FL stands for the external 

disturbance force. 
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3. ABSMC Control Scheme 

 
Design of ABSMC controller 

 
Considering a practical PMLSM drives with parameter 

variations and external force disturbances, let 

 vd                                                                               (5) 

Lmm CFΔB)U(BΔA)d(Av                   (6) 

Where d is position, v is velocity, 

M/KB    ,M/DA    ,M1/C Fmm   , Δ A 

and Δ B are the uncertainties introduced by the variations 

of system parameters M and D respectively, qiU  is 

control input to the motor drive system. Reformulating (6), 

then 

 

FUBdAv mm
                                                     (7)     

 

In (7), F is called the lumped uncertainty, defined as  

 

LCFΔBUΔAdF                                               (8) 

 

The lumped uncertainty F can be observed by an adaptive 

uncertainty observer, the control objective is to design an 

ABSMC system for the output d in (6) to track precisely the 

reference trajectory d*. We assume  d* and its first two 

derivatives ** d,d  are all bounded functions of time. The 

proposed ABSMC system is described as follows. 

For the position tracking  objective, the tracking error is 

defined as  
*

1 dde                                                                      (9) 

 

The derivative of 1e  is  

*

1 dve                                                                     (10) 

 

Define stabilizing function 

 
*

111 dekα                                                            (11) 

where 1k  is a positive constant. The first Lyapunov 

function is chosen as follows 

 

2

11 e
2

1
V                                                                      (12) 

Define 12 αve , then the derivative of 1V is 

21

2

111 eeeke*eV                                          (13)    

The derivative of  2e  is described as follows 

 
**

11mm2 d-ekFUBvAe 
                         

 (14)                             

 

 

Define Lyapunov function  

 

2

12 s
2

1
VV                                                           (15) 

 

Take the sliding surface 

21kes e                                                                 (16) 

 

Using (13) and (14), the derivative of (15) can be 

expressed as 
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According to (17), BSMC law is taken as 

 

βsgn(s)]h(sαd-sgn(s)F
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                                                                                       (18) 

where h and β are all positive constants. Substituting (18) 

into (17), then 

sFFsshβhseeekV 2

21

2

112
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                                     (20)                                               

                                                                                         

In practical applications, since the lumped uncertainty F is 

unknown, its bound is difficult to obtain, therefore, an 

adaptive law is proposed to adjust the value of the lumped 

uncertainty F̂ .The following Lyapunov function is chosen 

 

2

23 F
~

2λ

1
VV                                                      (21)   

 

where F̂FF
~

 , λ   is a positive constant. Take the 
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derivative of  V3 
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                                                                                                                  (22)                                

 

According to (22), an ABSMC law can be proposed 

 

βsgn(s)]h(sαdF̂       
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                                                                                    (23) 

An adaptive law is designed 

λsF̂


                                                                       (24) 

 

Stability Proof 

 

Substituting (23) and (24) into (22), then 

0shβQeeV T

3
                                         (25) 

where Q is a positive symmetric matrix in (20).Let 

shβQeeW(t) T
                                              (26) 

 Then 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

  Fig.1 Simulation diagram of PMLSM ABSMC     

t
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                                                                                     (27)   

 Since Lyapunov function 3V 0  is stable,   

(0))e(0),(eV 213  is bounded and )(t)e(t),(eV 213  is 

non-increasing and bounded. The following result is 

obtained 

dτ)W(

t

0

<                                                     (28)    

Since  1e and 2e  are all bounded, according to stability 

theorem, 1e  and 2e are also bounded. Therefore, (t)W  is 

bounded. W(t)  is uniformly continuous. According to 

Barbalat’s lemma[11], the following result can be obtained 

 

  0)W(                                                           (29) 

 

When t  1e and 2e  converge to zero, that is 

 d(t)= 
*d  and    v(t) 0                              

                         

Therefore, the control system is asymptotically stable even 

if the lumped uncertainty exists. 
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4. Simulation Results                 

 

 

To show the validity of theory analysis and investigate the 

effectiveness of proposed scheme, simulation is carried out 

for a PMLSM drive. The diagram of PMLSM ABSMC 

system is described in Fig.1.The normal values of PMLSM 

parameters, resistance Rs=2.785Ω, inductance L=8.5e-3H, 

number of pole the pairs P=2, total mass of the moving 

element system Mn=2.78kg, viscous friction coefficient 

Dn=36N/s. The reference position command of PMLSM is 

given, d*=0.05sin2πt m, and position command of Step was 

also applied(response shown in Fig.4 and Fig.5). The 

uncertainties introduced by parameter variations and 

external perturbation in the drive are set the following 

values, M=3Mn, D=2Dn, FL =200N. The parameters of the 

ABSMC are chosen as k=1000, k1=500, h=2, λ=14, β=2. In 

order to avoid the chattering phenomena, the switch 

function of sliding mode control laws in (18), (23) is 

replaced by saturated function in simulation. The lumped 

uncertainty bound F  is taken 0.2, which is a trade off 

between the limitation control efforts and the possible 

perturbed range of parameter variation and external 

disturbance. The simulation results of ABSMC drive are 

depicted in Fig.2. To further demonstrate the best control 

performance of ABSMC drive, the simulation results of PI 

controller under same conditions are also given in 

Fig.3.From the simulated results; the mover position 

tracking is subject to parameter variations and external 

disturbance in Fig.3(c). Conversely, robust tracking 

performance is obtained in Fig.2(c) under the occurrence of 

lumped uncertainties. Compared with the BSMC in Fig.3 

(d), the position tracking error of ABSMC is less than 

±5μm.The proposed scheme can confront the influence of 

parameter variations and external disturbance effectively, 

mainly owing to online adaptation for lumped uncertainty. 

It is shown that the ABSMC can track precisely reference 

command in the case of existing lumped uncertainty with 

parameter variations and external perturbation. 

         

 
 

   (a) Mover position (M=Mn, D=Dn, LF =0) 

 

 

 

 

 

 

 
 

 (b) Position error (M=Mn, D=Dn, LF =0) 

   

 

(c) Mover position (M=3Mn, D=2Dn, LF =200N) 

 

 

 

 

(d) Position error (M=3Mn, D=2Dn, LF =200N) 

Fig.2.The results of ABSMC drive 
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(a) Mover position (M=Mn, D=Dn, LF =0) 

 

 

 
 
 

(b) Position error (M=Mn, D=Dn, LF =0) 

 

 

(c) Mover position (M=3Mn, D=2Dn, LF =200N) 

 

 

(d) Position error (M=3Mn, D=2Dn, LF =200N) 

Fig.3.The results of PI control drive   

 

 

 

 

    Mover position (M=Mn, D=Dn, LF =0) 

Fig.4. The result of PI control drive for Step Command 

 

 

 
 

           Mover position (M=Mn, D=Dn, LF =0) 

Fig.5: The result of ABSMC control drive for Step 

Command 
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5. Conclusion 

 

Implementation of ABSMC system for the mover position 

control in PMLSM drives has been particularly 

demonstrated. This paper also demonstrated the design, 

stability analysis. 

A simple adaptive law to adjust the lumped uncertainty in 

real time was proposed to relax the requirement for the 

bound of lumped uncertainty.  

The effectiveness of the proposed control scheme has been 

confirmed by simulation and is robust with respect to motor 

parameter variations and external perturbation. 
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