
PID Control System Design for IMU Sensors
Debuggin tool for MPU 6050

Hemaya S

Computer Science and Engineering
Adichunchanagiri Institute of Technology,

Jyothinagara, Chikkamagalur – 577102, Karnataka India

Sinchana Acharya
Computer Science and Engineering

Adichunchanagiri Institute of Technology,
Jyothinagara, Chikkamagalur – 577102, Karnataka India

Abstract—Proportional-integral-derivative(PID)

Controllers are basically used in ICS – Industrial Control

Systems due to the reduced number of parameters. These

parameters are tunable. This paper concentrates on the work

done on the PID control system specially for IMU (Inertial

Measurement Unit) type of sensors. We focus on MPU 6050 –

a gyro accelerometer sensor which is widely used to study and

understand the relative position of any object on earth.

Currently, the existing system, offers less way to debug the

sensor values through approximation which is not accurate at

times. In this paper, we are focused in developing a program

along with some headers which can bring out the PID values,

along with other parameters essential for debugging the

relative position of the sensor at any given time.

Keywords— Robust PID Control, Arduino, Header Files,

PID Values, MPU 6050

I. INTRODUCTION

PID controllers are the most popular controller system

used in industries, robust PID controller gives more robust

output than classical PID controller. Their parameters are

tuned according to the instability and delay induced by

networked system and creates a safety margin in terms of

phase and gain margins. They provide control signals that are

proportional to the error between the reference signal and the

actual output (proportional action), to the integral of the error

(integral action), and to the derivative of the error (derivative

action), namely

where () and () denote the control and the error
signals, respectively, and , and are the parameters to be
tuned. The corresponding transfer function is given as

The main features of PID controllers are the capacity to

eliminate steady-state error of the response to a step
reference signal (because of integral action) and the ability
to anticipate output changes (when derivative action is
employed).

The InvenSense MPU-6050 [1] sensor contains a MEMS

[2] accelerometer and a MEMS gyro. It is very accurate. It

contains 16-bits analog to digital conversion hardware for

each channel. It also captures the x, y, and z channel at the

same time for any given axis. The sensor uses the I2C [3]

(Inter-Integrated Circuit) bus for communication.

Arduino / Genuino Uno [4] is a microcontroller board

based on the ATmega328P. It has a set of 14 digital

input/output pins (of which 6 can be used as PWM outputs)

and 6 analog inputs. A 16 MHz quartz crystal acts as the heart

of the Microcontroller, a USB connection for communicating

with computers, a power jack, an ICSP header and a reset

button. The way it works is simply connect it to a computer

with a USB cable or power it with a AC-to-DC adapter or

battery and start programming.

II. LITERATURE SURVEY

A thorough study was carried out to find, how basically a

PID Controllers are designed programmatically and tuned.

During, this study we came across several huddles, such as

there was no definitive program to determine the exact

position of the sensor at any given time. These sensors are

basically used in
Aeronautics, Flying equipment’s, and to stabilize objects on

any form of two legs or wheels. In order to achieve this, we

need the Yaw, Pitch and Roll values of the sensor. These are

calculated from the sensor using Program. But they provide

only the final values of YPR (Yaw, Pitch, Roll) but not the

initial angles of impact. With the final YPR values, it is

impossible to determine the angle of impact and also find the

stable , and

A. Why MPU 6050

For any IMU (Inertial Measurement Unit), to determine
whether the object is falling or accelerating towards a
direction, we need a Gyroscope and Accelerometer. MPU
6050 Is a combination of both of these and also has a 6
degree of freedom. Basically, 3 degree of freedom is quite
enough for any starters, but we wanted to start from the
intermediate state, so MPU 6050. Most importantly, it is a
I2C device.

B. How is PID calculated

Arduino uses a basic robotic protocol called I2C to

communicate with I2C devices. For this, they have something

called a Wire Library [5]. This library is basically used to

communicate with I2C / TWI devices. On the Arduino Uno

boards with the R3 layout (1.0 pinout), the SDA (data line)

and SCL (clock line) are on the pin headers close to the AREF

pin. There are both 7- and 8-bit versions of I2C addresses. 7

bits identify the device, and the eighth bit determines if it's

being written to or read from. The Wire library uses 7 bit

addresses throughout. The addresses from 0 to 7 are not used

because these are reserved therefore the first address that can

be used is 8.

𝑢(𝑡) = 𝐾𝑝 [𝑒(𝑡) +
1

𝑇𝑖

∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑

𝑑𝑡
𝑒(𝑡)

𝑡

0

]

𝐾(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑆
+ 𝑇𝑑𝑆)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETAIT - 2017 Conference Proceedings

Volume 5, Issue 06

Special Issue - 2017

1

For simplicity purposes, we have chosen, Arduino Uno.
This is the basic version, which has the capability to handle
all types of IMU Sensors along with I2C communication.

I2C for Arduino was created by DSS Circuits [6] and
another version by Rambo [7]. These were developed more
than 5 years back, the program used to debug or calibrate
the PID is provided by Brett Beauregard [8].

III. CURRENT SYSTEM DESIGN

Current program which include a PID Header and CPP
files are designed to just display whether the device is alive
or not. Whether the DMP is enabled or not. But, the
program fails to provide the exact input values to the
sensor, or , and

Fig. 1. PID_V1 Values for a MPU 6050

Let us look into the PID_v1 header along with its CPP

file to see, what the headers are intended to do.

A. PID_v1.h

This header file [9] basically is used to calculate PID

values but never display them. They use the .cpp files to get

the input from the sensor, manipulate them using some

functions and then derived those outputs which can be used by

the controller for navigating the robot. This file, just declares

all the functions which will be used in calculating the , and

values. These functions include: PID, Compute, SetTunings,

SetSampleTime, SetOutputLimits, SetControllerDirection and

Initialize.

B. PID_v1.cpp

• This .cpp file [10] imports files from Arduino and
WProgram to enable it to interact with the
microcontroller and sensor.

• Function PID: A common constructor to give some

predefined generic values, as the program starts
with some unreliable defaults.

• Function Compute: This function will calculate a

new PID value if needed else it won’t. It returns
true if the output is computed else false.

• Function SetTunings: The basic use of this part is to

make changes to the controller’s dynamic
performance to be adjusted. It is either called
manually or from the constructor.

• Function SetSampleTime: This function sets a time

frame at which the calculation has to performed
every time.

• Function SetOutputLimits: This function is used

more often than SetInputLimits. This is done
basically because the input is of the range 0 – 1023
which is fixed. But, the output may vary depending
upon the programs calculation and usually it is not
so predictable. Hence, to reduce the output given by
the program within a given set of ranges i.e., 0 –
125.

• Function SetMode: This function allows the

controller mode to be set to manual (0) or
automatic(non-0).

• Function SetControllerDirection: This function will

make the PID be connected to a DIRECT acting
process or a REVERSE acting process.

• Function Status: These functions return the status to

the controller.

C. Limitations

• No Input value is seen on the output screen.

• Three key terms, which were calculated, are never
displayed but only returned to the program. This
makes it difficult and more program code has to be
present in the Arduino to debug it, which in turn
takes more memory in the controller, thus
decreasing the performance.

• It makes it hard for basic beginners, to debug and

develop a program without knowing the , and
values.

• Input values to the sensor and output values to the

sensor are never seen on screen.

D. Memory usage

This sketch uses 17564 bytes (54%) of program storage
space. Maximum is 32256 bytes. Global variables use 909

bytes (44%) of dynamic memory, leaving 1139 bytes for
local variables. Maximum is 2048 bytes.

These limitation, has been the inspirational and driving

factor for me to develop a new header and class file that
will provide all these values and also better help as a
debugger program

IV. PROPOSED SYSTEM – PID_V2.H & PID_V2.CPP

After analyzing detailly on how PID works on IMU
type of sensors, we developed a program, that without
interrupting the system, would also capture the values of ,
and and
display them along with other parameters on the serial
monitor. This will allow us to determine at what exact
position was the sensor last seen, what is the input of the
sensor, what is the values calculated and what will be the
output. The challenge would be to achieve this, without
increasing the time or without creating any additional
interrupts that may slow down the process.

A. PID_v2.h

The header file is similar to the one of the PID_v1 but it
has some additional components. It has a DEBUG with the
following parameters – Name, Variable, Spaces, Precision,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETAIT - 2017 Conference Proceedings

Volume 5, Issue 06

Special Issue - 2017

2

TempStringName which in turn are retrieved using the .cpp
file and displayed

B. PID_v2.cpp

• This .cpp file imports files from Arduino and

WProgram to enable it to interact with the

microcontroller and sensor. The .cpp file also includes

all the parameter of the PID_v1.cpp with 2 new

additions. 1 a new Function and 1 Definition. The

Definition carries out the part of debugging, getting

values and displaying them on screen.

• Definition DEBUG: It is defined to capture values
on the stream between calculation and display them
for every 100 milliseconds.

• Function PrimeIntegral: This function forces a value

to the output to prime for restart in case of any
stalls.

C. Advantage over PID_v1.h

1) The following table clearly shows the value that will

be seen on the screen during debug or output mode

TABLE I. OUTPUT VALUES DISPLAYED

V. RESULTS

A detailed analysis was carried out on both the

programs.
Varying from Big Omega (Ω) to Big O (O) and Small O
(O) to Small Omega (ω). The following are the finding
between the both headers

A. Program Execution

When the program was executed, the PID_v2.h seems to

have an advantage over the PID_v1.h. This is due to the fact

that since the program is reduced in lines has a better

execution rate.

Fig. 2. PID_V2 Values for a MPU 6050

Figure 2 clearly shows the use of PID_v2.h header file

and the output with all the parameters as displayed in the
table.

2) Lesser or same time equivalent in terms of program

execution and results display without any lag

D. Memory

Sketch uses 19134 bytes (59%) of program storage
space. Maximum is 32259 bytes. Global variables use 979
bytes (47%) of dynamic memory, leaving 1069 bytes for
local variables. Maximum is 2048 bytes.

Fig. 3. Program Execution time between PID_v1 and PID_v2

B. Memory Consumption

The memory consumed by PID_v2 is higher because
the initial memory load for the program is higher for the
header files than the PID_v1. This is due to the fact that
extra parameters are added on to the header files

Fig. 4. Memory consumbed between PID_v1 and PID_v2

But, this one has an added advantage. Instead of

PID_v1 which has to loop all variables and thus consuming

the same amount of memory every loop, but PID_v2 is a

onetime load and the rest of the cycle doesn’t require the

initial load memory.

S. No
Serial Monitor

Input SetPoint DeltaTus DeltaTs PTerm ITerm DTerm Output

1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETAIT - 2017 Conference Proceedings

Volume 5, Issue 06

Special Issue - 2017

3

C. Global Variables

Since all the variables are consumed by global
parameters, the PID_v2 global values are slightly greater
than the PID_v1.
Usually this doesn’t have any impact on as these are
loaded at the beginning of the program. This may induce
some time lag, but those are negligible.

Fig. 5. Global Variable Memory Consumption between PID_v1 and PID_v2

D. Local Variables

The memory allocated for local memory is decreased.
As the global variables are having higher values on
PID_v2, this will directly impact the memory allocated for
local variables.

Fig. 6. Local Variable Memory Consumption between PID_v1 and PID_v2

VI. CONCLUSION

Upon creating the new header file and class file, we were

able to fill in the bridge between the Sensor values and also

the Display. The main aim of this paper was to display the

sensor reading of any IMU Sensor, to help the students

calibrate the sensor reading to accuracy and also use it for

debugging purposes. A future study will be made to improvise

this header file and class file. So, that less memory

consumption and greater efficient execution of programs on

robots can be designed. This will impact on lesser time for

execution, lesser memory for program, lesser global

variables and more local variable memory for the robot to

consume. Optimization of Big Omega (Ω), Big O (O), Small

O (O) and Small Omega (ω) should be fine – tuned, so that

it can be used under all scenarios and situations.

ACKNOWLEDGMENT

I would like to thank my school teacher Mrs. L.
Rajeshwari, who laid the stepping stone for my career
towards computer programming. I would also like to thank
my college professors, who has been very kind and helpful
in this regards, throughout the project.

REFERENCES

[1] http://playground.arduino.cc/Main/MPU-6050,

https://www.invensense.com/products/motion-
tracking/6-axis/mpu-6050/

[2] https://www.mems-exchange.org/MEMS/what-is.html
[3] https://en.wikipedia.org/wiki/I%C2%B2C
[4] https://www.arduino.cc/en/main/arduinoBoardUno

[5] https://www.arduino.cc/en/Reference/Wire
[6] http://dsscircuits.com/index.php/articles/66-arduino-i2c-

master-library

[7] https://github.com/rambo/I2C
[8] https://github.com/br3ttb/Arduino-PID-Library
[9] https://github.com/br3ttb/Arduino-PID-Library

[10] https://create.arduino.cc/projecthub/twob/self-balancing-

robot-using-blubug-8894c6

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETAIT - 2017 Conference Proceedings

Volume 5, Issue 06

Special Issue - 2017

4

