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Abstract— Plant disease detection is critical in agriculture, as early 

detection and diagnosis of plant diseases can prevent crop losses. 

This paper presents an abstract of such a system that uses 

Convolutional Neural Networks (CNN) to identify and classify 

plant disease based on images of leaves. The system includes pre-

processing techniques for image enhancement, followed by the use 

of a CNN model for feature extraction and classification. The 

system achieves high accuracy in identifying plant diseases, thus 

providing an effective tool for farmers and researchers to monitor 

and control diseases in crops. This paper concludes that CNN-

based plant disease detection systems have significant potential to 

enhance plant disease diagnosis and treatment efficiency and 

accuracy, leading to improved crop yields and overall food 

security. 

Keywords—plant disease detection, CNN, deep learning, image 

processing 

I. INTRODUCTION

Plant disease detection systems are becoming increasingly 

important in agricultural research due to the need to identify and 

address plant diseases in a timely and effective manner. In 

recent years, Convolutional Neural Networks (CNNs) have 

been used as an effective tool for image recognition and 

classification. [7] In this paper, we propose a plant disease 

prediction system using CNN that can accurately detect and 

classify different types of plant diseases based on leaf images. 

The proposed system consists of three main components: image 

preprocessing, feature extraction, and classification. In the 

preprocessing stage, leaf images are pre-processed to remove 

any background noise and enhance the contrast of the image. In 

the feature extraction stage, the CNN model is used to extract 

the relevant features from the pre-processed images. Finally, in 

the classification stage, the extracted features are used to 

classify the plant disease type. To evaluate the performance of 

the proposed system, we conducted experiments using a dataset 

consisting of leaf images of different types of plant diseases. 

The results demonstrate that the proposed system can 

accurately predict the type of plant disease with high accuracy 

and low error rate. Also, this provides a valuable tool for 

farmers and researchers to identify and address plant diseases 

in a timely and effective manner, thereby improving crop yields 

and food security. 

II. PROPOSED METHOD

A. Dataset

We use the plant village dataset which consists of 20,639 healthy 
and unhealthy leaf images of tomatoes, potatoes, and bell paper. 
The image is reduced in size to 256 x 256 pixels, and this 
compressed image is then optimized and model predictions are 
made. 

Table 1 Total number of leaves 

Leaf category Number of Images of size 256X256 

Tomato 16012 

Potato 2152 

Bell pepper 2475 

Total 20639 
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Figure 1 Healthy Leaves 

Figure 2 Diseased Leaves 

Table 2 Number of healthy and diseased leaf 

Leaf category Healthy leaf Diseased leaf 

Tomato 1591 14421 

Potato 152 2000 

Bell- pepper 1478 997 

1. Bacterial spot: Bacterial spot is a common disease that

affects bell peppers and other plants in the Solanaceae

family. It is caused by the bacterium Xanthomonas

campestris pv. vesicatoria. [8]. By using preventative

measures including sanitation, appropriate watering

procedures, pruning, and spacing, bacterial spots can be

avoided. Work in the garden without watering plants, sprays

made of copper, followed by routine monitoring and

scouting.

2. Early Blight: Numerous plants, including tomatoes,

potatoes, and other solanaceous crops, are susceptible to the

widespread fungal disease known as early blight.[8] The

fungus Alternaria solani is responsible for the outbreak.

Early blight can be prevented by performing crop rotation,

proper spacing, applying a layer of organic mulch such as

straw, or wood chips, around the base of plants.

3. Late Blight: Late blight is a destructive fungal disease that

primarily affects solanaceous crops such as tomatoes and

potatoes. It is caused by the pathogen Phytophthora

infestans. It is curable by avoiding overhead watering,

removing infected plant material, mulching, fungicidal

applications, choose varieties that have resistance to late

blight. Resistant varieties are less likely to be affected or

show milder symptoms when exposed to the pathogen,

ensure adequate spacing between plants to promote good air

circulation.[8]. Dense foliage can create a favorable

environment for late blight development and spread. Follow

the recommended spacing guidelines for your specific crop.

4. Target Spot: A fungus called target spot, also known as

corynespora leaf spot, damages a wide range of plants,

including decorative plants and food crops like tomatoes,

peppers, and other vegetables. It is caused by the fungus

Corynespora cassiicola.[8] By using preventative measures

including sanitation, appropriate watering procedures,

pruning, spacing, leaf removal, weed control, monitoring

regularly, target spots can be avoided.

5. Mosiac Virus: Mosaic viruses are a group of plant viruses

that cause a characteristic mosaic pattern of light and dark

green areas on the leaves of infected plants. There are

several different types of mosaic viruses that can affect a

wide range of plants, including vegetables, ornamentals,

and fruit trees. Mosiac viruses can be prevented by using

certifies virus-free plants, practice good hygiene, many

mosaic viruses are spread by insect pest such as aphids,

whiteflies and leaf hoppers.Implement strategies to manage

these pesrs, such as insecticidal soaps, sticky traps, or

biological control methods.[8]

6. Yellow Leaf Curl Virus: Yellow leaf curl virus (YLCV) is a

plant virus that primarily affects tomato plants, but it can

also infect other members of the Solanaceae family,

including peppers and potatoes. It is transmitted by the

whitefly insect (Bemisia tabaci). Yellow leaf curl virus can

be prevented by weed control, insect control, using floating

row covers or insect-proof nets to physically separate

tomato plants from insects, choosing tomato cultivators that

are resistant to yellow leaf curl disease, buying healthy

plants from reputable nurseries reduces the risk of

introducing the disease at first.[8]

7. Septoria Spot: The fungus disease septoria leaf spot, also

called septoria leaf blight, commonly affects a variety of

plants, including ornamental plants, fruits, and vegetables.

A fungus called Septoria spp. is responsible. By using

preventative measures including sanitation, appropriate

watering procedures, pruning, spacing, leaf removal, weed

control, monitoring regularly, septoria spots can be

avoided.[8]
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8. Spider Mites: Spider mites are tiny arachnids that belong to
the Tetranychidae family. They are common pests that can
infest a wide range of plants, both indoors and outdoors.
Spider mites can be cured by regular inspection of leaves
for any signs of spider mites, such as webbing, tiny
speaks(mites), or stippling (tiny yellow or white spots),
avoid using pesticides, use a strong water spray, provide
good air circulation.[8]

B. Data Processing and Augmentation

A powerful image classifier must incorporate image

augmentation. Even while datasets may have hundreds to a

few thousand training samples, the variety may not be

sufficient to create a reliable model.[3] The many image

enhancement choices include resizing the image, rotating it

at different angles, and flipping it vertically or horizontally.

These additions aid in increasing the amount of pertinent

data in the dataset. It is discovered that each image in the

Plant Village collection is 256 × 256 pixels in size. The

Keras deep-learning framework is used for data processing

and image enhancement.

The following are the augmentation choices used for 
training: [3] 

1. Rotation: To randomly rotate a training image at

different angles.

2. Brightness: By feeding the model photos of varied

brightness during training, brightness helps the model

adjust to changes in lighting.

3. Shear: Adjust the shearing angle.

III. PROPOSED SYSTEM

We are building a neural network model for image 
classification. This model will be deployed on a website. 
The website will use this model to identify plant leaf disease 
in real time.[3] 

1. Step 1 is to collect data.

2. The gathered dataset is pre-processed and enhanced

using Keras' pre-processing and Image-data

generation API.

3. Use pre-trained a CNN (Convolutional Neural

Network) model like mobileNet, ResNet50, and

Inception for classifying different plant diseases.

4. Build a website using reactjs with FastAPI webserver.

Convolutional Neural Network Model 

Since DL models can learn relevant characteristics from 

input images at different convolutional levels, they are the 

most popular architecture for CNNs and have recently 

attracted a lot of attention. This is similar to how the 

human brain works. Complex issues can be resolved fast 

and effectively by DL with high classification accuracy 

and low error rates[1]. The convolutional, pooling, fully 

connected, and activation layers are some of the 

components that make up the DL model. Table 3 shows  

the number of layers and parameter sizes of different CNN 

models. ResNet50 has a layer size of 50 and 25.6 million 

parameters whereas inception has 48 layers and 27 million 

parameters and mobileNet-V2 has a layer size of 28 and 

3.37 million parameters. In our work, we have used a pre-

trained ResNet50 model.[1] 

Table 3 Comparison among different CNN architectures 

regarding layer number and parameter size 

Model No. of Layers Parameters (million) 

ResNet50 50 25.6 

InceptionV3 48 27 

MobileNetV2 28 3.37 

CNN Model steps: 

• Conv2D - Conv2D is a commonly used layer in

convolutional neural networks (CNNs) for image

processing and computer vision tasks. It stands for two-

dimensional convolution and is used to extract features

from two-dimensional input data, such as images. In a

Conv2D layer, a set of learnable filters (also known as

kernels or weights) is convolved with the input data to

perform a series of convolution operations. Each filter is

a small matrix that is slid across the input data,

computing dot products at each location. This process

helps to detect different patterns and features present in

the input. The output of a Conv2D layer is a set of

feature maps, each representing a different learned

feature from the input image. These feature maps are

then passed on to subsequent layers in the neural

network for further processing.[1]

• Maxpooling - Maxpooling is a down-sampling

operation commonly used in convolutional neural

networks (CNNs) for reducing the spatial dimensions of

feature maps and extracting the most important

information from them. It is typically applied after

Conv2D layers.[1] The purpose of maxpooling is to

reduce the size of the feature maps while retaining the

most prominent features. It achieves this by dividing the

input feature map into non-overlapping rectangular

regions (usually squares) and taking the maximum value

within each region. This operation effectively

downscales the feature maps, reducing their spatial

dimensions

• Flatten  -   In a convolutional neural network (CNN), the

Flatten layer is used to convert the two-dimensional (or

multi-dimensional) feature maps from the previous

convolutional layers into a one-dimensional vector. This

operation is often performed before connecting the

feature maps to fully connected layers. After the

convolutional and pooling layers in a CNN, the feature

maps retain their spatial dimensions, typically

represented as a three-dimensional tensor (height,

width, channels). However, fully connected layers

require a one-dimensional input. This is where the
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Flatten layer comes in. The Flatten layer reshapes the 

input tensor into a single vector by stacking all the 

elements. It removes the spatial structure and converts 

the multi-dimensional feature maps into a long linear 

vector. The output shape of the Flatten layer is 

determined by the dimensions of the input feature 

maps.[1] 

• Epochs - An epoch refers to a complete pass through the

entire training dataset during the training phase. In other

words, it means that CNN has seen and processed every

training example once. During an epoch, the CNN

performs forward propagation to make predictions on

the training examples, calculates the loss (error)

between the predicted outputs and the actual targets, and

then performs backpropagation to update the model's

parameters (weights and biases) based on the calculated

gradients. This process is typically done in mini-

batches, where a subset of the training data is processed

at a time to reduce memory requirements and improve

computational efficiency.The number of epochs is a

hyperparameter that needs to be specified before

training the CNN. It determines how many times the

entire training dataset will be iterated over by the

optimization algorithm. Choosing the appropriate

number of epochs is crucial because it can impact both

the training time and the model's performance.If the

number of epochs is too small, the model may not have

sufficient time to learn complex patterns and generalize

well to unseen data. On the other hand, if the number of

epochs is too large, the model may overfit the training

data, meaning it becomes too specialized in capturing

the noise and details of the training examples, leading to

poor performance on new, unseen data.The optimal

number of epochs depends on several factors, including

the complexity of the problem, the size of the training

dataset, and the architecture of the CNN. It is often

determined through experimentation and monitoring the

model's performance on a separate validation dataset.

Techniques such as early stopping can also be used to

automatically stop training when the model's

performance on the validation set starts to

deteriorate.[1]

• Training Process - The training process in a

convolutional neural network (CNN) involves preparing

the dataset, designing the model architecture,

initializing the weights, performing forward

propagation to make predictions, calculating the loss,

backpropagating to compute gradients, updating the

parameters using an optimization algorithm, repeating

this process for multiple epochs while monitoring

performance on a validation set, tuning

hyperparameters, and finally evaluating the trained

model on a separate testing dataset to measure its

effectiveness. The goal is to minimize the loss function

and optimize the model's parameters to make accurate

predictions on new, unseen data.[1]

• Validation Process - The validation process in a

convolutional neural network (CNN) involves

periodically evaluating the model's performance on a

separate validation dataset. During training, after each

epoch or a certain number of iterations, the model's 

predictions are compared to the true labels of the 

validation examples, and metrics such as loss, accuracy, 

precision, recall, or F1 score are calculated. This 

evaluation helps assess the model's generalization 

ability, indicating how well it is performing on unseen 

data. The validation results guide the selection of 

hyperparameters, such as learning rate or regularization 

techniques, and can help prevent overfitting by 

identifying when the model's performance on the 

validation set starts to deteriorate.[1] 

Training and Testing Model 

Fig 3 shows the block diagram illustrating the training 
process of CNN.  

Figure 3 Training Model [6] 

1. Raw Image: The training process starts with a raw

image, which serves as the input to the CNN. The raw

image typically consists of pixel values representing the

intensity or colour information.

2. Normalization: Before feeding the raw image into the

CNN, it is common practice to apply normalization

techniques to improve training efficiency and

performance. Normalization involves scaling the pixel

values to a standardized range, such as [0, 1] or [-1, 1],

to ensure that the input data has a consistent scale and

distribution. This step helps prevent certain features

from dominating the learning process.

3. CNN Training - The normalized image is then fed into

the CNN for training. The CNN consists of multiple

layers, including convolutional layers, pooling layers,

activation functions and possibly fully connected layers.

The purpose of the CNN is to learn and extract relevant

features from the input image through the iterative

process of forward propagation, loss calculation,

backpropagation, and parameter updates. This process

continues for multiple epochs until the model's

performance converges or reaches a satisfactory level.

4. CNN Weights - During training, the CNN's weights

(also known as parameters) are updated iteratively to

minimize the loss function and improve the model's

performance. The weights represent the learned patterns

and features within the CNN. After the training process,

the CNN model contains optimized weights that capture

the knowledge learned from the training dataset.
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Figure 4 Testing Model [6] 

The trained CNN model with its weights encapsulates 

the learned representations and can be used for various 

tasks, such as image classification, object detection, or 

image segmentation. These trained weights represent 

the network's knowledge of the important features and 

relationships in the input data and enable the model to 

make accurate predictions on new, unseen images. 
Fig 4. shows the block diagram illustrating the testing 
process of CNN.  

1. Raw Image - The testing process begins with a raw

image of a leaf that needs to be evaluated for disease

detection.

2. Normalization - Similar to the training process, the raw

image is normalized to ensure consistent scaling and

distribution of the pixel values. Normalization helps in

achieving better performance and comparability

between images during the testing phase.

3. CNN Training - Prior to testing, the CNN model is

trained on a labeled dataset containing images of

healthy and diseased leaves. This training phase

involves feeding normalized images into the CNN and

adjusting the model's weights iteratively to learn the

discriminative features that differentiate healthy leaves

from diseased ones. The CNN is trained to generalize

these learned patterns to unseen images.

4. CNN Weights - After completing the training phase,

the CNN model contains optimized weights that

capture the learned representations and features. These

weights represent the knowledge gained by the model

during training about the distinguishing characteristics

of healthy and diseased leaves.

5. Leaf Disease Detection - In the testing phase, the

normalized raw image is passed through the trained

CNN model with its learned weights. The model

performs forward propagation, applying the learned

features and patterns to the input image. The CNN

outputs a prediction or probability score indicating the

likelihood of the leaf being diseased.

This output can help in determining the presence and

type of disease in the leaf, aiding in early detection and

appropriate intervention. The trained CNN model, with

its optimized weights, acts as a powerful tool for

automated leaf disease detection. By leveraging the

learned representations from the training phase, the

model can provide accurate and efficient predictions on

new, unseen leaf images, facilitating timely decision-

making for plant health management.

ResNet50: 

ResNet-50 (short for Residual Network-50) is a convolutional 

neural network (CNN) architecture that consists of 50 layers. It 

was introduced by researchers at Microsoft Research in 2015 

and has become one of the most popular and influential CNN 

architectures for various computer vision tasks, including image 

classification, object detection, and image segmentation.[1] 

The architecture of ResNet-50 is based on a series of 

convolutional layers, followed by a global average pooling layer 

and a fully connected layer for classification. It has a total of 50 

layers, which are organized into different blocks. The key 

building block of ResNet-50 is the "residual block," which 

consists of two or three convolutional layers with shortcut 

connections that bypass the intermediate layers. This allows the 

network to learn residual mappings instead of directly learning 

the desired mappings. 

ResNet-50 has been pre-trained on large-scale image datasets 

such as ImageNet, which contains millions of labeled images. 

This pre-training enables the network to learn rich and 

discriminative features that can be transferred to other related 

tasks or fine-tuned on specific datasets with smaller amounts of 

labeled data. 
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Architecture: 

Figure 5 Resnet50 CNN architecture [9] 

IV. RESULT

Despite the existence of numerous developed methods 

for detecting and classifying plant diseases based on 

diseased leaves, a commercially viable and efficient 

solution for disease identification is still lacking. 

While significant progress has been made in research 

and academia, translating these advancements into 

practical, effective solutions that meet commercial 

requirements, such as scalability, real-time 

performance, ease of use, and integration with existing 

agricultural practices, remains a challenge. In our 

study, we investigated the application of three distinct 

deep learning models, namely InceptionV3, 

ResNet50, and MobileNetV2, for the purpose of plant 

disease detection using images of both healthy and 

diseased leaves. Upon analyzing the results presented 

in Table 4, it was evident that ResNet50 consistently 

achieved remarkable training accuracy, validation 

accuracy, and test accuracy. As a result, we opted to 

employ the ResNet50 convolutional neural network 

model as the primary approach in our research 

endeavor. 

Table 4 Comparison of Train Accuracy and Train Loss among 

Different CNN Models 

Model Train acc (%) Train Loss 

ResNet50 97.99 0.2316 

InceptionV3 88.32 27.214 

MobileNetV2 96.28 0.545 

Table 5 Comparison of Validation Accuracy and Validation 

Loss among different CNN models 

Model Validation acc (%) Validation Loss 

ResNet50 96.68 2.031 

InceptionV3 74.84 104.009 

MobileNetV2 89.86 2.053 

Table 6 Comparison of Epoch and Average time among 

different CNN models 

Model Epoch Avg time (s/epoch) 

ResNet50 10 286.8 

InceptionV3 10 364.7 

MobileNetV2 10 150.4 

Table 7 Comparison of Test accuracy and Test loss among 

different CNN models 

Model Test acc (%) Test Loss 

ResNet50 96.73 2.327 

InceptionV3 75.29 105.199 

MobileNetV2 88.84 3.022 
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Figure 6 Training accuracy vs Validation accuracy 

Figure 7 Training loss vs Validation loss 

Website- 

Step 1: Saved model into the local device 

Step 2: Built a FastAPI web server, loaded the model, and finally 

tested it using the Postman application. 

Step 3: Built a Testpad website in React JS that can support drag 

and drop the plant leaf images 

Step 4: Dropping the image on the website, it calls the FastAPI 

backend to perform the inference. 

Figure 8 LeafCheck Website 

Figure 9 Result of Disease Detection of Potato Leaf 

Fig 8. showcases the LeafCheck website interface, where users 

can conveniently drag and drop plant images. In this particular 

instance, a potato leaf image was dropped onto the interface. 

Moving on to Fig 9., the displayed outcome reveals the 

identification of the potato leaf as being afflicted with potato 

late blight, with a high confidence level of 100%. 

V. CONCLUSION

We are successful in developing disease categorization methods 

that may be utilized to find plant leaf diseases. A deep learning 

model is developed that can automatically identify and 

categorize plant leaf diseases. Three species—tomato, potato, 

and bell pepper—are used to test the proposed paradigm. We 

were able to do image-processing operations as a result. 

Additionally, using the data, we were able to build the 

ResNet50 model, an advanced convolution model, and train it 

for prediction. Our model made a forecast that was 96.7% 

accurate. Additionally, the LeafCheck website which allows for 

disease detection was successfully built. 
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