
Plant Disease Detection Using Convolutional

Neural Networks

Namitha Poduval
Department of E&TC

Vishwakarma Institute of

Information Technology

 Pune, India

Nikhil Kandesar

Department of E&TC

Vishwakarma Institute of

Information Technology

Pune, India

 Avantika Ravatale
Department of E&TC

Vishwakarma Institute of

Information Technology

Pune, India

Rucha Shinde

Department of E&TC

Vishwakarma Institute of

Information Technology

Pune, India

 Srushti Shindkar

Department of E&TC

Vishwakarma Institute of

Information Technology

Pune, India

Dr. Pravin G. Gawande

Department of E&TC

Vishwakarma Institute of

Information Technology

Pune, India

Abstract— Plant disease detection is critical in agriculture, as early

detection and diagnosis of plant diseases can prevent crop losses.

This paper presents an abstract of such a system that uses

Convolutional Neural Networks (CNN) to identify and classify

plant disease based on images of leaves. The system includes pre-

processing techniques for image enhancement, followed by the use

of a CNN model for feature extraction and classification. The

system achieves high accuracy in identifying plant diseases, thus

providing an effective tool for farmers and researchers to monitor

and control diseases in crops. This paper concludes that CNN-

based plant disease detection systems have significant potential to

enhance plant disease diagnosis and treatment efficiency and

accuracy, leading to improved crop yields and overall food

security.

Keywords—plant disease detection, CNN, deep learning, image

processing

I. INTRODUCTION

Plant disease detection systems are becoming increasingly

important in agricultural research due to the need to identify and

address plant diseases in a timely and effective manner. In

recent years, Convolutional Neural Networks (CNNs) have

been used as an effective tool for image recognition and

classification. [7] In this paper, we propose a plant disease

prediction system using CNN that can accurately detect and

classify different types of plant diseases based on leaf images.

The proposed system consists of three main components: image

preprocessing, feature extraction, and classification. In the

preprocessing stage, leaf images are pre-processed to remove

any background noise and enhance the contrast of the image. In

the feature extraction stage, the CNN model is used to extract

the relevant features from the pre-processed images. Finally, in

the classification stage, the extracted features are used to

classify the plant disease type. To evaluate the performance of

the proposed system, we conducted experiments using a dataset

consisting of leaf images of different types of plant diseases.

The results demonstrate that the proposed system can

accurately predict the type of plant disease with high accuracy

and low error rate. Also, this provides a valuable tool for

farmers and researchers to identify and address plant diseases

in a timely and effective manner, thereby improving crop yields

and food security.

II. PROPOSED METHOD

A. Dataset

We use the plant village dataset which consists of 20,639 healthy
and unhealthy leaf images of tomatoes, potatoes, and bell paper.
The image is reduced in size to 256 x 256 pixels, and this
compressed image is then optimized and model predictions are
made.

Table 1 Total number of leaves

Leaf category Number of Images of size 256X256

Tomato 16012

Potato 2152

Bell pepper 2475

Total 20639

Dr. Yogesh H. Dandawate
Department of E&TC

Vishwakarma Institute of
Information Technology

Pune, India

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020073
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

Figure 1 Healthy Leaves

Figure 2 Diseased Leaves

Table 2 Number of healthy and diseased leaf

Leaf category Healthy leaf Diseased leaf

Tomato 1591 14421

Potato 152 2000

Bell- pepper 1478 997

1. Bacterial spot: Bacterial spot is a common disease that

affects bell peppers and other plants in the Solanaceae

family. It is caused by the bacterium Xanthomonas

campestris pv. vesicatoria. [8]. By using preventative

measures including sanitation, appropriate watering

procedures, pruning, and spacing, bacterial spots can be

avoided. Work in the garden without watering plants, sprays

made of copper, followed by routine monitoring and

scouting.

2. Early Blight: Numerous plants, including tomatoes,

potatoes, and other solanaceous crops, are susceptible to the

widespread fungal disease known as early blight.[8] The

fungus Alternaria solani is responsible for the outbreak.

Early blight can be prevented by performing crop rotation,

proper spacing, applying a layer of organic mulch such as

straw, or wood chips, around the base of plants.

3. Late Blight: Late blight is a destructive fungal disease that

primarily affects solanaceous crops such as tomatoes and

potatoes. It is caused by the pathogen Phytophthora

infestans. It is curable by avoiding overhead watering,

removing infected plant material, mulching, fungicidal

applications, choose varieties that have resistance to late

blight. Resistant varieties are less likely to be affected or

show milder symptoms when exposed to the pathogen,

ensure adequate spacing between plants to promote good air

circulation.[8]. Dense foliage can create a favorable

environment for late blight development and spread. Follow

the recommended spacing guidelines for your specific crop.

4. Target Spot: A fungus called target spot, also known as

corynespora leaf spot, damages a wide range of plants,

including decorative plants and food crops like tomatoes,

peppers, and other vegetables. It is caused by the fungus

Corynespora cassiicola.[8] By using preventative measures

including sanitation, appropriate watering procedures,

pruning, spacing, leaf removal, weed control, monitoring

regularly, target spots can be avoided.

5. Mosiac Virus: Mosaic viruses are a group of plant viruses

that cause a characteristic mosaic pattern of light and dark

green areas on the leaves of infected plants. There are

several different types of mosaic viruses that can affect a

wide range of plants, including vegetables, ornamentals,

and fruit trees. Mosiac viruses can be prevented by using

certifies virus-free plants, practice good hygiene, many

mosaic viruses are spread by insect pest such as aphids,

whiteflies and leaf hoppers.Implement strategies to manage

these pesrs, such as insecticidal soaps, sticky traps, or

biological control methods.[8]

6. Yellow Leaf Curl Virus: Yellow leaf curl virus (YLCV) is a

plant virus that primarily affects tomato plants, but it can

also infect other members of the Solanaceae family,

including peppers and potatoes. It is transmitted by the

whitefly insect (Bemisia tabaci). Yellow leaf curl virus can

be prevented by weed control, insect control, using floating

row covers or insect-proof nets to physically separate

tomato plants from insects, choosing tomato cultivators that

are resistant to yellow leaf curl disease, buying healthy

plants from reputable nurseries reduces the risk of

introducing the disease at first.[8]

7. Septoria Spot: The fungus disease septoria leaf spot, also

called septoria leaf blight, commonly affects a variety of

plants, including ornamental plants, fruits, and vegetables.

A fungus called Septoria spp. is responsible. By using

preventative measures including sanitation, appropriate

watering procedures, pruning, spacing, leaf removal, weed

control, monitoring regularly, septoria spots can be

avoided.[8]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020073
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

8. Spider Mites: Spider mites are tiny arachnids that belong to
the Tetranychidae family. They are common pests that can
infest a wide range of plants, both indoors and outdoors.
Spider mites can be cured by regular inspection of leaves
for any signs of spider mites, such as webbing, tiny
speaks(mites), or stippling (tiny yellow or white spots),
avoid using pesticides, use a strong water spray, provide
good air circulation.[8]

B. Data Processing and Augmentation

A powerful image classifier must incorporate image

augmentation. Even while datasets may have hundreds to a

few thousand training samples, the variety may not be

sufficient to create a reliable model.[3] The many image

enhancement choices include resizing the image, rotating it

at different angles, and flipping it vertically or horizontally.

These additions aid in increasing the amount of pertinent

data in the dataset. It is discovered that each image in the

Plant Village collection is 256 × 256 pixels in size. The

Keras deep-learning framework is used for data processing

and image enhancement.

The following are the augmentation choices used for
training: [3]

1. Rotation: To randomly rotate a training image at

different angles.

2. Brightness: By feeding the model photos of varied

brightness during training, brightness helps the model

adjust to changes in lighting.

3. Shear: Adjust the shearing angle.

III. PROPOSED SYSTEM

We are building a neural network model for image
classification. This model will be deployed on a website.
The website will use this model to identify plant leaf disease
in real time.[3]

1. Step 1 is to collect data.

2. The gathered dataset is pre-processed and enhanced

using Keras' pre-processing and Image-data

generation API.

3. Use pre-trained a CNN (Convolutional Neural

Network) model like mobileNet, ResNet50, and

Inception for classifying different plant diseases.

4. Build a website using reactjs with FastAPI webserver.

Convolutional Neural Network Model

Since DL models can learn relevant characteristics from

input images at different convolutional levels, they are the

most popular architecture for CNNs and have recently

attracted a lot of attention. This is similar to how the

human brain works. Complex issues can be resolved fast

and effectively by DL with high classification accuracy

and low error rates[1]. The convolutional, pooling, fully

connected, and activation layers are some of the

components that make up the DL model. Table 3 shows

the number of layers and parameter sizes of different CNN

models. ResNet50 has a layer size of 50 and 25.6 million

parameters whereas inception has 48 layers and 27 million

parameters and mobileNet-V2 has a layer size of 28 and

3.37 million parameters. In our work, we have used a pre-

trained ResNet50 model.[1]

Table 3 Comparison among different CNN architectures

regarding layer number and parameter size

Model No. of Layers Parameters (million)

ResNet50 50 25.6

InceptionV3 48 27

MobileNetV2 28 3.37

CNN Model steps:

• Conv2D - Conv2D is a commonly used layer in

convolutional neural networks (CNNs) for image

processing and computer vision tasks. It stands for two-

dimensional convolution and is used to extract features

from two-dimensional input data, such as images. In a

Conv2D layer, a set of learnable filters (also known as

kernels or weights) is convolved with the input data to

perform a series of convolution operations. Each filter is

a small matrix that is slid across the input data,

computing dot products at each location. This process

helps to detect different patterns and features present in

the input. The output of a Conv2D layer is a set of

feature maps, each representing a different learned

feature from the input image. These feature maps are

then passed on to subsequent layers in the neural

network for further processing.[1]

• Maxpooling - Maxpooling is a down-sampling

operation commonly used in convolutional neural

networks (CNNs) for reducing the spatial dimensions of

feature maps and extracting the most important

information from them. It is typically applied after

Conv2D layers.[1] The purpose of maxpooling is to

reduce the size of the feature maps while retaining the

most prominent features. It achieves this by dividing the

input feature map into non-overlapping rectangular

regions (usually squares) and taking the maximum value

within each region. This operation effectively

downscales the feature maps, reducing their spatial

dimensions

• Flatten - In a convolutional neural network (CNN), the

Flatten layer is used to convert the two-dimensional (or

multi-dimensional) feature maps from the previous

convolutional layers into a one-dimensional vector. This

operation is often performed before connecting the

feature maps to fully connected layers. After the

convolutional and pooling layers in a CNN, the feature

maps retain their spatial dimensions, typically

represented as a three-dimensional tensor (height,

width, channels). However, fully connected layers

require a one-dimensional input. This is where the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020073
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

Flatten layer comes in. The Flatten layer reshapes the

input tensor into a single vector by stacking all the

elements. It removes the spatial structure and converts

the multi-dimensional feature maps into a long linear

vector. The output shape of the Flatten layer is

determined by the dimensions of the input feature

maps.[1]

• Epochs - An epoch refers to a complete pass through the

entire training dataset during the training phase. In other

words, it means that CNN has seen and processed every

training example once. During an epoch, the CNN

performs forward propagation to make predictions on

the training examples, calculates the loss (error)

between the predicted outputs and the actual targets, and

then performs backpropagation to update the model's

parameters (weights and biases) based on the calculated

gradients. This process is typically done in mini-

batches, where a subset of the training data is processed

at a time to reduce memory requirements and improve

computational efficiency.The number of epochs is a

hyperparameter that needs to be specified before

training the CNN. It determines how many times the

entire training dataset will be iterated over by the

optimization algorithm. Choosing the appropriate

number of epochs is crucial because it can impact both

the training time and the model's performance.If the

number of epochs is too small, the model may not have

sufficient time to learn complex patterns and generalize

well to unseen data. On the other hand, if the number of

epochs is too large, the model may overfit the training

data, meaning it becomes too specialized in capturing

the noise and details of the training examples, leading to

poor performance on new, unseen data.The optimal

number of epochs depends on several factors, including

the complexity of the problem, the size of the training

dataset, and the architecture of the CNN. It is often

determined through experimentation and monitoring the

model's performance on a separate validation dataset.

Techniques such as early stopping can also be used to

automatically stop training when the model's

performance on the validation set starts to

deteriorate.[1]

• Training Process - The training process in a

convolutional neural network (CNN) involves preparing

the dataset, designing the model architecture,

initializing the weights, performing forward

propagation to make predictions, calculating the loss,

backpropagating to compute gradients, updating the

parameters using an optimization algorithm, repeating

this process for multiple epochs while monitoring

performance on a validation set, tuning

hyperparameters, and finally evaluating the trained

model on a separate testing dataset to measure its

effectiveness. The goal is to minimize the loss function

and optimize the model's parameters to make accurate

predictions on new, unseen data.[1]

• Validation Process - The validation process in a

convolutional neural network (CNN) involves

periodically evaluating the model's performance on a

separate validation dataset. During training, after each

epoch or a certain number of iterations, the model's

predictions are compared to the true labels of the

validation examples, and metrics such as loss, accuracy,

precision, recall, or F1 score are calculated. This

evaluation helps assess the model's generalization

ability, indicating how well it is performing on unseen

data. The validation results guide the selection of

hyperparameters, such as learning rate or regularization

techniques, and can help prevent overfitting by

identifying when the model's performance on the

validation set starts to deteriorate.[1]

Training and Testing Model

Fig 3 shows the block diagram illustrating the training
process of CNN.

Figure 3 Training Model [6]

1. Raw Image: The training process starts with a raw

image, which serves as the input to the CNN. The raw

image typically consists of pixel values representing the

intensity or colour information.

2. Normalization: Before feeding the raw image into the

CNN, it is common practice to apply normalization

techniques to improve training efficiency and

performance. Normalization involves scaling the pixel

values to a standardized range, such as [0, 1] or [-1, 1],

to ensure that the input data has a consistent scale and

distribution. This step helps prevent certain features

from dominating the learning process.

3. CNN Training - The normalized image is then fed into

the CNN for training. The CNN consists of multiple

layers, including convolutional layers, pooling layers,

activation functions and possibly fully connected layers.

The purpose of the CNN is to learn and extract relevant

features from the input image through the iterative

process of forward propagation, loss calculation,

backpropagation, and parameter updates. This process

continues for multiple epochs until the model's

performance converges or reaches a satisfactory level.

4. CNN Weights - During training, the CNN's weights

(also known as parameters) are updated iteratively to

minimize the loss function and improve the model's

performance. The weights represent the learned patterns

and features within the CNN. After the training process,

the CNN model contains optimized weights that capture

the knowledge learned from the training dataset.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020073
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

Figure 4 Testing Model [6]

The trained CNN model with its weights encapsulates

the learned representations and can be used for various

tasks, such as image classification, object detection, or

image segmentation. These trained weights represent

the network's knowledge of the important features and

relationships in the input data and enable the model to

make accurate predictions on new, unseen images.
Fig 4. shows the block diagram illustrating the testing
process of CNN.

1. Raw Image - The testing process begins with a raw

image of a leaf that needs to be evaluated for disease

detection.

2. Normalization - Similar to the training process, the raw

image is normalized to ensure consistent scaling and

distribution of the pixel values. Normalization helps in

achieving better performance and comparability

between images during the testing phase.

3. CNN Training - Prior to testing, the CNN model is

trained on a labeled dataset containing images of

healthy and diseased leaves. This training phase

involves feeding normalized images into the CNN and

adjusting the model's weights iteratively to learn the

discriminative features that differentiate healthy leaves

from diseased ones. The CNN is trained to generalize

these learned patterns to unseen images.

4. CNN Weights - After completing the training phase,

the CNN model contains optimized weights that

capture the learned representations and features. These

weights represent the knowledge gained by the model

during training about the distinguishing characteristics

of healthy and diseased leaves.

5. Leaf Disease Detection - In the testing phase, the

normalized raw image is passed through the trained

CNN model with its learned weights. The model

performs forward propagation, applying the learned

features and patterns to the input image. The CNN

outputs a prediction or probability score indicating the

likelihood of the leaf being diseased.

This output can help in determining the presence and

type of disease in the leaf, aiding in early detection and

appropriate intervention. The trained CNN model, with

its optimized weights, acts as a powerful tool for

automated leaf disease detection. By leveraging the

learned representations from the training phase, the

model can provide accurate and efficient predictions on

new, unseen leaf images, facilitating timely decision-

making for plant health management.

ResNet50:

ResNet-50 (short for Residual Network-50) is a convolutional

neural network (CNN) architecture that consists of 50 layers. It

was introduced by researchers at Microsoft Research in 2015

and has become one of the most popular and influential CNN

architectures for various computer vision tasks, including image

classification, object detection, and image segmentation.[1]

The architecture of ResNet-50 is based on a series of

convolutional layers, followed by a global average pooling layer

and a fully connected layer for classification. It has a total of 50

layers, which are organized into different blocks. The key

building block of ResNet-50 is the "residual block," which

consists of two or three convolutional layers with shortcut

connections that bypass the intermediate layers. This allows the

network to learn residual mappings instead of directly learning

the desired mappings.

ResNet-50 has been pre-trained on large-scale image datasets

such as ImageNet, which contains millions of labeled images.

This pre-training enables the network to learn rich and

discriminative features that can be transferred to other related

tasks or fine-tuned on specific datasets with smaller amounts of

labeled data.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020073
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

Architecture:

Figure 5 Resnet50 CNN architecture [9]

IV. RESULT

Despite the existence of numerous developed methods

for detecting and classifying plant diseases based on

diseased leaves, a commercially viable and efficient

solution for disease identification is still lacking.

While significant progress has been made in research

and academia, translating these advancements into

practical, effective solutions that meet commercial

requirements, such as scalability, real-time

performance, ease of use, and integration with existing

agricultural practices, remains a challenge. In our

study, we investigated the application of three distinct

deep learning models, namely InceptionV3,

ResNet50, and MobileNetV2, for the purpose of plant

disease detection using images of both healthy and

diseased leaves. Upon analyzing the results presented

in Table 4, it was evident that ResNet50 consistently

achieved remarkable training accuracy, validation

accuracy, and test accuracy. As a result, we opted to

employ the ResNet50 convolutional neural network

model as the primary approach in our research

endeavor.

Table 4 Comparison of Train Accuracy and Train Loss among

Different CNN Models

Model Train acc (%) Train Loss

ResNet50 97.99 0.2316

InceptionV3 88.32 27.214

MobileNetV2 96.28 0.545

Table 5 Comparison of Validation Accuracy and Validation

Loss among different CNN models

Model Validation acc (%) Validation Loss

ResNet50 96.68 2.031

InceptionV3 74.84 104.009

MobileNetV2 89.86 2.053

Table 6 Comparison of Epoch and Average time among

different CNN models

Model Epoch Avg time (s/epoch)

ResNet50 10 286.8

InceptionV3 10 364.7

MobileNetV2 10 150.4

Table 7 Comparison of Test accuracy and Test loss among

different CNN models

Model Test acc (%) Test Loss

ResNet50 96.73 2.327

InceptionV3 75.29 105.199

MobileNetV2 88.84 3.022

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020073
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

Figure 6 Training accuracy vs Validation accuracy

Figure 7 Training loss vs Validation loss

Website-

Step 1: Saved model into the local device

Step 2: Built a FastAPI web server, loaded the model, and finally

tested it using the Postman application.

Step 3: Built a Testpad website in React JS that can support drag

and drop the plant leaf images

Step 4: Dropping the image on the website, it calls the FastAPI

backend to perform the inference.

Figure 8 LeafCheck Website

Figure 9 Result of Disease Detection of Potato Leaf

Fig 8. showcases the LeafCheck website interface, where users

can conveniently drag and drop plant images. In this particular

instance, a potato leaf image was dropped onto the interface.

Moving on to Fig 9., the displayed outcome reveals the

identification of the potato leaf as being afflicted with potato

late blight, with a high confidence level of 100%.

V. CONCLUSION

We are successful in developing disease categorization methods

that may be utilized to find plant leaf diseases. A deep learning

model is developed that can automatically identify and

categorize plant leaf diseases. Three species—tomato, potato,

and bell pepper—are used to test the proposed paradigm. We

were able to do image-processing operations as a result.

Additionally, using the data, we were able to build the

ResNet50 model, an advanced convolution model, and train it

for prediction. Our model made a forecast that was 96.7%

accurate. Additionally, the LeafCheck website which allows for

disease detection was successfully built.

REFERENCES

[1] Sk Mahmudul Hassan, Arnab Kumar Maji, Michal Jasinki, Zbigniew

Leonowicz, and Elzbieta Jasinka “Identification of Plant-Leaf Diseases
Using CNN and Transfer-Learning Approach,” 9 June 2021

[2] Nishant Shelar, Suraj Shinde, Shubham Sawant, Shreyash Dhumal, and

Kausar Fakir, “Plant Disease Detection Using CNN” 2022
[3] Sumit Kumar, Veerendra Chaudhary, Ms. Supriya Khaitan Chandra,”

Plant Disease Detection using CNN”, 23 May 2021

[4] Jeon, Wang-Su, and Sang-Yong Rhee. "Plant leaf recognition using a
convolution neural network." 2017

[5] Lee, Sue Han, et al. "How deep learning extracts and learns leaf features

for plant classification.",2017
[6] Prakanshu Srivastava, Vibhav Awasthi, Vivek Kumar Sehu, Pawan

Kumar Pal,”Plant Disease Detection Using Convolutional Neural

Networks”, Article in International Journal of Advanced Research,
January 2021

[7] Serawork A. Wallelign, Mihai Polceanu, Cedric Buche, “Soybean Plant

Disease Identification Using Convolutional Neural Network”, Oct 2014
[8] Dimitrios I. Tsitsigiannis, Polymnia P. Antoniou, Sotirious E. Tjamos,

Epaminondas J. Paplomatas, “Major Diseases of Tomato, Pepper and

Eggplant in Greenhouses”, The European Journal of Plant Science and
Biotechnology, 27 Oct, 2008.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep Residual

Learning for Image Recognition”, 10 Dec 2015.
[10] Sharada P. Mohanty, David P. Hughes, Marcel Salathe, “Using Deep

Learning for Image- Based Plant Disease Detection”, Front Plant Sci., 22

Sept, 2016.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS020073
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 02, February 2024

www.ijert.org
www.ijert.org

