
Policy Based Framework for

Securing Enterprise Data on Smartphone

Snehal Desai

1
, Sakshi Sachdev

2
 , Mehul Jain

3
 , Shashikant Hake

4

Department of Computer Engineering, Sinhgad College of Engineering

University of Pune, India

 Abstract - There is increase in threat to Enterprise data

resident on employee’s smartphone, as android has Inter

Component Communication and Inter Process Communication

as a part of core application functionality. Due to this sensitive

data can be stole by applications. In this paper Inter Component

Communication is controlled by enforcing policies in android

Middleware. Static Enterprise data is also protected by

modifying android Linux kernel and granting or denying

application to access static data resident on users smartphones

according to policies evaluated in android middleware.

Keywords – security, enterprise, smartphone, android, policy,

personal.

I. INTRODUCTION

 Android OS is growing its popularity with its expanding

market share. In Android anyone who is registered as

Android developer can publish his application on android

market, due to this malicious applications can be uploaded on

market store. And also at install time of any application user

has to follow „ALL OR NOTHING STRATEGY‟ i.e. if user

wants to install that app then user can either allow all

permissions or has to give up the ability to install that

application. From this it is clear that security infrastructure of

smartphone is underdeveloped [11].

 In this paper, we consider security requirements of

smartphone application and protect Enterprise data from

personal applications by controlling ICC between

applications by implementing policies in android middleware

[2].

 Main contribution of this paper can be summarized as:

1. Securing static Enterprise data on smartphones.

2. Framework for securing dynamic information flow.

 Section II is related to security mechanism which is used

by android today. This section also describes how

applications can be identified in android, security labels in

android and role of reference monitor in android middleware

to control ICC between applications. Section III describes

previous frameworks that were built to enhance the security

mechanism in android. This section also describes advantages

of this framework over previous frameworks. Section IV

contains the implementation details of this system. It also

represents the Mathematical Model that describes the input,

output functionalities along with the success and failure

cases. Section V contains expected results of this system.

Section VI concludes this paper and describes future work.

II. BACKGROUND

In this we briefly described android‟s security mechanism.

1. Application Sandboxing:

 It is means of separating applications from each other. In

this each application is assigned a separate uid and they run

as separate process.

2. Application Signing:

 Developers have to sign the application code with self-

certified key. Applications signed with same certificate shares

same uid i.e. they run in same sandbox.

3. Android Permission Framework:

 This is provided by android‟s middleware. Granted

permissions in terms of security labels are assigned to

application sandbox and inherited by application components.

These permissions are also included in manifest file of

applications. Reference Monitor in middleware checks

permissions at runtime and control ICC between applications.

III. RELATED WORK

 There exist many proposals/frameworks for Android's

application security such as TaintDroid, Apex, XMandroid,

Saint, Quire.

1. XMandroid Framework:

 This Framework which extends the Android Reference

monitor, in this default reference monitor verifies whether

communication link complies to security rules defined in

system policy of XMandroid. However XMandroid does

consider escalation attacks at kernel level [5].

2. I-ARM-DROID:

 This framework enforces security policies on Application.

This approach embeds reference monitor in applications by

rewriting Dalvik byte code. But this approach needs to modify

each application while in our approach we are modifying

Android framework, so no need to modify each application

[10].

3. Android Permission Extension (Apex) framework:

 This policy framework allows a user to selectively grant

permissions to applications and impose constraints on the

usage of resources. Apex also describes an extended package

installer that allows the user to set these constraints through an

1327

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030923

easy-to-use interface. Apex is not able to impose constraints

between App communications [6].

4. TaintDroid:

 It tracks private-sensitive data through third-party

applications. It monitors how third-party applications access

and modifies user's personal data. It automatically labels data

coming from sensitive sources and applies taints as sensitive

data propagates through Interprocess communication

mediums like files, message passing etc. When tainted data is

transferred over the internet, TaintDroid logs the data's labels,

the applications responsible for transmitting the data and also

destination of the data. So this feedback helps users tracking

what mobile applications are doing [7].

IV. TECHNOLOGY

1. Static Enterprise data:

 Data which are generated by enterprise applications and

Stored in SD card.For example when any attachments are

downloaded from enterprise application and after getting stored

in internal memory or SD card of smartphone, application does

not have control over downloaded data. This data is crucial and

should not be leaked. Sometimes data exported from enterprise

applications is in encrypted form; however other applications

can decrypt it.

 This framework is securing static enterprise data by

enforcing policies.

2. Concurrent Execution of Applications:

 Each Application in android has four components i.e.

Activity, Broadcast Receiver, Content provider, Service [8].

And components of each application can communicate with

components of other application on the basis of access

permission labels, present in manifest file of each application.

These permission labels are not sufficient for securing

enterprise data as there is still information leakage when any

enterprise application calls services of any personal

application.

 This framework enforces policies in android middleware

which will evaluate policies as well as check permissions for

ICC. Next question arises how application and data can be

classified.

3. a. Application Classification:

 There are multiple ways to classify application i.e.

Developer signature, market source, etc.

3. b. Data Classification:

 Data generated by enterprise application is classified as

enterprise data that is based on applications Package name.

4. Policies:

 1. Personal Application cannot access the static enterprise

data resident on employee‟s smartphone i.e. if both static data

as well as application are enterprise, then application can

access the static enterprise data.

 2. Components of applications can communicate with each

Other if both applications are enterprise, and both of them are

personal.

5. Previous Workflow:

Figure 1. Original Workflow

 Reference monitor in android middleware controls ICC by

intercepting ICC calls, obtains permissions from permission

database and checks permissions. Based on result,allow or

deny ICC call. Main drawback of android framework is, it

only checks the permissions and does not bother about the

type of application.

6. WORKFLOW TO PROTECT STATIC DATA:

 As previously described, this framework secures static

enterprise data. Static enterprise data can be protected by

modifying Linux kernel as well as android middleware.

1. When any application request for accessing data stored on

SD card/phone memory, then taint tracker module intercept

file open system call and fetch uid of requesting application

and file id of requested file.

Taint Tracker: New module added in Linux kernel, which

maintains taint set. Taint set contains the uids of each

application which had already opened that file.

2. Taint tracker search for uid of requesting application in taint

set.

Figure 2. Static work flow

1328

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030923

3. If uid of requesting application is found in taint set then

access is permitted to requesting application.

4. If not found then it contacts policy manager.

5. Policy manager fetch package names from package

manager and evaluate policies.

6. Policy manager gives the result back to taint tracker.

7. Taint tracker allow or deny access to application based on

evaluated results of policy manager.

7. Workflow to Control ICC:

Figure 3. ICC flow control

1. If application A sends request for ICC to application B then

ICC call will be intercepted by reference monitor.

2. Reference monitor is redirected to policy manager.

3. Policy manager request permissions from permission

database.

4. Permission database gives permissions to policy manager

and policy manager accordingly evaluate policies.

5. Policy manager gives result of evaluated policies to

reference monitor.

6. Reference monitor checks permission and according to

results of evaluated policies and checked permission it will

allow or deny ICC.

VI. EXPECTED RESULT

 Expected results of this policy based framework are that it

will deny any personal application to access enterprise data. It

also denies personal application to communicate with

enterprise application.

Success Scenario:

 Enterprise data is secured by denying access from other

applications.

Failure Scenario:

 Other applications become successful in stealing enterprise

information.

VII. FUTURE WORK AND CONCLUSION

 In this paper we have extended the android security model,

whose main concern was to secure static enterprise data and to

prevent runtime information leakage by enforcing policies in

android middleware and modifying linux kernel. Here we are

more concentrating on securing enterprise data from other

applications, in future we could handover this decision to user,

whether to allow or deny any application to access particular

data.

REFERENCES

1. Hammad Banuri, Masoom Alam, et. al. “An Android runtime security

policy enforcement framework”, IEEE paper, 2011.

2. Erika Chin Adrienne, et. al. “Analyzing Inter-Application
Communication in Android”, IEEE paper, 2011.

3. Prajit Kumar Das, Dibyajyoti Ghosh, Anupam Joshi and Tim Finin

“Energy efficient semantic context model for managing privacy on
smartphones. ”

4. Alastair R. Beresford, Andrew Rice, et. al. “MockDroid: trading

privacy for application functionality on smartphones”, IEEE paper,
2011.

5. Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,
Ahmad-Reza Sadeghi “XManDroid: A New Android Evolution to

Mitigate Privilege Escalation Attacks. ”

6. M. Nauman, S. Khan, and X. Zhang, “Apex: extending Android
permission model and enforcement with user-defined runtime

constraints,” in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security. ACM, 2010, pp. 328–332.

7. W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A.

Sheth, TaintDroid: An information-flow tracking system for realtime
privacy monitoring on smartphones,” in Proceedings of OSDI, 2010.

8. Semantically Rich Application-Centric Security in Android Machigar

Ongtang, Stephen McLaughlin, William Enck and Patrick McDaniel
Department of Computer Science and Engineering The Pennsylvania

State University, University Park, PA 16802.

9. Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,Thomas
Fischer,Ahmad-Reza Sadeghi, Bhargava Shastry,”Towards Taming

Privilege-Escalation Attacks on Android”

falexandra.dmitrienko,ahmad.sadeghi,bhargava.shastryg@sit.fraunhofe
r.de.

10. Benjamin Davis, Ben Sanders_y, Armen Khodaverdian,and Hao

Chen_,” I-ARM-Droid: A Rewriting Framework for In-App Reference
Monitors for Android Applications” _University of California, Davis

fbendavis, bmsanders, aekhodaverdian.

11. Palanivel Kodeswaran, Vikrant Nandakumar, Shalini Kapoor , Pavan

Kamaraju, Anupam Joshi, Sougata Mukherjea ,”Securing Enterprise
Data on Smartphones using Run Time Information Flow Control” IBM

Research India Bangalore, India.

20 20

1329

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030923

