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Abstract— Cloud Computing is a membership based service 
where you can obtain the networked storage space and computer 
resources. In this cloud computing model, the customers connect 
to the cloud to access IT resources which are charged and 
provided on demand services. This model is composed of five 
important characteristics, three service models and four 
deployment models. Users can store their data in the cloud and 
there is a lot of personal information and secure data that people 
store on their computers, and this information is now being 
transferred to the cloud. So we must ensure the security of user’s 
data, which is stored in the cloud. In this paper we present 
privacy assured delegation mechanism for linear programming 
computations in the cloud computing environment. Linear 
programming is a computational tool, which is used to analyze 
and optimize real world systems. Here we built the privacy 
assured LP delegation mechanism using a different approach i.e. 
iterative method which is easy to implement practically and 
requires only simple matrix-vector operations. In this mechanism 
customer can  keep  confidential both input and output of the 
computation secure by using additive homomorphic encryption 
method and can use the cloud for iteratively finding successive 
approximations to the LP solution. For untrusted cloud cheating 
detection, we use efficient verification mechanism that allows 
customers to verify all results from cloud effectively.  

Keywords- privacy, linear programming, additive homomorphic 
encryption, cloud computing, delegation 

 

I. INTRODUCTION  

 
Cloud computing is a model that provides easy to use, on-

demand network access to a shared pool of  computing 
resources  that can be quickly provided and released with 
minimum management effort or service provider interaction. It 
has large potential of providing computational power at 
reduced cost and allows the customers with limited 
computational resources to delegate their massive computation 
workloads to the cloud, and thus customers can enjoy the 
massive computational power, bandwidth, storage, and even 
appropriate software that can be shared in a pay-per-use 
manner [1]. An example of cloud computing architecture is 
shown in fig 1. Even though with these immense benefits, 
security is the main obstacle that prevents the wide adoption 
of this computing model, especially for the customers when 
their confidential data are consumed and produced during the 
computation. Another reason is that the delegated computation 
workloads contain confidential information. So in order to 
avoid unauthorized information leakage, this data have to be 
encrypted before delegating it to the cloud. If we apply 

ordinary data encryption techniques this restricts the cloud 
from performing any useful operation of the given plaintext 
data and makes the computation of encrypted data very 
difficult [2]. And also the operational details inside the cloud 
are not visible enough to customers [3]. As a result cloud 
server may return incorrect results. Along with this some 
software bugs, hardware failures, and also outsider attacks 
may also affect the quality of the computed results. So, cloud 
is intrinsically not secure from the viewpoint of customers. 
Without providing a mechanism for secure computation 
outsourcing, i.e., to protect the sensitive input and output 
information of the workloads and to validate the integrity of 
the computed result, it would be hard to expect cloud 
customers to turn over control of their workloads from local 
machines to cloud only based on its economic savings and 
resource flexibility. For practical consideration, such a design 
should further ensure that customers perform fewer amounts 
of operations than completing the computations by themselves 
directly. 

 
CUSTOMERS                           CLOUD SERVICE PROVIDERS 
  

                                                                                                                 

            

      
Fig 1:   Cloud Computing Architecture Example 

 
 

Here we design secure mechanism of delegating LP 
computation by using a different method i.e. iterative method, 
in this method the solution is extracted by finding successive 
approximations to the solution until the required accuracy is 
obtained. Comparing it to direct method, iterative method only 
requires simple matrix-vector operations with O(n

2
) cost, 

which is very easy to implement  practically. Here we use the 
additive homomorphic encryption scheme, e.g., the Paillier 
cryptosystem [4] that allows computational customers to 
securely utilize the cloud for finding successive 
approximations to the computed solution in a privacy- 
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preserving and cheating-resilient manner. For a linear system 
with n×n coefficient matrix, the proposed mechanism is based 
on a one-time amortizable setup with O(n

2
) cost. Then, in each 

iterative algorithm execution, our proposed mechanism only 
requires O(n) local computational burden to the customer and 
demands no impractical memory i.e. eliminates the expensive 
IO cost. To verify computation result honesty, we also propose 
a very efficient cheating detection mechanism to effectively 
verify in one batch of all the computation results by the cloud 
server from previous algorithm iterations with high 
probability.  

 
1) We propose to solve the problem of privacy assured 
delegation of massive LP computational workload using 
iterative methods, and provide mechanism designs which 
fulfill input/output privacy, cheating resilience, and efficiency. 
2) Within each iteration, it requires only O (n) computation 
burden i.e. less burden for the customer and demands no 
unrealistic IO cost, as a result our mechanism brings 
computational savings, in terms of both time and memory 
requirements [5].  
3) To design a efficient batch verification mechanism we use 
the algebraic property of matrix-vector operations, which 
allows customers to verify all results of previous iterations 
from cloud effectively.  
 

II. PROBLEM STATEMENT 

 
A. Threat Model 

 
Here we consider a architecture of secure computation 

delegation which involves cloud customer and cloud server as 
shown in Fig. 2. The customer who  has a massive LP problem 
to be solved which is denoted as Φ. But due to the lack of 
computing resources, he cannot perform such expensive 
computation locally. So, the customer sends it to cloud server 
for solving the LP problem. In order to protect the data, the 
customer first uses a secret key K to transform Φ into some 
encrypted form Φk. After that, based on encrypted Φk, the 
customer starts the computation delegation protocol with CS, 
and uses the cloud resources in a privacy-preserving manner. 
The CS helps the customer to find the answer of Φk, but is 
supposed to learn as little as possible on the confidential 
information in Φ. And after receiving the solution of 
encrypted problem Φk, the customer should be able to verify 
the answer first. If that answer is correct, then he then uses the 
secret K to map the output into the desired answer for the 
original problem Φ. 

 
 

Fig 2   Architecture of secure outsourcing large-scale LP computations in 
cloud computing 

 
 

The problem with this existing approach is that for encrypting 
the data if we use ordinary encryption techniques then 
computation over encrypted data becomes very difficult. The 
security problem faced by the computation model is that 
comes from the harmful behavior of CS, [6]. The CS may be 
very much interested in studying the encrypted input which 
was sent by the customer and the encrypted output produced 
by the computation in order to learn the confidential 
information. In addition to being interested in knowing the 
sensitive input/output information of Φ, CS can also behave 
unfaithfully or intentionally disrupt the computation, i.e. to lie 
about the result in order to save the computing resources, and 
hopes not to be caught. 
 
B. Design Goals 
 
1) Input/output confidentiality:  Confidential information from 
the customer’s private data cannot be obtained by the cloud 
server when performing the LP (linear programming) 
computation;  
2) Vigorous cheating detection: Computation output from 
cloud server must be verified successfully by the customer. No 
output from cheating cloud server can pass the verification.  
3) Efficiency: The local LP computing burden, for the 
customer should be much less than solving the original LP on 
his own. 
 

III.    RELATED WORK 
 
In the literature several protocols for cryptography has been 

proposed for solving linear programming problems by secure 
multiparty computations[7][8], these protocols are  not 
suitable for solving large size problems and do not address the 
irregularity among computation power of cloud and the 
customer, hence involve computation burden. The work 
developed under SMC model focus on traditional direct 
method [9][11],for computing linear equations and work well 
for small size problems. Lastly they do not consider result 
verification as a serious security requirement [10]. Even 
though result verification is done they allow server to see the 
data and result it is computing[12]. So an efficient and secure 
LP computational data outsourcing mechanism is required. 

 
IV.     PROPOSED METHODOLOGY 

 
A.    Iterative Method 

 
Here we are using iterative method for problem solving due 

to its ease of implementation and relatively less computational 
power consumption, including the memory and storage IO 
requirement [5]. A system of linear equations is written as 

                 
Where x is the n × 1 vector of unknowns, A is an n × n 
(nonsingular) coefficient matrix, b is an  n × 1 right-hand side  
vector. We use Jacobi iteration [18] and start with the 
decomposition: A =D + R, Where D is the diagonal 
component, R is the remaining matrix. Then, the (1) can be 
written as Ax = (D+R) x=b, and  reorganized as: x = -D

-1
. R. x 

+ D
-1

. b. If we denote iteration matrix T = -D
-1

 . R and c = D
-1

 . 
b, the above iterative equations can be represented as 
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B. Additive Homomorphic Encryption 
 

In our methodology we use a semantically secure encryption 
scheme with additive homomorphic property. Given two 
integers x1 and x2, we have Enc(x1+x2) = Enc(x1) * Enc(x2), 
and also Enc(x1*x2) = Enc(x1)

x
2 . In our implementation we 

adopt the Paillier cryptosystem [4]. For vector x = (x1 , x2, . . . , 
xn )

T 
Є (ZN)

n
, we use Enc(x)  to  denote the coordinate-wise 

encryption of x: Enc(x) = (Enc(x1), Enc(x2),……,Enc(xn))T 
For some n × n matrix T each of the component T[i, j] in T is 
from ZN, we denote the component-wise encryption of T as 
Enc(T), and we have Enc(T[i, j]) = Enc(T[i, j]). 

 
V.    MODULES DESIGN FRAMEWORK 

 
Our proposed method consists of three phases Problem 

Transformation, Problem Solving and Result Verification, and 
the system flow diagram is shown in the figure 3. 

 
 

Fig 3 System flow diagram 
 
A  Problem Transformation by Encrypting 
 

In this phase, the cloud customer uses a randomized key 
generation algorithm and transforms the LP problem into 
some encrypted form Φk.  The customer picks a random vector 
r Є IR

n
 as his secret key material, and rewrites Ax=b (1) as 

new LP problem. 

 
 
Where   y = x + r and b΄ = b + Ar. Next, equation (3)  can be 
rewritten as 

 
 
Where T = -D

-1
 . R, c΄= D

-1
 .  b΄ and A = D + R. Now the 

problem input Φ=(A , b) is changed to tuple Φk= (T, c΄)  
 
The following algorithm shows the protocol execution for the 
phase of Problem Transformation. 
Algorithm 1: Problem Transformation Phase 
Data: original LP problem Φ = (A, b) 
Result: transformed LP problem as shown in Eq. (4) 
Begin 
 1 pick random r Є R

n 
; 

 2 compute b΄ = b + Ar, and c΄ = D
-1

 · b´; 
 3 replace tuple (x, c) in Eq. (2) with (y = x + r, c΄); 
return transformed  LP problem as Eq. (4); 
 
B   Problem Solving using Iterative method 
 

In this phase, the cloud customer uses the encrypted form Φk 
of LP and starts the computation delegation process. In case of 
using the iterative methods, the protocol ends when the 
solution within the required accuracy is found. Our goal is to 
allow the customer securely utilize the cloud for the most 
expensive computation T. y

 (k)
 in (4) for each algorithm 

iteration, k =1, 2, . . . , L. we assume our protocol of solving 
LP works over integers. All arithmetic is modular with respect 
to the modulus N of the additive homomorphic encryption, 
and the modulus is large enough to contain the answer. For the 
first iteration, the customer starts initial guess on the vector 
y

(0) 
 = (y1

(0)
,y2

(0)
,…,yn

(0)
)

T 
and then sends  it to the cloud. The 

cloud server, in possession of the encrypted matrix Enc(T), 
computes the value Enc(T . y

(0)
) using the homomorphic 

property of the encryption: 
                                              

 
 
 for i =  1, . . . , n, and sends  to customer. Then after receiving 
Enc(T. y

(0)
) the customer decrypts and knows T. y

(0)
 using his 

private key. He then updates the next approximation y
(1) 

=  T  . 
y

(0)
  + c´

  
via (4).similarly for the k

th
 iteration,  the customer 

sends the k
th

 approximation y
(k+1)

 to cloud. The cloud sends 
Enc(T.y

(k)
)  to the customer for the next update of y

(k+1)
.The 

protocol continues until the result converges, as shown 
Algorithm 2 . 
 
The following algorithm shows the protocol execution for the 
phase of Problem Solving 
Algorithm 2: Iterative Problem Solving Phase 
Data: transformed LP problem with input c΄ and Enc (T) 
Result: solution x to the original LP problem Φ = (A, b) 
% L: maximum number of iterations to be performed; 
% Є: measurement of convergence point; 
Begin 
1 Customer picks y

(0)
 Є (ZN)

n 
;  

   for (k ← 0 to L) do 
2          Customer sends y

(k)
 to cloud ; 

3          Cloud computes Enc ( T y
(k) 

) via Eq. (5) ; 
4          Customer decrypts T y

(k)
 via his private key ; 

            if ||y
(k)

 – y
(k+1)

|| ≤ Є then 
5              break with convergence point y

(k+1) 
; 

6   return x = y
(k+1)

 – r ; 

Start 

Transform the original 

computational workload (LP) 

problem into encrypted form 
using Additive Homomorphic 

Property 

Resort the transformed 

computational workload (LP) to 

cloud server for solving the LP 

problem 

Decrypt the solution from cloud 

using private key 

Cloud computes on transformed 
LP problem and finds the 

solution 

Keep the original computational 
workload (LP) ready to process 

before delegation 

 

Verify the result from the cloud 

Stop 
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To determine termination, the customer tests if 
                            

 
   
C  Result Verification 
 

In many cases, a dishonest cloud server could damage the 
execution of protocol by either being acting lazy or 
intentionally damaging the computation result. So here we 
propose to design result verification methods to handle these 
two malicious behaviors. Here we denote z

(k)
 = T . y

(k)
 as the 

expected correct responses, and zˆ
(k)

 =T . ŷ
(k)

 as the actual 
received value from cloud server, where k = 1, 2, . . . ,L. After 
receiving the results customer  does as shown in the fig 4. 

 

 
 

Fig 4   Result verification process 

 

1) Dealing with Indolent Opponent: 
 

Computing the addition and multiplication over encrypted  
data could cost a lot of computational power, moreover  the 
cloud server may not be willing to commit service level-
agreed computing resources in order to save cost i.e. for the k

th
 

iteration, the opponent could simply reply the result z
(k-1)

 of 
the previous (k -1)

th
 iteration without computation. As a result, 

the customer who uses z
(k-1)

 to update for the next y
(k+1)

 will 
get the result y

(k+1)
 = y

(k)
. This may result in incorrectly 

believing the solution of equation Ay =b΄ is found. Thus, for 
the indolent opponent, only checking the (6) is not sufficient  
in order to convince the customer that the solution has 
converged. Another one step has to be executed as   

 

 
                         
2)  Dealing with Malevolent Adversary: 
 

A malicious adversary can damage the whole protocol 
execution by returning incorrect answers, so here we design an 
efficient and effective method to detect such malicious 
behavior to ensure the result quality. By using the algebraic 
property of matrix-vector multiplication we design a method 
to test the correctness of all received answers zˆ

 (k) 
= T . ŷ

(k)
, k 

= 1, 2, . . . L in only one batch. If suppose after L iterations, 
the solution still does not converge. The customer can initiate 
a Result Verification phase by randomly selecting L numbers, 
α1,α2, . . . , αL ,where each  αk is of l-bit length and l < logN.  

Then he  computes the linear combination θ over the y
(k)

’s, 
which customer  has provided in the previous k iterations,   
Next ,in order to test the correctness of all the intermediate 
results, { zˆ

(k)
 = T . ŷ

(k) 
 }, which is received from cloud server, 

the customer checks if the following equation holds: 
 

 
 
D  Output Privacy Analysis 
 

By using the proposed protocol the cloud server can see 
only the plain text of y

(k)
 , Enc(T) the encrypted matrix, and  

Enc(T. y
(k)

) the encrypted vectors. Encrypted problem y of 
linear programming is the blinded version of original solution 
x and it is very secure to send the encrypted version of the 
plaintext, so that no information of x will be leaked to the 
server because r is kept private by the customer, hence for 
each individual linear equation a randomly picked vector is 
used to protect the privacy of the output. 
 
E  Input Privacy Analysis

  

 

   Since the cloud server has no previous knowledge about the 
coefficient matrix no information leakage is possible 
especially when the problem size is very large. Also by using 
random scaling factor for each iteration in order to split the 
connection of two consecutive iterations of the protocol. 
Customer sends y

(k)
 and also the scaling factor to the cloud 

instead of sending only y
(k)

 in the k
th

 iteration of problem 
solving phase, the customer only needs to decrypts the vector 
divides each component with scaling factor and updates the 
next approximation when cloud server sends the encrypted 
value for the next iteration one more random scaling factor is 
multiplied to this approximation and then sent to the cloud 
hence input privacy is protected.

 

                
                       

VI.        CONCLUSION 
 

 The problem of privacy assured delegation of massive LP 
computation workload in cloud computing different from 
previous work, here the computation outsourcing is based on 
iterative method. Security for the confidential data is provided 
via a semantically secure additive homomorphic encryption. 
The design requires a one-time repayable setup phase with 
O(n

2
) cost, and  iterative algorithm execution only requires 

less local computing cost along with the benefits of easy to-
implement and less memory requirement in practice. Our 
mechanism also provides efficient and effective dishonest 
detection scheme for  result verification. 
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