
Privacy Assured Delegation of Massive Linear

Programming Computational Workload

Ms. Dhanya G. A Mrs. Jyothi K. S

Dept of Computer Science and Engineering, Dept of Computer Science and Engineering,
Channabasaveshwara Institute of Technology, Channabasaveshwara Institute of Technology,

Gubbi (T), Tumkur (D), Karnataka, India Gubbi (T), Tumkur (D), Karnataka, India

Abstract— Cloud Computing is a membership based service
where you can obtain the networked storage space and computer
resources. In this cloud computing model, the customers connect
to the cloud to access IT resources which are charged and
provided on demand services. This model is composed of five
important characteristics, three service models and four
deployment models. Users can store their data in the cloud and
there is a lot of personal information and secure data that people
store on their computers, and this information is now being
transferred to the cloud. So we must ensure the security of user’s
data, which is stored in the cloud. In this paper we present
privacy assured delegation mechanism for linear programming
computations in the cloud computing environment. Linear
programming is a computational tool, which is used to analyze
and optimize real world systems. Here we built the privacy
assured LP delegation mechanism using a different approach i.e.
iterative method which is easy to implement practically and
requires only simple matrix-vector operations. In this mechanism
customer can keep confidential both input and output of the
computation secure by using additive homomorphic encryption
method and can use the cloud for iteratively finding successive
approximations to the LP solution. For untrusted cloud cheating
detection, we use efficient verification mechanism that allows
customers to verify all results from cloud effectively.

Keywords- privacy, linear programming, additive homomorphic
encryption, cloud computing, delegation

I. INTRODUCTION

Cloud computing is a model that provides easy to use, on-

demand network access to a shared pool of computing
resources that can be quickly provided and released with
minimum management effort or service provider interaction. It
has large potential of providing computational power at
reduced cost and allows the customers with limited
computational resources to delegate their massive computation
workloads to the cloud, and thus customers can enjoy the
massive computational power, bandwidth, storage, and even
appropriate software that can be shared in a pay-per-use
manner [1]. An example of cloud computing architecture is
shown in fig 1. Even though with these immense benefits,
security is the main obstacle that prevents the wide adoption
of this computing model, especially for the customers when
their confidential data are consumed and produced during the
computation. Another reason is that the delegated computation
workloads contain confidential information. So in order to
avoid unauthorized information leakage, this data have to be
encrypted before delegating it to the cloud. If we apply

ordinary data encryption techniques this restricts the cloud
from performing any useful operation of the given plaintext
data and makes the computation of encrypted data very
difficult [2]. And also the operational details inside the cloud
are not visible enough to customers [3]. As a result cloud
server may return incorrect results. Along with this some
software bugs, hardware failures, and also outsider attacks
may also affect the quality of the computed results. So, cloud
is intrinsically not secure from the viewpoint of customers.
Without providing a mechanism for secure computation
outsourcing, i.e., to protect the sensitive input and output
information of the workloads and to validate the integrity of
the computed result, it would be hard to expect cloud
customers to turn over control of their workloads from local
machines to cloud only based on its economic savings and
resource flexibility. For practical consideration, such a design
should further ensure that customers perform fewer amounts
of operations than completing the computations by themselves
directly.

CUSTOMERS CLOUD SERVICE PROVIDERS

Fig 1: Cloud Computing Architecture Example

Here we design secure mechanism of delegating LP
computation by using a different method i.e. iterative method,
in this method the solution is extracted by finding successive
approximations to the solution until the required accuracy is
obtained. Comparing it to direct method, iterative method only
requires simple matrix-vector operations with O(n

2
) cost,

which is very easy to implement practically. Here we use the
additive homomorphic encryption scheme, e.g., the Paillier
cryptosystem [4] that allows computational customers to
securely utilize the cloud for finding successive
approximations to the computed solution in a privacy-

CSP

CSP

CSP

858

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051148

Vol. 3 Issue 5, May - 2014

preserving and cheating-resilient manner. For a linear system
with n×n coefficient matrix, the proposed mechanism is based
on a one-time amortizable setup with O(n

2
) cost. Then, in each

iterative algorithm execution, our proposed mechanism only
requires O(n) local computational burden to the customer and
demands no impractical memory i.e. eliminates the expensive
IO cost. To verify computation result honesty, we also propose
a very efficient cheating detection mechanism to effectively
verify in one batch of all the computation results by the cloud
server from previous algorithm iterations with high
probability.

1) We propose to solve the problem of privacy assured
delegation of massive LP computational workload using
iterative methods, and provide mechanism designs which
fulfill input/output privacy, cheating resilience, and efficiency.
2) Within each iteration, it requires only O (n) computation
burden i.e. less burden for the customer and demands no
unrealistic IO cost, as a result our mechanism brings
computational savings, in terms of both time and memory
requirements [5].
3) To design a efficient batch verification mechanism we use
the algebraic property of matrix-vector operations, which
allows customers to verify all results of previous iterations
from cloud effectively.

II. PROBLEM STATEMENT

A. Threat Model

Here we consider a architecture of secure computation

delegation which involves cloud customer and cloud server as
shown in Fig. 2. The customer who has a massive LP problem
to be solved which is denoted as Φ. But due to the lack of
computing resources, he cannot perform such expensive
computation locally. So, the customer sends it to cloud server
for solving the LP problem. In order to protect the data, the
customer first uses a secret key K to transform Φ into some
encrypted form Φk. After that, based on encrypted Φk, the
customer starts the computation delegation protocol with CS,
and uses the cloud resources in a privacy-preserving manner.
The CS helps the customer to find the answer of Φk, but is
supposed to learn as little as possible on the confidential
information in Φ. And after receiving the solution of
encrypted problem Φk, the customer should be able to verify
the answer first. If that answer is correct, then he then uses the
secret K to map the output into the desired answer for the
original problem Φ.

Fig 2 Architecture of secure outsourcing large-scale LP computations in
cloud computing

The problem with this existing approach is that for encrypting
the data if we use ordinary encryption techniques then
computation over encrypted data becomes very difficult. The
security problem faced by the computation model is that
comes from the harmful behavior of CS, [6]. The CS may be
very much interested in studying the encrypted input which
was sent by the customer and the encrypted output produced
by the computation in order to learn the confidential
information. In addition to being interested in knowing the
sensitive input/output information of Φ, CS can also behave
unfaithfully or intentionally disrupt the computation, i.e. to lie
about the result in order to save the computing resources, and
hopes not to be caught.

B. Design Goals

1) Input/output confidentiality: Confidential information from
the customer’s private data cannot be obtained by the cloud
server when performing the LP (linear programming)
computation;
2) Vigorous cheating detection: Computation output from
cloud server must be verified successfully by the customer. No
output from cheating cloud server can pass the verification.
3) Efficiency: The local LP computing burden, for the
customer should be much less than solving the original LP on
his own.

III. RELATED WORK

In the literature several protocols for cryptography has been

proposed for solving linear programming problems by secure
multiparty computations[7][8], these protocols are not
suitable for solving large size problems and do not address the
irregularity among computation power of cloud and the
customer, hence involve computation burden. The work
developed under SMC model focus on traditional direct
method [9][11],for computing linear equations and work well
for small size problems. Lastly they do not consider result
verification as a serious security requirement [10]. Even
though result verification is done they allow server to see the
data and result it is computing[12]. So an efficient and secure
LP computational data outsourcing mechanism is required.

IV. PROPOSED METHODOLOGY

A. Iterative Method

Here we are using iterative method for problem solving due

to its ease of implementation and relatively less computational
power consumption, including the memory and storage IO
requirement [5]. A system of linear equations is written as

Where x is the n × 1 vector of unknowns, A is an n × n
(nonsingular) coefficient matrix, b is an n × 1 right-hand side
vector. We use Jacobi iteration [18] and start with the
decomposition: A =D + R, Where D is the diagonal
component, R is the remaining matrix. Then, the (1) can be
written as Ax = (D+R) x=b, and reorganized as: x = -D

-1
. R. x

+ D
-1

. b. If we denote iteration matrix T = -D
-1

 . R and c = D
-1

 .
b, the above iterative equations can be represented as

859

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051148

Vol. 3 Issue 5, May - 2014

B. Additive Homomorphic Encryption

In our methodology we use a semantically secure encryption
scheme with additive homomorphic property. Given two
integers x1 and x2, we have Enc(x1+x2) = Enc(x1) * Enc(x2),
and also Enc(x1*x2) = Enc(x1)

x
2 . In our implementation we

adopt the Paillier cryptosystem [4]. For vector x = (x1 , x2, . . . ,
xn)

T
Є (ZN)

n
, we use Enc(x) to denote the coordinate-wise

encryption of x: Enc(x) = (Enc(x1), Enc(x2),……,Enc(xn))T
For some n × n matrix T each of the component T[i, j] in T is
from ZN, we denote the component-wise encryption of T as
Enc(T), and we have Enc(T[i, j]) = Enc(T[i, j]).

V. MODULES DESIGN FRAMEWORK

Our proposed method consists of three phases Problem

Transformation, Problem Solving and Result Verification, and
the system flow diagram is shown in the figure 3.

Fig 3 System flow diagram

A Problem Transformation by Encrypting

In this phase, the cloud customer uses a randomized key
generation algorithm and transforms the LP problem into
some encrypted form Φk. The customer picks a random vector
r Є IR

n
 as his secret key material, and rewrites Ax=b (1) as

new LP problem.

Where y = x + r and b΄ = b + Ar. Next, equation (3) can be
rewritten as

Where T = -D

-1
 . R, c΄= D

-1
 . b΄ and A = D + R. Now the

problem input Φ=(A , b) is changed to tuple Φk= (T, c΄)

The following algorithm shows the protocol execution for the
phase of Problem Transformation.
Algorithm 1: Problem Transformation Phase
Data: original LP problem Φ = (A, b)
Result: transformed LP problem as shown in Eq. (4)
Begin
 1 pick random r Є R

n
;

 2 compute b΄ = b + Ar, and c΄ = D
-1

 · b´;
 3 replace tuple (x, c) in Eq. (2) with (y = x + r, c΄);
return transformed LP problem as Eq. (4);

B Problem Solving using Iterative method

In this phase, the cloud customer uses the encrypted form Φk
of LP and starts the computation delegation process. In case of
using the iterative methods, the protocol ends when the
solution within the required accuracy is found. Our goal is to
allow the customer securely utilize the cloud for the most
expensive computation T. y

 (k)
 in (4) for each algorithm

iteration, k =1, 2, . . . , L. we assume our protocol of solving
LP works over integers. All arithmetic is modular with respect
to the modulus N of the additive homomorphic encryption,
and the modulus is large enough to contain the answer. For the
first iteration, the customer starts initial guess on the vector
y

(0)
 = (y1

(0)
,y2

(0)
,…,yn

(0)
)

T
and then sends it to the cloud. The

cloud server, in possession of the encrypted matrix Enc(T),
computes the value Enc(T . y

(0)
) using the homomorphic

property of the encryption:

 for i = 1, . . . , n, and sends to customer. Then after receiving
Enc(T. y

(0)
) the customer decrypts and knows T. y

(0)
 using his

private key. He then updates the next approximation y
(1)

= T .
y

(0)
 + c´

via (4).similarly for the k

th
 iteration, the customer

sends the k
th

 approximation y
(k+1)

 to cloud. The cloud sends
Enc(T.y

(k)
) to the customer for the next update of y

(k+1)
.The

protocol continues until the result converges, as shown
Algorithm 2 .

The following algorithm shows the protocol execution for the
phase of Problem Solving
Algorithm 2: Iterative Problem Solving Phase
Data: transformed LP problem with input c΄ and Enc (T)
Result: solution x to the original LP problem Φ = (A, b)
% L: maximum number of iterations to be performed;
% Є: measurement of convergence point;
Begin
1 Customer picks y

(0)
 Є (ZN)

n
;

 for (k ← 0 to L) do
2 Customer sends y

(k)
 to cloud ;

3 Cloud computes Enc (T y
(k)

) via Eq. (5) ;
4 Customer decrypts T y

(k)
 via his private key ;

 if ||y
(k)

 – y
(k+1)

|| ≤ Є then
5 break with convergence point y

(k+1)
;

6 return x = y
(k+1)

 – r ;

Start

Transform the original

computational workload (LP)

problem into encrypted form
using Additive Homomorphic

Property

Resort the transformed

computational workload (LP) to

cloud server for solving the LP

problem

Decrypt the solution from cloud

using private key

Cloud computes on transformed
LP problem and finds the

solution

Keep the original computational
workload (LP) ready to process

before delegation

Verify the result from the cloud

Stop

860

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051148

Vol. 3 Issue 5, May - 2014

To determine termination, the customer tests if

C Result Verification

In many cases, a dishonest cloud server could damage the
execution of protocol by either being acting lazy or
intentionally damaging the computation result. So here we
propose to design result verification methods to handle these
two malicious behaviors. Here we denote z

(k)
 = T . y

(k)
 as the

expected correct responses, and zˆ
(k)

 =T . ŷ
(k)

 as the actual
received value from cloud server, where k = 1, 2, . . . ,L. After
receiving the results customer does as shown in the fig 4.

Fig 4 Result verification process

1) Dealing with Indolent Opponent:

Computing the addition and multiplication over encrypted
data could cost a lot of computational power, moreover the
cloud server may not be willing to commit service level-
agreed computing resources in order to save cost i.e. for the k

th

iteration, the opponent could simply reply the result z
(k-1)

 of
the previous (k -1)

th
 iteration without computation. As a result,

the customer who uses z
(k-1)

 to update for the next y
(k+1)

 will
get the result y

(k+1)
 = y

(k)
. This may result in incorrectly

believing the solution of equation Ay =b΄ is found. Thus, for
the indolent opponent, only checking the (6) is not sufficient
in order to convince the customer that the solution has
converged. Another one step has to be executed as

2) Dealing with Malevolent Adversary:

A malicious adversary can damage the whole protocol
execution by returning incorrect answers, so here we design an
efficient and effective method to detect such malicious
behavior to ensure the result quality. By using the algebraic
property of matrix-vector multiplication we design a method
to test the correctness of all received answers zˆ

 (k)
= T . ŷ

(k)
, k

= 1, 2, . . . L in only one batch. If suppose after L iterations,
the solution still does not converge. The customer can initiate
a Result Verification phase by randomly selecting L numbers,
α1,α2, . . . , αL ,where each αk is of l-bit length and l < logN.

Then he computes the linear combination θ over the y
(k)

’s,
which customer has provided in the previous k iterations,
Next ,in order to test the correctness of all the intermediate
results, { zˆ

(k)
 = T . ŷ

(k)
 }, which is received from cloud server,

the customer checks if the following equation holds:

D Output Privacy Analysis

By using the proposed protocol the cloud server can see
only the plain text of y

(k)
 , Enc(T) the encrypted matrix, and

Enc(T. y
(k)

) the encrypted vectors. Encrypted problem y of
linear programming is the blinded version of original solution
x and it is very secure to send the encrypted version of the
plaintext, so that no information of x will be leaked to the
server because r is kept private by the customer, hence for
each individual linear equation a randomly picked vector is
used to protect the privacy of the output.

E Input Privacy Analysis

 Since the cloud server has no previous knowledge about the
coefficient matrix no information leakage is possible
especially when the problem size is very large. Also by using
random scaling factor for each iteration in order to split the
connection of two consecutive iterations of the protocol.
Customer sends y

(k)
 and also the scaling factor to the cloud

instead of sending only y
(k)

 in the k
th

 iteration of problem
solving phase, the customer only needs to decrypts the vector
divides each component with scaling factor and updates the
next approximation when cloud server sends the encrypted
value for the next iteration one more random scaling factor is
multiplied to this approximation and then sent to the cloud
hence input privacy is protected.

VI. CONCLUSION

 The problem of privacy assured delegation of massive LP
computation workload in cloud computing different from
previous work, here the computation outsourcing is based on
iterative method. Security for the confidential data is provided
via a semantically secure additive homomorphic encryption.
The design requires a one-time repayable setup phase with
O(n

2
) cost, and iterative algorithm execution only requires

less local computing cost along with the benefits of easy to-
implement and less memory requirement in practice. Our
mechanism also provides efficient and effective dishonest
detection scheme for result verification.

REFERENCES

[1] M. Armbrust et al., “A View of Cloud Computing,” Comm. ACM, vol.

53, no. 4, pp. 50-58, Apr. 2010.
[2] C. Gentry, “Computing Arbitrary Functions of Encrypted Data,” Comm.

ACM, vol. 53, no. 3, pp. 97-105, 2010.

[3] Cloud Security Alliance, “Security Guidance for Critical Areas of Focus
in Cloud Computing,” http://www.cloudsecurityalliance.org, 2009.

[4] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes,” EUROCRYPT: Proc. 17th Int’l Conf. Theory and
Application of Cryptographic Techniques, pp. 223-238, 1999.

861

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051148

Vol. 3 Issue 5, May - 2014

[5] B. Carpentieri, “Sparse Preconditioners for Dense Linear Systems from

Electromagnetic Applications,” PhD dissertation, CERFACS, Toulouse,
France, 2002.

[6] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure Ranked Keyword

Search over Encrypted Cloud Data,” Proc. IEEE 30th Int’l Conf.
Distributed Computing Systems (ICDCS), pp. 253-262, 2010.

[7] M. Atallah and K. Frikken, “Securely Outsourcing Linear Algebra

Computations,” Proc. Fifth ACM Symp. Information, Computer and
Comm. Security (ASIACCS), pp. 48-59, 2010.

[8] D. Benjamin and M.J. Atallah, “Private and Cheating-Free Outsourcing

of Algebraic Computations,” Proc. Sixth Conf. Privacy ,Security, and
Trust (PST), pp. 240-245, 2008.

[9] K. Nissim and E. Weinreb, “Communication Efficient Secure Linear

Algebra,” Proc. Third Conf. Theory of Cryptography (TCC),pp. 522-
541, 2006.

[10] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed. Soc.

for Industrial and Applied Math., 2003.
[11] E. Kiltz, P. Mohassel, E. Weinreb, and M.K. Franklin, “Secure Linear

Algebra Using Linearly Recurrent Sequences,” Proc. Fourth Conf.

Theory of Cryptography (TCC), pp. 291-310, 2007.

[12] S. Goldwasser, Y.T. Kalai, and G.N. Rothblum, “Delegating

Computation: Interactive Proofs for Muggles,” Proc. ACM

Symp.Theory of Computing (STOC), pp. 113-122, 2008.

862

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051148

Vol. 3 Issue 5, May - 2014

