
Privacy Preserving K-NN Classification Supported By Secure SASH

A.Durga Bhavani
#1

, R.Srinivas
*2

Computer Sceince and Engineering, Jawaharlal Nehru Technological University Kakinada.

A.Durga Bhavani, Student, M. Tech., Sri Sai Aditya Inistitute of Science &Technology, Kakinada, India

*
R.Srinivas, M.Tech, (Ph.D)

 HOD_CSE.Dept, Sri Sai Aditya Inistitute of Science &Technology, Kakinada, India

Abstract:

The field of privacy has seen rapid advances

in recent years because of the increases in the

ability to store data. Besides the storing ability

computers can manipulate large databases and

performs many data analysis tasks using data

mining techniques. Our purpose is during

such analysis to preserve privacy of

individuals and corporations. In this paper we

address the k-NN classification along with

preserving privacy to individual data. Data

may be distributed across multiple sites and

the owners of the data may wish to compute a

common function. In such cases a variety of

protocols may be used, so that secure

computation is possible without reveling

sensitive information.

Index Term

Privacy preserving data mining, privacy

preserving classification, horizontally

partitioned data, k-NN queries, SASH data

structure.

Introduction

Data mining technology allows the analysis of

large amounts of data. Analyses of personal

data or analyses of corporate data by

competitors create threats to privacy. Data

m in i n g has been identified as one of the

most useful tools for the fight on terror and

crime. However the information needed

resides with many different data holders.

Parties may mutually not trust each other,

but all parties are aware of the benefit

brought by collaboration. In the privacy

preserving model, all parties of the

partnership promise to provide their private

data to the collaboration, but none of

them wants the others or any third party

to learn much about their private data.

 In this paper we

focus on the k-NN classification algorithm

on horizontally partitioned data. The

objective of k-NN classification is to

discover k nearest neighbors for a given

instance and then assign a class label to

the given instance according to the

majority class of the k nearest neighbors.

Our goal is not only to achieve the above

objective but also to preserve the privacy.

 For most data mining algorithms, the

data is encoded as vectors in high dimensional

space. For these algorithms, a measure of

similarity (or dissimilarity) is necessary, and

many times fundamental for their operation.

Similarity queries on multi-dimensional data

are usually implemented by finding the closest

attribute-vector(s) to the attribute-vector of the

query data. In such settings, information

retrieval under the vector model must typically

be implemented as k-nearest-neighbor (k-NN)

queries, whose result consists of the k items

closest to the query vector according to the

similarity measure. This type of query is

known as a nearest neighbor (NN) query.

2. Secure Multi Party Computation

We study col laborat ion between several

parties that wish to compute a function of

their collective data. In fact, they are to

conduct data mining tasks on the joint

data set that is the union of all individual

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

data sets. Each wants the others to find as

little as possible of their own private data.

To focus the discussion on privacy preserving

collaboration, we will regularly use two

parties name Alice and Bob. We focus on

horizontally partitioned data(see Fig1.). Some

of the records are owned by Alice and the

others by Bob. Data mining algorithms on the

union of the data requires one

party to receive data (every record) from all

other parties, or all parties to send their

data to a trusted central place. The recipient

of the data would conduct the computation

in the resulting u n i o n . In settings w h e r e

each party must keep their data private, this is

unacceptable. Note that, for horizontally

partitioned data, the more par- ties are

involved, the more records are involved and

the larger is the global database.

In horizontal partition different sites may have

different sets of records containing the same

attributes.

Figure 1: Horizontally partitioned data.

For simplicity, we may assume each

party owns one record only, so the number P

of parties is also the number m of records.

Typically there would be more records than

parties (as in Fig.1 where two parties have

data for 9 records). However, we consider

Alice as 4 virtual parties (one for each of the

records) and Bob as 5 virtual parties each

controlling one of Bob’s records.

Here Alice holds one input vector x and

Bob holds an input vector y. They both want

to compute a function f(x,y) without each

other learning anything about each other’s

input except what can be inferred from f(x,y).

Yao’s Millionaires Problem (Yao 1982)

provides the origin for SMC. In the

millionaires, Alice holds a number a while

Bob holds b. They want to identify who

holds the larger value (they compute if a >

b) without neither learning anything else

about the others value. The function f(x,y) is

the predicate f (a, b) = a > b. There are now

many solutions improving Yao’s original

solution. We also adopt the semi-honest

model for secure computation, which means

both parties will follow the protocol since

both are interested in the results.

DEFINITION 2.1 We say that

algorithm A is more secure (preferred) than

algorithm B if from the Output of algorithm

A one can infer less information than from

algorithm B.

Commodity Server: The Trusted

third party

The commodity server is a third party. Alice

and Bob can send requests to the commodity

server and receive data (called commodities)

from the server, but the commodities should

be independent of Alice’s or Bob’s private

data. The purpose of the commodities is to

help Alice and Bob conduct the desired

computation.

Scalar Product Protocol

 In this protocol, Alice has a

vector X and Bob has another vector Y.

The scalar product of X and Y is divided

into two secret pieces, with one going to

Alice and the other to Bob.

The steps involved in this protocol are:

1. The commodity server generates

two random vectors Ra and Rb of

size n and lets ra + rb = Ra . Rb

where ra or rb is a randomly

generated number. Then the

server sends (Ra; ra) to Alice and

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

a

(Rb; rb) to Bob.

2. Alice sends x
|
 = x + Ra to Bob,

and Bob sends y
|
 = y + Rb to

Alice.

3. Bob generates a random number

V2, and computes (x
|
 . y)+(rb –

V2) and sends the result to Alice.

4. Alice computes (x
|T

 y+(rb −V2))−(RT

y
|
)+ra = x y − V2 + (rb −Ra · Rb + ra

) = x
T
.y – V2 = V1.

Extension to Add Vectors Protocol

 In this protocol Alice has a

vector x while Bob has a vector y and a

permutation π. Alice gets π(x+y), that is

he gets the sum S in some sense. The

entries are randomly permuted, so Alice

cannot performs S-x to get y. Likewise

Bob also cannot learn x.

The protocol works as follows:

1. Alice produces a key pair for a

homomorphic public key system

and sends the public key to Bob.

We denote by E(·) and D(·) the

corresponding encryption and

decryption system.

2. Alice encrypts x = (x1 , · · · , xn)T

and sends E(x) = (E(x1), · · · ,

E(xn))
T to Bob.

3. Using the public key from Alice,

Bob computes E(y) = (E(y1), · · ·

, E(yn))T and uses the

homomorphic property to

compute E(x+y) = E(x) ×

E(y). Then, he permutes the

entries by π and sends

π(E(x+y)) to Alice.

4. Alice decrypts to obtain

D(π(E(x+y))) = π(x+y).

A Protocol to find the Maximum Value in

the Sum of Vectors

Two Party Case: Consider two

attribute vectors x and y, where only Alice

knows x and only Bob knows y. The goal is

to obtain maxi (xi + yi).

T he protocol should never reveal

index i0 for which xi + yi is maximum,

because then the parties find a value for

the other. For example, Alice would find

maxi (xi + yi) − xi0 = yi0.

Bob generates a random value r and

computes y + r = (y1 + r, . . . , yn + r)T in

the add vector protocol. This provides Alice

with π(x + y + r); which will suffice for

Alice to find the maximum and inform Bob.

If the maximum value is the outcome sought,

Alice provides only the value xi0 + yi0 + r.

Bob will subtract r and pass xi0 + yi0 to

Alice. If the index of where the maximum is

sought, then Alice provides only the index of

where she found the maximum and Bob

applies π−1 to broadcast the index. Note

that Alice cannot learn which of the

coordinates provided the maximum value, until

Bob broadcast it. Note however, only when

the maximum is sought, Alice learns the

random number r and all the values in the

entries of π(x+y), but this is not enough to

learn any of the Bobs private data.

Privacy Preserving Metrics

Associative queries are the core retrieval

operations for many data mining algorithms

including k-NN search. Associative queries

are based on several metrics and discussion

about k-NN cannot be separated from proper

discussion of the metrics.

3.1 Euclidian metric

Here Alice has again a vector x while Bob

has vector y. We introduce here secure

computation of the Euclidean distance

between these vectors. Alice replaces each

component xi with three components xi
2,

−2xi, , 1.

While Bob replaces each yi component with

1, yi , yi
2. The dot product for these three

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

components will then be xi
2

- 2 x i y i + y i
2

=

(x i - y i)
2

. In general

 (𝑥𝑖 − 𝑦𝑖)
2 = (𝑥𝑖

2,−2𝑥1,… ,−2𝑥𝑛 , 1).

𝑖𝑖

 and thus the Euclidean distance between two

feature vectors can also be expressed as a scalar

product of two vectors. Hence one could use the

secure scalar product protocol, to compute a

secure Euclidean distance. The result is two

pieces of information V1 and V2, with V1 going

to Alice, V2 going to Bob.

Privacy Preserving k-NN Algorithm

This section describes our privacy preserving

k-NN algorithm. Later, we will show that

with this operation we can build a privacy

preserving SASH. For the PP-k-NN protocol

we are given a set of vectors

V1
T
= (v11 , • • • , v1n), • • • , Vm

T
= (vm1 ,• • •

, vmn)

(1)

and a vector qT = (q1 , q2 , · · · , qn), where

m is the number of records/vectors involved

in the computation. The goal is to find

NN (q, k) where NN(q, k) is the set of

indices of the k nearest neighbors to the

vector q. Assume the query vector q and the

first l < m vectors are owned by Alice

while the other m − l vectors are owned by

Bob. In the case of the Euclidean distance,

the distance values between q and yi , be

partially distributed between Alice and

Bob. Alice will have

V
1
q,vl+1 , • • • , V

1
q,vm

(2)

and Bob will have

V
2
q,vl+1, • • • , V

2
q,vm ,

(3)

where dist(q, vi) = V
1
q,vi + V

2
q,vi , l < i ≤ m.

Of course, Alice will have also the distance

values for her own data. At this stage,

Alice and Bob can perform the a d d

v e c t o r p r o t o c o l with the values that

determine dist(q, vi) = V
1

q,vi + V
2

q,vi, l < i

≤ m. Alice receives these values shuffled by

the permutation π that Bob knows. Alice

finds among these values and her own

dist(q,vi), 1 < i ≤ l, the k smallest. If any

came from Bob’s, she lets know the indexes

j to Bob and Bob returns π−1 (j) to Alice.

Then, Alice broadcasts the indexes of all k-

NN. Note that Alice learns all the distances

from q to data points of Bob.

Theorem 4.1 The PP-k-NN protocol does

not allow either Alice or Bob to learn each

other’s private data/vectors.

Proof: In the first step of the PP-k-NN

protocol, Alice obtains (2) and Bob

obtains (3) as a result of the secure scalar

product. The next step applies the secure

add vector protocol (see Section 2.3) which

al- lows Alice to learn the distance values.

But, because the distances obtained by

Alice were shuffled by Bob, Alice cannot

learn the values in List (3). Clearly, Bob

only learns the list of values in List (3)

and the indexes of the k-NN. This, of

course, is not enough to disclose Alice’s

private data.

 The Ideal Case For Privacy Preserving

k-NN Queries

 Here we analyze what is the best

possible security we can except for a k-NN

query. Assume Alice has a database

D1={a1,…,am} and query vector q, while

Bob has database D2={b1,…,bm}. They

want to compute privately

 k-NN(q,D1,D2):=(z1,..,zk) D1U D2

where z1,..,zk are the indexes of vectors,

which are k-NNs to q.

Assume zi1,..,zil are indexes of vectors that

belongs to Alice and zi1+1,..,zik are indexes

of vectors that belongs to Bob. If Bob can

discover a cell/bounding box for the query

vector q, the cell for q could be extremely

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

i

small. Naturally the more of Bob’s vectors

among the k-NNs of q, the more likely a

more accurate cell/BB will be found. Thus

even in the ideal case Bob is able to

discover a cell/BB where the query vector

lies.

The SASH Data

Structure

In this section we show a strategy by which

we limit the number of distances that one

party learns when the k nearest neighbors

to one of its data points is performed. If we

want to share a search data structure, but

preserve privacy we recommend the SASH .

We consider n objects for which a similarity

measure dist(u, v) exists between any two

objects u and v. Since the SASH assumes

only a metric dist, we can use any of the

metrics between attribute-oriented vectors

for which we have presented SMC

protocols.

The directed edge-weighted graph that

constitutes the S A S H is shared by the

parties. While each database object

corresponds to a unique node, only if the

party that owns that record (vector) will know

the data and the index of that vector, the

others will only know who is the owner of

the node. Nodes are organized into a

hierarchy of levels, ranging from a bottom

level containing bn/2c nodes (the leaves), to a

top level containing a single node (the root).

The levels of the SASH are numbered from 1

(the top level) to h (the bottom level). Edges

within the SASH link nodes from

consecutive levels. Each node can have

edges directed to at most p parent nodes,

and to at most c child nodes. Every node v

(other than the root) has an edge directed to

one parent g(v) that is designated as its

guarantor. The guarantor of v must have v

as one of its children; v is called the

dependent of g(v).

During the construction, each new node is

attached to a small number of its near

neighbors from the level above it. At the

start of construction, the SASH is empty,

and the parties pick a random and uniform

order on the totality of the data to insert the

database objects. As a result of this, the

parties alternate being the party that owns

the query point q and because the internal

k-NN queries in the SASH are only for

levels with restricted number of nodes, the

party does not get to learn distances to all

data points of the other parties.

Let SASH i denote the graph

induced by the nodes from level 1 through

i, for 1 ≤ i ≤ h. SASH i

is a SASH in itself. The construction of

the entire SASH (that is, SASHh)

proceeds by iteratively constructing

SASH1 , SASH2 , ..., SASHh in order.

The following algorithm shows how to build

securely

SASHl given SASHl−1 , for 1 ≤ l ≤ h,

by adding
edges between nodes of the current last two

levels.

Algorithm Privacy Preserving

ConnectSASHLevel(l):

1. If l = 2, then every node of level 2

will have the root node as its sole

parent and guarantor, and the

root node will have all nodes of

level 2 as its children and

dependents. This completes the

construction of SASH2.

2. Otherwise, for the remaining steps,

we have l >2. For each node v of

level l, the parties choose a set of up

to p near neighbors Pi (v, p) from

among the nodes of each level for i

= 1 to l:

(a) If i = 1, then Pi (v, p) consists

of a single node, the root.

(b) Otherwise, i > 1. Let P 0(v) be the

set of

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

0

−

distinct children of the nodes of Pi−1

(v,p). Set Pi (v, p) to be the p nodes

of Pi (v) closest to v, according to

the measure dist using our privacy

preserving k-NN operation.

3. Set the parents of v to the nodes in Pl− 1

(v, p). Each element v at level l has

up to p parents associated with

points in its distinct vicinity.

4. Create the child edges for the nodes of

level l − 1, as follows:

(a) For each node u of level l − 1,

determine the list of distinct nodes

C (u) of level l that have chosen u as

a parent.

(b) Use our Privacy Preserving k-NN to

find the c closest points to u among

those in C (u).

(c) Set the children of u to be these c

nearest neighbors.

5. For each node v of level l, determine

whether it was accepted as child of any

node at level l − 1.

If yes, then the closest node that accepted

it as a child becomes the guarantor g(v)

of v, and v becomes a dependent of g(v).

Otherwise, label v as an orphan node.

6. For each orphan node v at level l, a

node at level l − 1 is needed to act as

its guarantor. The node should be

close as possible to v (in terms of the

distance measure), and must be

unencumbered; that is it must have

fewer that the maximum allowed

number c of children. Find a guarantor

for v by successively doubling the size

of the candidate parents set as

follows:

(a) Set

i = 1

(b) Compute Pl−1(v, 2p) as in

Step2.

(c) If Pl 1 (v, 2i p) has no

unencumbered node, increment i and

go to 6b.

(d) Otherwise, choose as the

guarantor g(v) the unencumbered

node of Pl−1 (v, 2 p) that is closest to

v. Add v as a child and dependent of

g(v), and replace the parent of v

furthest from v by g(v).

This completes the construction of the privacy

pre- serving SASHl. Note that the

information shared by the parties is all the

edges (parent/child relationships) and results

of k-NN queries that identify only owners of

vectors but do not reveal the data associated

with those vectors. It may be necessary to

demonstrate to all other parties that all the

local data is involved in the process. The

SASH does not partition the search space,

but a KD -Tree or an R-Tree does. Our case

study is KD -Trees but the conclusions apply to

R- Trees, since in fact, a node in an R-Tree is

a bounding box for all data below that node.

Comparison and

Analysis

Even it is more efficient that each party

compute the k-NN on their data and then

merge them as in privacy preserving k-NN

algorithm, the SASH allows the parties to

monitor the participation of other parties. But

if each party uses their own data structure to

answer locally its k-NN query, in reality, one

party may always keep away some different

sections of their data. With a shared data

structure, this is not possible. The data in

the shared structure will be involved in the

entire process of classification or clustering.

Clearly, the methods are equivalent if one

party decides from the beginning never to

involve some set of records, but then, the

results will not be accurate for the union of

all records anyways.

Even in the ideal case, k-NN queries disclose

some information about the data of the parties

involved. And bounding boxes or bounding

regions are found for some of the data owned

by other parties. From the perspective of

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

Definition 2.1, the separate data structures

and secure k-NN is the most secure option,

but parties have less certainty that all others

have contributed their entire data sets. The

secure SASH provides more assurances that

all parties have contributed their data

(otherwise the shared SASH cannot be

constructed). Partition data structures, like

KD -Trees (or R-Trees) are the least private

as they enable one party to immediately learn

bounding boxes for the other’s data. All these

options incur a communication overhead.

Considering the overhead for the

transmission of all data to a trusted server

which performs the desired analysis on the

join data is insignificant.

Time Complexity Analysis

The complexity, depends on the data

structures, that every party uses locally and

the number of distances calculated for local

k-NN, plus the communication cost for

sending the overall result to all parties.

In terms of CPU-time overhead, the

algorithms induce only a linear time

overhead. In all dictionary data

structures, when the data is high-dimensional,

the CPU-time costs are mainly associated

with metric evaluation. The SASH data

structure is very efficient in terms of CPU-

time costs. The approximate k-NN queries

proceeds by choosing Pi (q, k) at every level

of the SASH , then combing them and

choosing k closest to the query vector q.

In the SASH there are two strategies for

queries: uniform and geometric. Their paper

suggests that the geometric pattern improves

both accuracy and search time.

SASH construction: pcn log 2n

Approx. k-NN query (uniform): ck log 2n

Approx. k-NN query (geom.):
k
log 2n1+

2p3 log 2n

Conclusion

 Privacy preserving data mining

emerged in response to two equally important

and seemingly desperate needs: data analysis

in order to deliver better services and ensuring

the privacy rights of the data owners

Although the construction data structure is

secure, its operation can disclose some private

information. While these may seems un-

satisfactory, the fact remains that the

protocols and algorithms presented here are

the most practical. They allow some level

of protection at essentially affordable cost

(the CPU-time is affected only by a

constant factor). Other methods are

essentially theoretical.

Several privacy preserving metrics are

presented here and based on this, an

algorithm to obtain k-NN with some level of

preserving privacy. This provides some

practical methods for applications in

classification and clustering with

considerations to privacy.

References

[1] Rogress Pressman Software Engineering 5
th

Edition Pearson Education 2005.

[2] Herbert Schildt The Complete Reference 7
th

Edition Tata McGraw-Hill 2007.

[3] V. Estivill-Castro, L. Brankovic, and D. L.

Dowe. Privacy in data mining. Privacy – law

& Policy Reporter, 6(3):33-35, September

1999.

[4] R. Agrawal and R. Srikant, “Privacy-

preserving data mining,” in Proceedings

of the 2000 ACM SIGMOD Conference on

Management of Data. Dallas, TX: ACM,

May 14-19 2000, pp. 439–450. [Online].

Available:

http://doi.acm.org/10.1145/342009.33543

8.

[5] M. Kantarcioglu and C. Clifton. Privacy-

preserving distributed mining of

association rules on horizontally

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

partitioned data. In ACM SIGMOD

Workshop on Research Issues in Data

Mining and Knowledge Discovery,

Madison, Wisconsin, USA, 2002.

[6] J. Han and M Kamber. Data Mining:

Concepts and Techniques. Morgan

Kaufmann, 2000, ISBN: 1-55860-489-8.

[7] D.T. Lee. On k-nearest neighbors voronoi

diagrams in the plane. IEEE

Transactions of Computers, C(31):478–487,

1982.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

