Process Improvement by using Value Stream Mapping:- ISSN: 2278-0181 A Case Study in Small Scale Industry Vol. 1 Issue 5, July - 2012

Mr. Rahul.R.Joshi¹, Prof.G.R.Naik² ¹PG. Student, Department of Production Engineering,KIT's College of Engineering,Kolhapur Shivaji University,Kolhapur(India)

² Asso.Professor

Department of Production Engineering, KIT's College of Engineering, Kolhapur Shivaji University, Kolhapur(India)

Abstract

"Process improvement" means making things better. However, when we engage in true process improvement, we seek to learn what causes things to happen in a process and to use this knowledge to reduce variation, remove activities that contribute no value to the product or service produced, and improve customer satisfaction. Process Improvement means examine all of the factors affecting the process: the materials used in the process, the methods and machines used to transform the materials into a product or service, and the people who perform the work.Lean Production Starts from the argument that adding value and reducing waste are the key goals of any business. But for many stills, the teething pains of change and a steep climb are too much bear and Sustain. Organization may contain with a number of a weak points in it which makes them difficult to achieve the promised gains for the efforts they put in it. Value stream mapping (VSM) is a lean manufacturing technique and it has emerged as the preferred way to support and implement the lean approach. Value stream mapping is different than conventional recording techniques, as it captures the information at individual stations about station cycle time, uptime or utilization of resources, setup time, WIP inventory, manpower requirement and the information flow from raw material to finish goods. This Paper details the use of the value stream mapping in reducing waste in manufacturing Company. With a Case study in a one of the Die manufacturing industry, the production process path is visualized by mapping the current state value stream map. After tracking the entire process, wastage affecting the cycle time are identified and its causes analyzed. A Future state value stream map is developed and improvement ideas are suggested. With the suggested improvement ideas the cycle time is expected to be shorten from 14400 minutes to 9600 minutes, representing 30% reduction. Value Stream mapping is proved as a useful technique to minimize the cycle time and increase the Production.

Keywords: - Value stream mapping, cycle time, Production Process, wastages, bottleneck Operation.

"1.Introduction"

A process is no more than the steps and decisions involved in the way work is accomplished. Even without Changing the process flow, speed can be injected into the system doing the away with the costs of waiting, and the resulting confusion by simply streamlining and debottlenecking the flow by reorganizing the flow of work. The current business environment has placed an increased focus on operational efficiencies while maintaining a high level of quality and innovation excellence.(1).With manufacturing becoming a more and more competitive market, companies globally strive to increase their efficiency. Value Stream mapping technique involves flowcharting the steps, activities, material flows, communications, and other process elements that are involved with a process or transformation. Companies are experiencing intense competitive pressure due to globalization hence they cannot afford to operate with waste in their processes.(3). A value stream is all the actions (value-added and non-value added) required to take aproduct from raw material to the customer, the design flow from concept to completion.(2). Value-added activities are considered the actions and theprocess elements that accomplish those transformations and add value to the productfrom the perspective of the customer (e. g., tubing, stamping, welding, painting, etc.).Non-valueadded activities are the process elements that do not add value to theproduct from the perspective of the customer such as setting up, waiting for materials, and moving materials.

"2.Case Study"

"2.1 Problem statement"

Few of the small scale units graduate in to a middle scale industry with a variety of functions and activities closely knit into organizational network following a set of objectives. Although lean manufacturing is becoming a popular technique for Productivity Improvement. The case study is carried out in a small scale industry namely Ablepvt.Technology ltd. to achieve certain tangible and intangible benefits. If the shop floor is the well spring of Competence, it is also a den of vice and waste is its king. To promote the use of lean manufacturing within the company is the challenge. Its focuses on the addressing identified manufacturing Problems through the application of selected lean tools. The Problem approach is that the lean tools which are applied are drawn exclusively from those which have been found to be successful in a Able pvt. Technology ltd. The entire process from raw material entry to customer is studied. While studying the entire process from different departments it is clear that tool room consists of a Problem. Tool Room for manufacturing the Sheet Metal Dies is piled up with jobs and this has been consistently noted for the past few months regularly. Even after working for a more time rather than shift

time, the assignment doesn't seem to cease. Due to the overtimethe manpower requirement has been rising along with additional inventory for tools and other equipments. The cycle time required to complete is high and it is 14400 minutes. The work-place seems cluttered with work all over the working area. Therefore, there is enough scope for streamlining and debottlenecking the process flow. The aim is to reduce the cycle time and improve the process.

"2.2 Methodology Adopted"

Main objective is to achieve cycle time reduction by employing the following steps:-

Step I)To draw a Current State Map by using following substeps:-

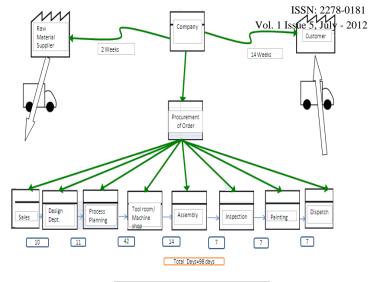
Substep I)Identification and Drawing the Product flow from the raw material entry point of the Manufacturing division (MFD) to the finished goods exit point of the MFD.

Substep II) Calculating the number of Work in Process (WIP) for each component at each work cell.

Substep III)Calculating the cycle time and utilization percentage of each process.

Substep IV)Plotting the current State Map that is essentially a Snapshot capturing how things are currently being done.

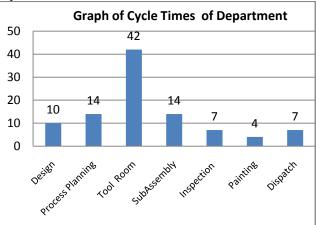
Step II) Create a Future State Map, Which is a Picture of how system should look after the inefficiencies in it have been removed.


"2.3 Current State Map"

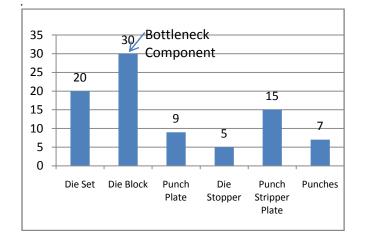
Data Collecting Method:-

Method that will be used in collecting data needed is observation to theactivities that performed in the production shop floor. We gown through the manufacturing facility and identified each operation process involved from rawmaterials to finished goods, identified all the places where inventory is storedbetween the processes, and observed how the material flows from one operation toanother.Statistical data collection methods for measuring machine setup time were used in this study to summaries and describe the data. Production process flow and standard operation procedure are reviewed briefly before setting up the data collection table is done. The data was collected by using a stopwatch. Based on the actual production, data was collected and recorded on a daily basis. The data was collected for 40 days and subsequently, a statistical bar chart was drawn to monitor and analyse the problems. These methods helps to identify the main contributor to high time loss and help to visualize and better understand the root causes and finding possible solutions to the problems.

"2.4 Analysis of a Current State Map"


Sr.No	Lead Time	Cycle Time (in Weeks)
01	Company to Customer	14

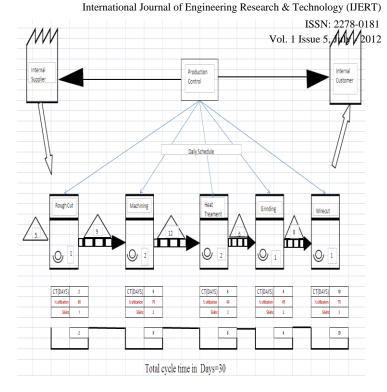
VSM From Supplier to Customer "Figure I.CVSM of Supplier to Customer"


Sr.No	Department	Cycle Time	Percentages
		(Days)	
01	Design	10	10.20%
02	Process Planning	14	14.24%
03	Tool Room	42	43%
04	SubAssembly	14	14.24%
05	Inspection	07	07.14%
06	Painting	04	04.08%
08	Dispatch	07	07.14%
09	Total Days	98	

The following graph shows the cycle time in days for departments.

From The Graph it is clear that the Cycle time required for tool room is 42 days which is Highest. The Tool room consists of following Components. All the Components are made parallel to each other. The following table shows the Components with Their Cycle time in days.

Sr.No	Components	Cycle Time(days)
01	Die Set	20
02	Die Block	30
03	Punch Plate	09
04	Die Stopper	05
05	Punch Stripper Plate	15
06	Punches	07



While reviewing the entire process in a tool room for a die manufacturing, a die block acts as an a Bottleneck Component which causes the sheet metal die to pile up with the jobs. The entire operations for making a single die block was studied which takesan 30 days to complete it

Value Stream Mapping Data Set:-

Customer Order	50 per month
Working Hours	one shift 8 hours(per day)
Lunch Break	45min(per day)
Raw Materials.Purchase	Every 15 days

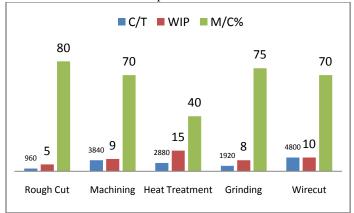
The Figure II of Current State map of a Particular single die block with value stream mapping Symbols is Follows:-

"Figure II:- Current State map for Die Block"

The following table Shows the operations performed on die block, with Their Cycle time in days, WIP, machine Utilization.

Sr.No	Operations on	Cycle	WIP	Machine
	Die Block	Time	(No)	Utilization(%)
		(min)		
01	Rough Cut	960	5	80
02	Machining	3840	9	70
03	Heat	2880	15	40
	Treatment			
04	Grinding	1920	8	75
05	Wirecut	4800	10	70

1.Cycle Time Reduction(C/T):-


The periodrequired to complete one cycle of an operation; or to complete a function, job, or task from start to finish. Cycle time is used in differentiating total duration of a process from its run time.

2. Work-in-process inventory(WIP)

Work-in-process inventory is <u>inventory</u> that has been partially converted through the production process, but for which additional work must be completed before it can be recorded as <u>finished goods inventory</u>. The partially finished goods that are held in inventory for completion and eventual sale.

3. Machine Utilization:-

Machine utilization computed as a percentage of the available hours (Number of the machines available for production multiplied by the number of working hours), The percentage of time that a machine is actually in use. The Following Graph Shows the Cycle time ,WIP, Machine Utilization. Combine with operation.

"3.Proposal for the Future State Value Stream Mapping"

Having Visualized the Current State Map of a die block, identified the Wastages and associated Problems, some of the necessary Changes in the value Stream of die block were outlined in the draft of the future state map.

Production Processes:-

- 1.Rough Cut
- 2.Machining
- 3.Heat Treatment
- 4.Grinding
- 5.Wirecut

"3.1Identification of Wastes in each operation of die block"

I) Rough cut:

1. excess stock casuing more time to do rough cutting

II) Machining

1) Delay in latest (revised/updated) model/drawing to reach the manufacturing cell

2) Inappropriate format of 3D model for CAM software

3) Absence of expertise for creating CAM program

4) No provision of standard library for reference to verify compatibility of formats/ programs/ codes of CAM program visa-vis controls on the `Machining Centre'.

5) Delay in creating machining program due to insufficient memory/ RAM of the desktop computer

6) Incompatible interface of CAM program with m/c interface

7) Inadequate operator skills for interfacing CAM program with $\ensuremath{\text{m/c}}$

8) Table size insufficient for the stock and the program. This is largely due to incoherent/ redundant data shared to Design Engineer by Tool Room

9) Tools selected in the CAM program not available in Tool Room/ Tool Stores

10) Gouging/ fouling with stock observed during the `verification' at Tool Room

11) Inefficiency in machining operation since program SNat23 (2018) remove too little stock removal in the rough cut Vper atton 5, July - 2012 12) Unnecessary tool change introduced by the CAM programmer in the machining program

13) hard spots observed in the stock during machining

14) Pencil tracing/ Finish cut improperly introduced in the program

15) Frequent tool breakage for tools with longer length and lesser diameter (less than 4mm)

- 16) Delay in removal of finished stock from the machine
- 17) Breakdown of machines- no preventive maintenance

18) More MTTR- No identification of critical spares and inventory

19) Low speed/ feeds or changes in process parameters due to cutting tools not standardized and cutting tools inventory not maintained

20) Absentism of operators- No substitutes identified- operator skill matrix not made (improper)

III) Heat treatment:

- 1. Loading for furnace not planned- there is either no load at furnace or excess load suddenly coming up. Machining and Heat treatment not synchronized.
- 2. Daily power cut off- no back up available resulting into reheattreatment of parts after power comes back.

IV) grinding:

- 1. Minimum stock removal not planned- there are more stocks which can be optimised
- 2. only one gridning machine availble
- 3. machine is too old and frequently undergo maintenance

V) wire cut:

- 1. Electrodes are outsourced- dependent only on one vendor.
- 2. electordes sourcing is not planned/ synchronised with requirement.
- 3. only one wire cut is available- looking for another machine or source non critical wire cutting from outside.

Classification of Wastages into Standards forms and Technique to Elimination of Wastage:-

Operations	Wastage	Туре	Technique of Elimination	
Rough Cut	excess stock casuing more time to do rough cutting	Errors	DFM- Design for manufacturing	
Machining	Ŭ		Job description and role & responsibility,HR selection process training	

		1	
Machining	uring cell 2)unsuite d format of 3D model	Errors	Design and process review
	for CAM software		Tashnique of
Operations	Wastage	Туре	Technique of Elimination
Machining	3) Absence of expertise for creating CAM program	Underutil ized People	Job description and role & responsibility,HR selection process training
Machining	4) No provision of standard library for reference to verify compatib ility of formats/ programs / codes of CAM program vis-a-vis controls on the `Machini ng Centre'.	Errors	Data management
Machining	5) Delay in creating machinin g program due to insufficie nt memory/ RAM of the desktop computer	Waiting	Design and process review

			Nesearch & Technology (IJERT)
Machining	6)	Errors	Design and ISSN: 2278-0181
	Incompat		process review ⁵ , July - 2012
	ible		
	interface		
	of CAM		
	program		
	with m/c		
	interface	TT 1 1	X 1 1
Machining	7) In a da ana	Underutil	Job description
	Inadequa	ized	and role &
	te	People	responsibility,HR
	operator skills for		selection process training
	interfacin		training
	g CAM		
	program		
	with m/c		
Machining	8) Table	Underutil	Job description
	size	ized	and role &
	insufficie	People	responsibility,HR
	nt for the	-	selection process
	stock and		training
	the		
	program.		
	This is		
	largely		
	due to		
	incohere		
	nt/		
	redundan t data		
	t data shared to		
	Design		
	Engineer		
	by Tool		
	Room		
Machining	9) Tools	Waiting	MRP- Material
	selected	8	resource planning,
	in the		inventory control,
	CAM		5S
	program		
	not		
	available		
	in Tool		
	Room/		
	Stores		
Machining	10)	Underutil	Job description
	Gouging/	ized	and role &
	Fouling	People	responsibility,HR
	with		selection process
	stock		training
	observed		
	during		
	the		
	verificati on' at		
	on at Tool		
	Room		
Machining	11)	Underutil	Job description
machilling	11)	Underun	Job description

	T 66' '	• 1	1 1 0		iternational Journa		ISSN: 2278-
	Inefficie	ized	and role &		and		Vol. 1 Issue 5, July -
	ncy in machinin	People	responsibility,HR		lesser diameter		
			selection process training		(less than		
	g operation		uannig		(less than 4mm)		
	since			Machining		Transpor	CPM/PERT
	program			Machining	Delay in	t	CF WI/F LIK I
	created				removal	L	
	to				of		
	remove				finished		
	too little				stock		
	stock				from the		
	removal				machine		
	in the			Machining		Waiting	Preventative
	rough cut				kdown of	8	Maintainance
	operation				machines		
					- no		
Machining	12)	Underutil	Job description		preventiv		
-	Unnecess	ized	and role &		e		
	ary tool	People	responsibility,HR		maintena		
	change		selection process		nce		
	introduce		training	Machining		Errors	Standard work
	d by the				MTTR-		
	CAM				No		
	program				identifica		
	mer in				tion of		
	the				critical		
	machinin				spares		
	g	ogram			and		
	program				inventory		1000
N/1- ¹	12) 11-1	Defecto	· · · · · · · · · · · · · · · · · · ·	Machining		Waiting	MRP
Machining	13) Hard	Defects	incoming quality		speed/		
	spots observed		control, supplier		feeds or		
	in the		selection process		changes		
	stock				in		
	during				process		
	mmachin				paramete rs due to		
	ing				cutting		
	8				tools not		
Machining	14)	errors	Design and		standardi		
	Pencil		process review		sed		
	tracing/		r		cutting		
	Finish				tools		
	cut				inventory		
	improper				not		
	ly				maintain		
	introduce				ed		
	d in the						
	program			Machining	20) Abse	Underutil	Skill
				6	ntism of	ized	Matrix,Contigenc
Machining	15)	Errors	Design and		operators	People	y Planning
-	Frequent		process review		- No		
	tool				substitute		
	breakage				S		
	for tools				identified		
	with				-		
	longer				operator		
	length	1	1		skill	1	

	1	T	Γ	1				g Research & Technology (IJ ISSN: 2278
	matrix					sed		
	not				Carlar II	2 1	W. 'd'	-
	made(im				Grinding	2.only	Waiting	Line balancing,
IT4	proper)	Waiting	Decoduction mlon/	line	balancing,	one		CPM/PERT
Heat		Waiting	Production plan/	line	balancing,	gridning		
Treament	oading		visual managemen	L		machine		
	for					availble		
	furnace					2 1:	XX7 ·.·	
	not				Grinding	3.machin	Waiting	Analysis of
	planned-					e is too		breakdown
	there is					old and		maintence and
	either no					frequentl		actions thereafter,
	load at					У		strategic plan,
	furnace					undergo		Depreciation
	or					maintena		analysis
	excess					nce	*** • •	
	load				Wire Cut	1. E	Waiting	Make or buy
	suddenly					lectrod		decision, sourcing
	coming					es are		startegy, capacity
	up. machini					outsour		assessment at sub
						ced-		supplier
	ng and HT not					depend		
	synchro					ent		
	nized.					only on		
Heat	2. Daily	Errors	Contingonau			one		
Treament	2. Daily power	EIIOIS	Contingency planning		Wire Cut	vendor. 2.elector	Underutil	Tab daganintian
1 reament	cut		praining		wire Cut	des	ized	Job description and role &
	off-						People	responsibility, HR
	no					sourcin g is not	reopie	selection process
	back					-		training
	up					planned		uanning
	availa					synchro		
	ble					nized		
	resulti					with		
	ng					require		
	into					ment.		
	reheatt					ment.		
	reatme				Wire Cut	3.only	Waiting	Make or buy
	nt of				whe cut	one wire	vv anng	decision, sourcing
	parts					cut is		startegy, capacity
	after					available		assessment at sub
	power					- look for		supplier
	comes					another		
	back.					machine		
Grinding	1. Minim	Errors	DFM- Design for	1		or source		
0	um		manufacturing			non		
	stock		Ŭ			critical		
	remov					wire		
	al not					cutting		
	planne					from		
	d-					outside		
	there				<u> </u>		1	
	are				"4. Methoda	ology Elim	iniate the	Techniques"
	more					orogy minin	man m	i conniques
	stocks						- 4!	
	which				1.DFM-Desig			
	can be				1.Identify all d			
	optimi				2) identify the			ing macnining
	r· -			1	3) calculate the	e stock remova	ll I	

4) Highlight all those dimensions which has excess stock (>5mm)

5) modify the drawing to reduce the excess stock.

2.Preventive maintenance

1) identify all machines with sr no.

2) prepare the master list of machines

3) identify the areas of preventive maintenance

4) Capture past history associated with each machine and

include those points in preventive maintenance

5) prepare the detailed work instructions for each point of preventive maintenance

6) prepare themaintenance schedule based on the recommendation

3.MRP- Material resource planning

1) capture past history of spares utilised for each machine

2) discuss with machine manufacturer and identify the critical spares

3) have agreement with them @ which spares he will maintain and which one not

4) include all such spares in the master list

5) identify the lead time for each spare

6) based on the history of consumption, identify the reorder level

7) Review and Update the data on daily basis

4.Standard work:

It is basically a very specific instruction given to operator to follow on daily basis. Operators should be able to read the standard work and identify the next steps wherever issue comes.

5.MRP- Material resource planning, KANBAN, Visual management

For visual management, we can put the board showing clearly the status of the inventory or we can use the board with the tags showing the status of the inventory

6.Skill matrix, and contingency planning Skill matrix:

1) Line manager should identify the operations performed by all operators

2) each operator is judged by his immediate supervisor for the skill level for each identified operations. Sometime written/ oral exam is also helpful

3) Thejudgment is divided into 4 categories- No skill, trained, can work but with supervision, can work independently and can supervise others.

4) this matrix helps the line supervisor to nominate the other person based on the skill in case one person is absent.

7.Contingency planning: based on the above mentioned skill matrix, identify the critical operations which requires more skill and plan the shift in such way that alternate person will always be there to support in case the other person is absent.

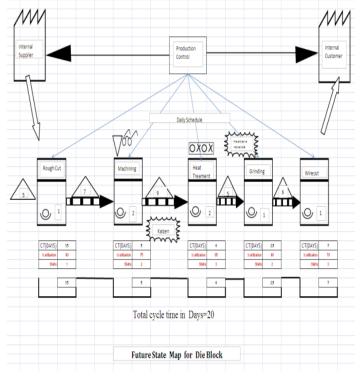
8.Production plan/ line balancing, visual management Production plan: shows the parts which will undergo Furnace for the month. Based on the cycle time for each part, define the loading cycle. Dispay a big board near furnace which shows the status of each planned part

9. Contingency planning

Identify the areas which affects on the production e.g. hathir3f78-0181 calamities, critical machine breakdown, strike, powel statistics of 2012 etc. for the identified issue, the tool room can plan for gen set or else hav an agreement with MSEB so that they will get advance notification before power goes off so that better planning is possible.

10. Make or buy decision, sourcing strategy, capacity assessment at sub supplier:-

Electrode making in house is not viable since it requires EDM and special manpower and hence it is decided to outsource only. But now we have anlaysed the overall capacity available at supplier by using the simple formula= available minuts/ daycommitted time. This has triggered us that the supplier is already overloaded and hence we have decided to go for another source as backup. Also as a strategy, now capacity assessment is made mandatory for any outsourced parts.

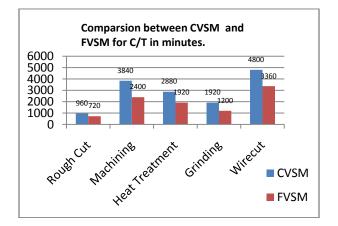

11.Job description and role & responsibility,HR selection process training

Defined clear job description for the purchase person and reexamined all persons. We found 2 person especially who were taking care of electrodes sourcing were not having sufficient knwoledge of the supplier selection. Hence training has been organized for them by senior member within the function. Also Job descriptions for each category clearly made and being used by HR while selection of the candidate.

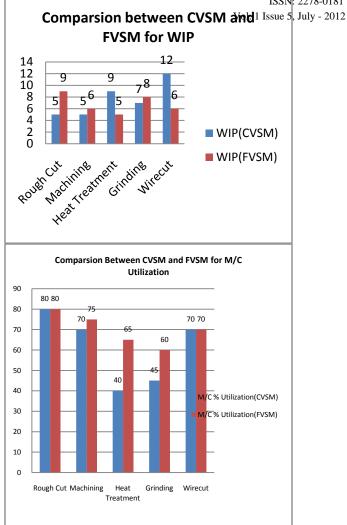
12.Design and process review:

As a part of initial feasibility review, we have added a step of comparison of 3D model with CAM program and corrections either in model or program based on the requirement.

By adopting the above methodology,the propose Figure of a Future value State Mapping can be prepared as below:-

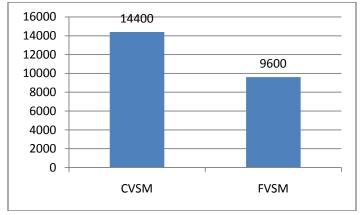

"Figure III:- Future State map for Die Block"

International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181


The Future State Shows the Following Results:-

The Future State Shows the Following Results.						
Sr.	Operations on	Cycle	WIP	Machine		
No	Die Block	Time		Utilization		
		(min)		(%)		
01	Rough Cut	720	5	80		
02	Machining	2400	7	75		
03	Heat	1920	9	65		
	Treatment					
04	Grinding	1200	5	60		
05	Wirecut	3360	6	70		

"5. Comparison of Current State Map and Future State Map for Die Block"



Sr	Operati ons on	Cycle Time		WIP		MachineUtilizati on(%)		
N o	Die Block	CVS M	FVS M	CVS M	FVS M	CVSM	FVSM	
0 1	Rough Cut	960	720	5	5	80	80	
0 2	Machin ing	3840	2400	9	7	70	75	
0 3	Heat Treatm ent	2880	1920	12	9	40	65	
0 4	Grindin g	1920	1200	6	5	45	60	
0 5	Wire cut	4800	3360	8	6	70	70	

It was observed that, due to enormous potential in the lean manufacturing tools, value stream mapping study was carried out in a small scaleindustry. By creating current state value stream map, the non-value added activities in the production process are visualized and identified. A future state value stream map is created with the waste activities eliminated. With the future state value stream map, the production cycle time of die block is significantly shortened from 14400 minutes to 9600 minutesrepresenting a 30% reduction. Value stream mapping is proved as a useful technique to shorten delivery time and reduce production costs

"5.1 Comparison of processing lead time in minutes"

"6.Conclusion"

On the Shop floor time is money. On the shop floor need is elimination of wastages and delays. It is helps in mapping the process it manifests itself as the objective of designing a process for which manufacturing is a low cost process. Value Stream mapping helps the in attaining higher usage levels by the proficiency of shop floor practices aimed at increased human and machine productivity and thus improving the process. Approach is only that do just what you are doing -do it quicker and by extension, cheaper. The goal of it is to identify, demonstrate and decrease activities that add no value to the final product. Value stream mapping, primarily a communication tool, but also is used tool as a strategic planning tool, is a kind of technique that helps to understand and streamline production processes. By applying the Value Stream mapping tool in a die manufacturing industry, a current state map is developed. A future state value stream map is created by eliminating non value added activities. The future state value stream shows marked improvement in the process and the cycle time for production of making die block is reduced from 14400 minutes to 9600 minutes resulting in improvement of 30% in cycle time. A case study discussed outlines importance of Value Stream

Mappingtool to achieve effectiveness by using efficiently 278 0181 process improvement Strategy to shorten the cycle three 5, July - 2012

"7.References"

[1] William M. Goriwondo&AlphonceMarecha, "Use of the Value Stream Mapping Tool for Waste Reduction in Manufacturing: Case Study",Proceedings of International Conference on Industrial Engineering and Operation Management(2011)pp 236-241.

[2]Fawaz A. Abdulmalek&JayantRajgopal" Analyzing the benefits of lean manufacturing and value stream mapping via simulation: A Process Sector case study",International journal of Production economics(2007) 107:pp223-226.

[3]John Fargher "Lean manufacturing Implementation tools"

[4]Lixia Chen & BoMeng, "The Application of Value Stream Mapping Based Lean Production System",InternationalJornal of Business and Management(2010)Vol.5 pp203-208

[5]V.Ramesh&T.R.Shrinivas "Implementation of a Lean Model for carrying out Value Stream Mapping in a Manufacturing Industry", Journal of Industrial and systems Engineering(2008) Vol 2 pp 180-196

[6]Guo-qiang PAN & Mei-xian JIANG " Application Research of Shortening Delivery Time Through Value Stream Mapping Analysis",

IEEE(2010) pp 733-736

[7] Bhim Singh & Suresh Garg" Value Stream Mapping:-Literature review and implications for Indian industry",International Journal of Advance Manufacturing Techonology(2011)pp 799-809

[8] Handbook for Basic Process Improvement