
1 Introduction

Fuzzy graph theory was introduced by A. Rosenfeld [8] in 1975. Fuzzy graph theory is
now finding numerous applications in modern science and technology especially in the fields of
neural networks, expert systems, information theory, cluster analysis, medical diagnosis, control
theory, etc. Sunil Mathew, Sunitha M.S [10] has obtained the fuzzy graph-theoretic concepts
like f- bonds, paths, cycles, trees and connectedness and established some of their properties.
V.R. Kulli and B. Janakiram [7] have established the non-bondage number of a graph. First
we give the definitions of basic concepts of fuzzy graphs and define the non-bondage and it is
properties. All graphs consider here are finite, undirected, distinct labeling with no loop or
multi arc and p nodes and q (fuzzy) arcs. Any undefined term in this paper may be found
in Harary[5]. Among the various applications of the theory of domination that have been
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considered, the one that is perhaps most often discussed concerns a communication network.
Such a network consists of existing communication links between a fixed set of sites. The
problem is to select a smallest set of sites at which to place transmitters so that every site in
the network that does not have a transmitter is joined by a direct communication link to one
that does have a transmitter. This problem reduces to that of finding a minimum dominating
set in the graph corresponding to the network. This graph has a node representing each site
and an arc between two nodes iff the corresponding sites have a direct communications link
joining them. To minimize the direct communication links in the network, we introduce the
following section.

2 Preliminaries

A fuzzy subset of a non-empty set V is a mapping σ : V → [0, 1]. A fuzzy relation on V is a
fuzzy subset of E(V × V ). A fuzzy graph G = (σ, µ) is a pair of function σ : V → [0, 1] and µ :
V ×V → [0, 1], where µ(u, v) ≤ σ(u)σ(v)for all u, v εV . The underlying crisp graph of G=(σ, µ)
is denoted by G∗ = (V,E), where V = {uεV : σ(u) > 0} and E = {(u, v)εV × v : µ(u, v) > 0}.
The order P =

∑
vεD σ(v). The graph G = (σ, µ) isdenoted by G, if unless otherwise mentioned.

Let be a fuzzy graph on. The degree of a vertex u is dG(u) =
∑

(u6=v)
µ(uv). The minimum degree

of G is δ(G) = ∧{d(G)(u), vεV }and the maximum degree of G is δ(G) = ∨d(G)(u),∀εV The
strength of connectedness between two nodes u and v in a fuzzy graph G is define as the
maximum of the strength of all paths between u and v and is denoted by CONNG(u, v). A
u-v path P is called a strongest path if its strength equals CONNG(u, v). The fuzzy graph
H = (τ, ρ) is called a fuzzy sub graph of G if τ(x) ≤ σ(x)for all xεV and ρ(x, y) ≤ (x, y) for
all(x, y)εV . A fuzzy sub graph H =(τ, ρ) is said to be a spanning fuzzy sub graph of G, if
τ(x) = σ(x)for all x. A fuzzy G is said to be connected if there exists a strongest path A path
P of length n is a sequence of distinct nodes u0u1, u2, un such that (ui−1, ui) > 0 and degree of
membership of a weakest arc is defined as its strength. If u0 = un and n ≥ 3, then P is called a
cycle and it is a fuzzy cycle if there is more than one weak arc. Let u be a node in fuzzy graphs
G then N(u) = {v : (u, v)} is strong arc}is called neighborhood of u and N[u] = N(u)

⋃
u is

called closed neighborhood of u. Neighborhood degree of the node is defined by the sum of the
weights of the strong neighbor node of u is denoted by ds(u) =

∑
vεN(u)

σ(v)

3 Fuzzy dominating set

Definition 3.1. Let G be a fuzzy graph and u be a node in G then there exist a node v such
that (u, v) is a strong arc then u dominates v .
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Definition 3.2. Let G be a fuzzy graph. A subset D of V is said to be a fuzzy dominating set
if for every node vεV \D, there exists uεD such that u dominates v.

Definition 3.3. The domination number of G is the minimum cardinality taken over all dom-
inating sets in G and is denoted by γ(G),where γ(G) =

∑
vεD

σ(v). A dominating set with

cardinality γ(G) is calledγ - set of G.

4 Fuzzy non bondage number

Definition 4.1. The bondage number b(G) of a fuzzy graph G(V,E, σ, µ)) is minimum number
of fuzzy arcs among all sets of arcs X = (x,y) sub set of E such that
CONNG−(x,y)(u, v) < CONNG(u, v) for all uεV − γ(G) and a v εγ(G). Here γ(G) represent
minimum dominate set

Definition 4.2. The non-bondage number bn(G) of a fuzzy graph G(V,E, σ, µ)) is maximum
number of fuzzy arcs among all sets of arcs X = (x,y) sub set of E such that
CONNG−(x,y)(u, v) = CONNG(u, v) for all uεV − γ(G) and a v εγ(G).Here γ(G) represent
minimum dominate set

Theorem 4.3. For any fuzzy graph G,

bn(G) = q − p+ γ(G) (1)

, where q is total number of fuzzy arcs and p is total number of node.

Theorem 4.4. For any graph G.

bn(G) ≤ q −∆n (2)

where ∆n is number total number of strong arcs in ∆ of G .

Theorem 4.5. For any fuzzy graph, (x, y) is a non bondage iff (x, y) is a weakest arc of any
cycle.

Remark 1. Let G: (σ, µ)be a fuzzy graph such that G∗ : (σ∗, µ∗) is a cycle and Let t =
min{µ(u, v) : µ(u, v) > 0}.Then all arcs (u,v) of G such thatµ(u, v) > t are fuzzy bondage
of G.
µ(u, v) = t is only non-bondage of G.
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Theorem 4.6. Let G:(σ, µ) be fuzzy graph such that G∗ : (σ∗, µ∗) is a cycle. Then a node is a
not fuzzy cut node of G iff it is incident with a non-bondage arc.

Theorem 4.7. If G is a fuzzy forest, the arcs of F are not fuzzy non -bondage of G.

Theorem 4.8. A complete fuzzy graph with n notes has n-1 non bondage.

Theorem 4.9. A complete fuzzy graph has no fuzzy cut nodes.

5 Exact values of bn (G) for some standard graphs

Proposition 5.1. If Ppis a path with p ≥ 4 nodes, then bn(Pp) = dp/3e − 1.

Proposition 5.2. If Cp is a cycle with p ≥ 3 nodes, then bn(Cp) = dp/3e .

Proposition 5.3. If Kp is a complete graph p≥ 3 nodes, then bn(Kp) = (p−1)(p−2)
2

.

Proposition 5.4. If Km,n is a complete bipartite graph ,then bn(Km,n) = mn−m− n+ 2

Proposition 5.5. If Wp is a wheel with p ≥ 4 nodes, then bn(Wp) = p− 1.

Proposition 5.6. For any tree T, bn(T ) = γ(T )− 1.

6 Relationships between bn(G) and b

Theorem 6.1. Let T 6= P4 be a tree with at least two cut nodes .then

bn(G) ≥ b(T ) (3)

.

Theorem 6.2. For any fuzzy graph

b(G) ≤ bn(G) + 1 (4)

Theorem 6.3. If G be a cycle graph then

bn(Ḡ) + bn(G) ≤ p(p− 3)

2
(5)
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, p ≥ 4

Proof. by theorem 6 bn(G) = q − p+ γ(G)
bn(Ḡ) = q̄ − p+ γ(Ḡ)
bn(Ḡ) + bn(G) = q − p+ γ(G) + q̄ − p+ γ(Ḡ)
= q + q̄ − 2p+ (Ḡ) + γ(G)

= (p(p−1))
2
− 2p+ γ(Ḡ) + γ(G)

≤ (p(p−1))
2
− 2p+ p

≤ (p(p−3))
2

.

.

Theorem 6.4. For any graph G,

bn(Ḡ) + bn(G) ≤ ((p− 1)(p− 2))

2
(6)

Proof. by Theorem 7 bn ≤ q −∆n,then
bn(Ḡ) + bn(G) ≤ q̄ + q − (∆n + δn)

= (p(p−1))
2
− (∆n + δn)

≤ (p(p−1))
2
− (p− 1)

≤ ((p−2)(p−1))
2

.

Theorem 6.5. If G be a cycle graph then

b(Ḡ) + b(G) ≤ (p(p− 3))

2
+ 2 (7)

Proof. by Theorem 9
b(G) ≤ bn(G) + 1
b(Ḡ) + b(G) ≤ bn(Ḡ) + bn(G) + 2
by Theorem 10
b(Ḡ) + b(G) ≤ (p(p−3))

2
+ 2

Theorem 6.6. Any graph G,

b(Ḡ) + b(G) ≤ ((p− 1)(p− 2))

2
+ 2 (8)
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Theorem 6.7. If G be a tree then

bn(Ḡ) + bn(G) ≥ γ(Ḡ) + γ(G)− 2, (9)

if p ≥ 4

Proof. bn(G) ≥ γ(G)− 1 , then
bn(Ḡ) + bn(G) ≥ γ(G) + γ(G)− 2.

7 Block

Definition 7.1. A connected fuzzy graph is called block if all nodes are satisfies the condition
CONNG−v(u, v) = CONNG(u, v) for every u, v in G..

8 Strong line graph

Definition 8.1. Given a fuzzy graph G, its strong line graph Ls(G) is a fuzzy graph, Ls(G) is
a graph G such that
Each node of Ls(G) represents an arc of G; and Two nodes of Ls(G) are adjacent if and only
if their corresponding arcs are strong and share a common end point in G.

Definition 8.2. Given a fuzzy graph G, its double strong line graph L∗s(G) is a fuzzy graph,
L∗s(G)(τ, ρ) is a graph G such that
Each node of L∗s(G) represents a strong arc of G; and Two nodes of L∗s(G) (say u and v) are
adjacent if and only if their corresponding arcs are strong and share a common end point in G
say x.ρ(u, v) = µ(k, x) ∧ µ(x,w)

Theorem 8.3. For any cycle fuzzy graph, then Ls(G) has one isolate node iff G has a non
bondage arc.

Proof. Let Ls(G) has one isolated node, so G has one weakest arc (x, y) by theorem 4.5 then
(x, y)is non bondage. Conversely, let G has a non-bondage arc ( x, y), clearly (x, y) weakest
arc and node x and y does not common node for two strong arcs. So corresponding vertex of
arc (x, y) in Ls(G) is isolated.

Theorem 8.4. Let Ls(G) be fuzzy black graph such that Ls(G) is a tree. Then a node in Ls(G)
iff G has non-bondage or a arc adjacent with a non-bondage arc.
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Proof. Given Ls(G) be fuzzy block then CONNG−v(u,w) = CONNG(u,w) by definition here
node of Ls(G) is a arc of G, so we clearly that CONNG−(x,y)(r, v) = CONNG(r, v), converse
true trivially.

Theorem 8.5. A complete fuzzy graph of Ls(G) is not a complete.

Proof. Given that G is compete fuzzy graph so there exist a cycle in G and every node of even
pair does not adjacent with odd pair so corresponding nodes not adjacent in Ls(G).

Theorem 8.6. Let G be a path graph with n nodes then L∗s(G) has n-2 arcs.

Proof. Given G be a path with n nodes then n-1 arcs so L∗s(G) has a path with n-1 nodes so it
has n-2 arcs.

Theorem 8.7. Let G be complete graph with n nodes then L∗s(G) is 2(n-2) regular graph.

Proof. Given G be complete graph so every node has n-1 strong arc then every arc adjacent
with 2n-4, so L∗s(G) has 2(n-2) regular graph.

.

9 Neighbourhood Extension

Definition 9.1. Let G be graph andSi ⊆ V , each Si is collection of each node in G and
let GE(τ, ρ) be underlying crisp graph. If GE(τ, ρ)said to be Neighbourhood extension, then
satisfied following condition.

• Each node of GE represents an strong neighbourhood set of G

• Two nodes of GE are adjacent iff their correspond neighbour set have at least one common
node
whereρ(Si, Sj) = min{µ(x, vi), µ(vj, x)/xεSi ∩ Sj}

Definition 9.2. Let G* be Connected graph and if GE
∼= G∗ then G said be C- Neighbour

Extendable graph also called strong Neighbourhood Extendable otherwise weak Neighbourhood
Extendable

Definition 9.3. Let G* be tree graph,if GE
∼= G∗ then G said be t- Neighbour Extendable

graph also called semi strong Neighbourhood Extendable

Theorem 9.4. Let G be cycle graph and if all arcs are bondage arc , then GE is complement
of G.
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Proof. We know that G is connected graph and each node adjacent two nodes since G is
cycle,so strong neighbour of each node of G is two.Clearly, if vi, vj, are adjacent nodes then
Ns(vi) ∩Ns(vj) = ∅ but alternative nodes have some same nodes, so make arcs between them
it will be form complement of G.

Corollary 9.5. Let G be cycle graph with n nodes then G is strong neighbour extendable if n
is odd, otherwise weak neighbour extendable

Proof. Case 1: If n is odd, by using theorem 9.4 there exist two paths in GE ie one is
v1, v3, ...vn, v2 say P1 another path say P2 is v2, v4, ...vn−1, v1 so P1 and P2 has same nodes
say v1andv2 clearly GE is connected graph and G is strong neighbour extendable
Case 2: If n is even, by using theorem 9.4 there exist two paths in GE ie one is v1, v3, ...v2n−1v1
say P1 another path say P2 is v2, v4, ...v2n, v2 so P1 and P2 does not have same nodes.Clearly
GE is disconnected graph and G weak neighbour extendable

Theorem 9.6. Let G be complete graph with n nodes, then G is strong neighbour extendable

Proof. We know that G complete graph then every node has n-1 strong arcs so strong neighbour
set of every node has n-1 nodes NS(vi) = {v1, v2, ...vi−1, vi+1, ..vn}∀viεG then
NS(vi)

⋂
Ns(vj) = {v1, v2, ...vi−1, vi+1, ..vj−1, vj+1, ..vn}∀vi, vjεG ,this implies that GE is com-

plete graph,so G is strong neighbour extendable

Theorem 9.7. Let Pn be path with n nodes then G is not neighbour extendable.

Proof. LetPn be path with n nodes then there exist unique path , so every arcs are strong arc
and two nodes have one strong neighbour other nodes have two strong neighbours, but their
neighbour sets are distinct, so GE is null graph therefore G is not neighbour extendable.

Theorem 9.8. Let G be complete bipartite graph then G is not strong neighbour extendable

Proof. Given G is complete bipartite graph so node set is partition of two set say V1 and V2
then each node of V1 is strong neighbour of every node in V2 there two distinct path form in GE

,One path connect every node in V1 another path connect every node in V2 so GE is disconnect
graph therefore G is not strong neighbour extendable.

Theorem 9.9. Let G be wheel graph with p nodes then G is Strong neighbour Extendable

Proof. Given that G is wheel graph then the domination number of G is one (say vi) clearly vi
incident with p-1 bondage so strong neighbourhood set of every node of G has node vi therefore
GE is connected graph implies that G is strong neighbour extendable.

Definition 9.10. (Deficiency Number) Let G be fuzzy graph but G is not strong neighbour
extendable then the deficiency number is required number of arcs to make G is strong neighbour
extendable .
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Theorem 9.11. Let G be graph with 2n nodes which G is not neighbour extendable then defi-
ciency number of G is one.

Proof. Given G is cycle with even nodes by using corollary 9.5 there exist two distinct cycle so
add one strong arc between any node from one cycle and another cycle then GE is connected
graph therefore neighbour extendable .

Theorem 9.12. Let G be complete bipartite graph which G is not neighbour extendable then
deficiency number of G is two .

Proof. Given G is complete bipartite graph by using theorem 9.8 there exist two open path so
need two arcs for make GE is cycle therefore G is strong neighbour extendable.

10 Conclusion

L∗(G) is not tree, if all arc of G are strong. Above non bondage value (6= 0) is not true for
all graphs because K1,n or star graph and P3 non-bondage value is 0 and also bondage number
is equal to 1 for such above graphs
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