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Abstract

Universally prestarlike functions of order α ≤ 1 in the slit domain
Λ = C \ [1,∞) have been recently introduced by S. Ruscheweyh.This notion
generalizes the corresponding one for functions in the unit disk ∆(and other
circular domains in C). In this paper, we obtain properties of universally
prestarlike functions of order α.
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1. Introduction

Let H(Ω) denote the set of all analytic functions defined in a domain Ω.
For domain Ω containing the origin H0(Ω) stands for the set of all function
f ∈ H(Ω) with f(0) = 1. We also use the notation
H1(Ω) = {zf : f ∈ H0(Ω)} . In the special case when Ω is the open unit disk
∆ = {z ∈ C : |z| < 1} , we use the abbreviation H,H0 and H1 respectively
for H(Ω), H0(Ω) and H1(Ω). A function f ∈ H1 is called starlike of order α
with (0 ≤ α < 1) satisfying the inequality

<
{
zf ′(z)

f(z)

}
> α (z ∈ ∆) (1.1)

and the set of all such functions is denoted by Sα. The convolution or

Hadamard Product of two functions f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n
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is defined as

(f ∗ g)(z) =
∞∑
n=0

anbnz
n.

A function f ∈ H1 is called prestarlike of order α if

z

(1− z)2−2α
∗ f(z) ∈ Sα (1.2)

The set of all such functions is denoted by Rα. The notion of prestarlike
functions has been extended from the unit disk to other disk and half planes
containing the origin by Ruscheweyh and Salinas(see [2]). Let Ω be one such
disk or half plane.Then there are two unique parameters γ ∈ C \ {0} and
ρ ∈ [0, 1] such that

Ωγ,ρ = {wγ,ρ(z) : z ∈ ∆} (1.3)

where,

wγ,ρ(z) =
γz

1− ρz
.

Note that 1 /∈ Ωγ,ρ iff |γ + ρ| ≤ 1.

Definition 1.1. (see[1][2][3]) Let α ≤ 1, and Ω = Ωγ,ρ for some admissible
pair (γ, ρ). A function f ∈ H1(Ωγ,ρ) is called prestarlike of order α in Ωγ,ρ

if

fγ,ρ(z) =
1

γ
f(wγ,ρ(z)) ∈ Rα (1.4)

The set of all such functions f is denoted by Rα(Ω).
Let Λ be the slit domain C \ [1,∞)(the slit being along the positive real
axis).

Definition 1.2.(see[1][2][3]) Let α ≤ 1. A function f ∈ H1(Λ) is called
universally prestarlike of order α if and only if f is prestarlike of order α in
all sets Ωγ,ρ with |γ + ρ| ≤ 1. The set of all such functions is denoted by
Ruα.

Note1.1.(see[2]) LetF (z) =
∞∑
k=0

akz
k =

∫ 1

0

dµ(t)

1− tz
where ak =

∫ 1

0
tkdµ(t),

µ(t) is a probability measure on [0, 1]. Let T denote the set of all such
functions F . They are analytic in the slit domain Λ.

Lemma 1.3.(see [6]) Let w(u, v) be a complex valued function, that is

w : D → C (D ⊂ C × C)
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and let u = u1 + iu2 and v = v1 + iv2
Suppose that the function w(u, v) satisfies the following conditions:

1. w(u, v) is continuous in D;

2. (1, 0) ∈ D and Re{w(1, 0)} > 0;

3. Re{w(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ D and such that

v1 ≤ −
(1 + u22)

2

Let

p(z) = 1 + p1z + p2z
2 + . . .

be regular in ∆ such that

(p(z), zp′(z)) ∈ D

for all z ∈ ∆. If

Re{w(p(z), zp′(z))} > 0

then

Re{p(z)} > 0.

Some Properties of Universally prestarlike functions are discussed in (see[4][5]).

2.Properties of Universally prestarlike functions of order α

Theorem 2.1.If f ∈ H1(Λ) satisfies

<
{
Dβ+2f(z)

Dβ+1f(z)

}
> β1

(z ∈ ∆, β = 2− 2α, 0 ≤ α < 1.) for some β1 (12 ≤ β1 < 1), then

<
{
Dβ+1f(z)

Dβf(z)

}
> γ
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where,

γ =
(2β1(β + 2)− 3) +

√
(2β1(β + 2)− 3)2 + 8(β + 1)

4(β + 1)
(2.0)

Hence f ∈ Ruα. The result is Sharp.
P r o o f. It is known that for β ≥ 0

z(Dβf(z))′ = (β + 1)Dβ+1f(z)− βDβf(z) (2.1)

where (Dβf)(z) = z
(1−z)β ? f, for β ≥ 0.In particular, for β = n ∈ N. we

have Dn+1f = z
n!(z

n−1f)(n). This implies

z(Dβf(z))′

Dβf(z)
= (β + 1)

Dβ+1f(z)

Dβf(z)
− β (2.2)

If we define the function p(z) by

Dβ+1f(z)

Dβf(z)
= γ + (1− γ)p(z) (2.3)

with γ defined as before (2.0), then

p(z) = 1 + p1z + p2z
2 + . . .

is analytic in ∆.
Now, differentiating both sides of equation (3.3) logarithmically, we have

(β + 2)
Dβ+2f(z)

Dβ+1f(z)
= (β + 1) +

z(Dβf(z)′)

Dβf(z)
+

(1− γ)p′(z)

γ + (1− γ)p(z)
. (2.4)

Now, using (2.1) in (2.4) we get,

Dβ+2f(z)

Dβ+1f(z)
=
β + 1

β + 2

Dβ+1f(z)

Dβf(z)
+

1

β + 2
+

(1− γ)zp′(z)

(β + 2)(γ + (1− γ)p(z)))
(2.5)

which readily yields

Re

{
Dβ+2f(z)

Dβ+1f(z)

}
> β1.

Therefore, if we define the function w(u, v) by

w(u, v) = (β+1)γ+(β+1)(1−γ)u(z)+1−β1(β+2)+
(1− γ)v(z)

γ + (1− γ)u(z)
(2.6)

then we see that
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1. w(u, v) is continuous in D = C \ [1,∞)

2. (1, 0) ∈ D and Re{w(1, 0)} = (β + 2)(1− β1) > 0

3. for all (iu2, v1) ∈ D and such that

v1 ≤ −
(1 + u22

2

Re{w(iu2, v1)} = (β + 1)γ + 1− β1(β + 2) +
γ(1− γ)v1

γ2 + (1− γ)u22

≤ (β + 1)γ + 1− β1(β + 2) +
γ(1− γ)(1 + u22)

2(γ2 + (1− γ)u22)

Now, by simple computation and using (2.0) we get

2(β + 1)γ2 − (2β1(β + 2)− 3) γ − 1 = 0

for β1 ≥ γ and β1 ≥
1

2
.

Hence Re{w(iu2, v1)} ≤ 0. This implies that the function w(u, v) satisfies
the hypothesis of lemma 1.3. Thus we conclude that

<
{
Dβ+1f(z)

Dβf(z)

}
> γ

which completes the proof.

Corollary 2.2. If β = 2− 2α ≥ 0 and 0 ≤ β1 < 1, 0 ≤ α < 1, then

Ruβ+1(β1) ⊂ Ruβ ((β + 1)(γ − β))

where,γ is defined as before in (2.0) and

(β + 1)(γ − β) ≥ β1

.
P r o o f. Let f ∈ Ruβ+1(β1). Then we have

Re

{
z(Dβ+1f(z))′

Dβ+1f(z)

}
> β1 (2.7)
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By a simple computation, using (2.2) and (2.7), we obtain

Re

{
Dβ+2f(z)

Dβ+1f(z)

}
>
β + β1 + 1

β + 2
(2.8)

Applying the theorem (2.1) we have

Re

{
Dβ+1f(z)

Dβf(z)

}
> γ (2.9)

where γ is defined as before in (2.0) Now, by a simple computation we get

z(Dβf(z))′

Dβf(z)
=

(β + 1)Dβ+1f(z)

Dβf(z)
− β

This implies
z(Dβf(z))′

Dβf(z)
> (β + 1)(γ − β)

Hence

f ∈ Ruβ ((β + 1)(γ − β))

which completes the corollary.
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