Properties Of Universally Prestarlike Functions

T. N. Shanmugam * and J.Lourthu Mary ${ }^{* *}$

Abstract

Universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda=\mathcal{C} \backslash[1, \infty)$ have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathcal{C}). In this paper, we obtain properties of universally prestarlike functions of order α.

Mathematics Subject Classification: 26A33 (main), 33C44 Key Words and Phrases: Prestarlike functions, Universally Prestarlike functions, Properties,etc.,

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω. For domain Ω containing the origin $H_{0}(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with $f(0)=1$. We also use the notation $H_{1}(\Omega)=\left\{z f: f \in H_{0}(\Omega)\right\}$. In the special case when Ω is the open unit disk $\Delta=\{z \in \mathcal{C}:|z|<1\}$, we use the abbreviation H, H_{0} and H_{1} respectively for $H(\Omega), H_{0}(\Omega)$ and $H_{1}(\Omega)$. A function $f \in H_{1}$ is called starlike of order α with $(0 \leq \alpha<1)$ satisfying the inequality

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

and the set of all such functions is denoted by S_{α}. The convolution or Hadamard Product of two functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$
is defined as

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

A function $f \in H_{1}$ is called prestarlike of order α if

$$
\begin{equation*}
\frac{z}{(1-z)^{2-2 \alpha}} * f(z) \in S_{\alpha} \tag{1.2}
\end{equation*}
$$

The set of all such functions is denoted by \mathcal{R}_{α}. The notion of prestarlike functions has been extended from the unit disk to other disk and half planes containing the origin by Ruscheweyh and Salinas(see [2]). Let Ω be one such disk or half plane. Then there are two unique parameters $\gamma \in \mathcal{C} \backslash\{0\}$ and $\rho \in[0,1]$ such that

$$
\begin{equation*}
\Omega_{\gamma, \rho}=\left\{w_{\gamma, \rho}(z): z \in \Delta\right\} \tag{1.3}
\end{equation*}
$$

where,

$$
w_{\gamma, \rho}(z)=\frac{\gamma z}{1-\rho z}
$$

Note that $1 \notin \Omega_{\gamma, \rho}$ iff $|\gamma+\rho| \leq 1$.
Definition 1.1. (see[1][2][3]) Let $\alpha \leq 1$, and $\Omega=\Omega_{\gamma, \rho}$ for some admissible pair (γ, ρ). A function $f \in H_{1}\left(\Omega_{\gamma, \rho}\right)$ is called prestarlike of order α in $\Omega_{\gamma, \rho}$ if

$$
\begin{equation*}
f_{\gamma, \rho}(z)=\frac{1}{\gamma} f\left(w_{\gamma, \rho}(z)\right) \in \mathcal{R}_{\alpha} \tag{1.4}
\end{equation*}
$$

The set of all such functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$.
Let Λ be the slit domain $\mathcal{C} \backslash[1, \infty)$ (the slit being along the positive real axis).
Definition 1.2.(see[1][2][3]) Let $\alpha \leq 1$. A function $f \in H_{1}(\Lambda)$ is called universally prestarlike of order α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma, \rho}$ with $|\gamma+\rho| \leq 1$. The set of all such functions is denoted by \mathcal{R}_{α}^{u}.
Note1.1.(see[2]) $\operatorname{Let} F(z)=\sum_{k=0}^{\infty} a_{k} z^{k}=\int_{0}^{1} \frac{d \mu(t)}{1-t z}$ where $a_{k}=\int_{0}^{1} t^{k} d \mu(t)$, $\mu(t)$ is a probability measure on $[0,1]$. Let T denote the set of all such functions F. They are analytic in the slit domain Λ.
Lemma 1.3.(see [6]) Let $w(u, v)$ be a complex valued function, that is

$$
w: \mathcal{D} \rightarrow \mathcal{C} \quad(\mathcal{D} \subset \mathcal{C} \times \mathcal{C})
$$

and let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$
Suppose that the function $w(u, v)$ satisfies the following conditions:

1. $w(u, v)$ is continuous in \mathcal{D};
2. $(1,0) \in \mathcal{D}$ and $\operatorname{Re}\{w(1,0)\}>0$;
3. $\operatorname{Re}\left\{w\left(i u_{2}, v_{1}\right)\right\} \leq 0$ for all $\left(i u_{2}, v_{1}\right) \in \mathcal{D}$ and such that

$$
v_{1} \leq-\frac{\left(1+u_{2}^{2}\right)}{2}
$$

Let

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots
$$

be regular in Δ such that

$$
\left(p(z), z p^{\prime}(z)\right) \in \mathcal{D}
$$

for all $z \in \Delta$. If

$$
\operatorname{Re}\left\{w\left(p(z), z p^{\prime}(z)\right)\right\}>0
$$

then

$$
R e\{p(z)\}>0
$$

Some Properties of Universally prestarlike functions are discussed in (see[4][5]).

2.Properties of Universally prestarlike functions of order α

Theorem 2.1.If $f \in H_{1}(\Lambda)$ satisfies

$$
\Re\left\{\frac{D^{\beta+2} f(z)}{D^{\beta+1} f(z)}\right\}>\beta_{1}
$$

$(z \in \Delta, \beta=2-2 \alpha, 0 \leq \alpha<1$. $)$ for some $\beta_{1}\left(\frac{1}{2} \leq \beta_{1}<1\right)$, then

$$
\Re\left\{\frac{D^{\beta+1} f(z)}{D^{\beta} f(z)}\right\}>\gamma
$$

where,

$$
\begin{equation*}
\gamma=\frac{\left(2 \beta_{1}(\beta+2)-3\right)+\sqrt{\left(2 \beta_{1}(\beta+2)-3\right)^{2}+8(\beta+1)}}{4(\beta+1)} \tag{2.0}
\end{equation*}
$$

Hence $f \in \mathcal{R}_{\alpha}^{u}$. The result is Sharp. Proof. It is known that for $\beta \geq 0$

$$
\begin{equation*}
z\left(D^{\beta} f(z)\right)^{\prime}=(\beta+1) D^{\beta+1} f(z)-\beta D^{\beta} f(z) \tag{2.1}
\end{equation*}
$$

where $\left(D^{\beta} f\right)(z)=\frac{z}{(1-z)^{\beta}} \star f$, for $\beta \geq 0$.In particular, for $\beta=n \in \mathrm{~N}$. we have $D^{n+1} f=\frac{z}{n!}\left(z^{n-1} f\right)^{(n)}$. This implies

$$
\begin{equation*}
\frac{z\left(D^{\beta} f(z)\right)^{\prime}}{D^{\beta} f(z)}=(\beta+1) \frac{D^{\beta+1} f(z)}{D^{\beta} f(z)}-\beta \tag{2.2}
\end{equation*}
$$

If we define the function $p(z)$ by

$$
\begin{equation*}
\frac{D^{\beta+1} f(z)}{D^{\beta} f(z)}=\gamma+(1-\gamma) p(z) \tag{2.3}
\end{equation*}
$$

with γ defined as before (2.0), then

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots
$$

is analytic in Δ.
Now, differentiating both sidés of equation (3.3) logarithmically, we have

$$
\begin{equation*}
(\beta+2) \frac{D^{\beta+2} f(z)}{D^{\beta+1} f(z)}=(\beta+1)+\frac{z\left(D^{\beta} f(z)^{\prime}\right)}{D^{\beta} f(z)}+\frac{(1-\gamma) p^{\prime}(z)}{\gamma+(1-\gamma) p(z)} \tag{2.4}
\end{equation*}
$$

Now, using (2.1) in (2.4) we get,

$$
\begin{equation*}
\frac{D^{\beta+2} f(z)}{D^{\beta+1} f(z)}=\frac{\beta+1}{\beta+2} \frac{D^{\beta+1} f(z)}{D^{\beta} f(z)}+\frac{1}{\beta+2}+\frac{(1-\gamma) z p^{\prime}(z)}{(\beta+2)(\gamma+(1-\gamma) p(z)))} \tag{2.5}
\end{equation*}
$$

which readily yields

$$
\operatorname{Re}\left\{\frac{D^{\beta+2} f(z)}{D^{\beta+1} f(z)}\right\}>\beta_{1}
$$

Therefore, if we define the function $w(u, v)$ by

$$
\begin{equation*}
w(u, v)=(\beta+1) \gamma+(\beta+1)(1-\gamma) u(z)+1-\beta_{1}(\beta+2)+\frac{(1-\gamma) v(z)}{\gamma+(1-\gamma) u(z)} \tag{2.6}
\end{equation*}
$$

then we see that

1. $w(u, v)$ is continuous in $\mathcal{D}=\mathcal{C} \backslash[1, \infty)$
2. $(1,0) \in \mathcal{D}$ and $\operatorname{Re}\{w(1,0)\}=(\beta+2)\left(1-\beta_{1}\right)>0$
3. for all $\left(i u_{2}, v_{1}\right) \in \mathcal{D}$ and such that

$$
\begin{gathered}
v_{1} \leq-\frac{\left(1+u_{2}^{2}\right.}{2} \\
\operatorname{Re}\left\{w\left(i u_{2}, v_{1}\right)\right\}=(\beta+1) \gamma+1-\beta_{1}(\beta+2)+\frac{\gamma(1-\gamma) v_{1}}{\gamma^{2}+(1-\gamma) u_{2}^{2}} \\
\leq(\beta+1) \gamma+1-\beta_{1}(\beta+2)+\frac{\gamma(1-\gamma)\left(1+u_{2}^{2}\right)}{2\left(\gamma^{2}+(1-\gamma) u_{2}^{2}\right)}
\end{gathered}
$$

Now, by simple computation and using (2.0) we get

$$
2(\beta+1) \gamma^{2}-\left(2 \beta_{1}(\beta+2)-3\right) \gamma-1=0
$$

for $\beta_{1} \geq \gamma$ and $\beta_{1} \geq \frac{1}{2}$.
Hence $\operatorname{Re}\left\{w\left(i u_{2}, v_{1}\right)\right\} \leq 0$. This implies that the function $w(u, v)$ satisfies the hypothesis of lemma 1.3. Thus we conclude that

$$
\Re\left\{\frac{D^{\beta+1} f(z)}{D^{\beta} f(z)}\right\}>\gamma
$$

which completes the proof.
Corollary 2.2. If $\beta=2-2 \alpha \geq 0$ and $0 \leq \beta_{1}<1,0 \leq \alpha<1$, then

$$
\mathcal{R}_{\beta+1}^{u}\left(\beta_{1}\right) \subset \mathcal{R}_{\beta}^{u}((\beta+1)(\gamma-\beta))
$$

where, γ is defined as before in (2.0) and

$$
(\beta+1)(\gamma-\beta) \geq \beta_{1}
$$

Pr o of. Let $f \in \mathcal{R}_{\beta+1}^{u}\left(\beta_{1}\right)$. Then we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{\beta+1} f(z)\right)^{\prime}}{D^{\beta+1} f(z)}\right\}>\beta_{1} \tag{2.7}
\end{equation*}
$$

By a simple computation, using (2.2) and (2.7), we obtain

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{\beta+2} f(z)}{D^{\beta+1} f(z)}\right\}>\frac{\beta+\beta_{1}+1}{\beta+2} \tag{2.8}
\end{equation*}
$$

Applying the theorem (2.1) we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{\beta+1} f(z)}{D^{\beta} f(z)}\right\}>\gamma \tag{2.9}
\end{equation*}
$$

where γ is defined as before in (2.0) Now, by a simple computation we get

$$
\frac{z\left(D^{\beta} f(z)\right)^{\prime}}{D^{\beta} f(z)}=\frac{(\beta+1) D^{\beta+1} f(z)}{D^{\beta} f(z)}-\beta
$$

This implies

$$
\frac{z\left(D^{\beta} f(z)\right)^{\prime}}{D^{\beta} f(z)}>(\beta+1)(\gamma-\beta)
$$

Hence

$$
f \in \mathcal{R}_{\beta}^{u}((\beta+1)(\gamma-\beta))
$$

which completes the corollary.

References

[1] S. Ruscheweyh, Some properties of prestarlike and universally prestarlike functions, Intern. Conf. Geometric Function Theory, J. Analysis., 15 (2007), 247-254.
[2] S. Ruscheweyh,L. Salinas, Universally prestarlike functions as convolution multipiers, Mathematische Zeitschrift, (2009), 607-617.
[3] S. Ruscheweyh, L. Salinas, T. Sugawa, Completely monotone sequences and universally prestarlike functions, Israel J. Math.,171 (2009), 285304.
[4] T.N. Shanmugam, J. Lourthu Mary, Fekete-Szego inequality for universally prestarlike functions, Fract. Calc. Appl. Anal.,13, No.4, (2010), 385-394.
[5] Tirunelveli Nellaiappan Shanmugam, Joseph Lourthu Mary, A Note on universally prestarlike functions, "Stud. Univ. Babes-Bolyai Math.",57, No. 1, (2012), 5360
[6] S.S. Miller, P.T. Mocanu, Second order differential inequalities in the complex plane, J.Math.Anal.Appl.,65 (1978),289-305.

* Department of Mathematics

Anna University Chennai,Chennai-600025
India
e-mail: shan@annauniv.edu
** Department of Mathematics
Anna University Chennai,Chennai-600025
India
e-mail: lourthu_mary@annauniv.edu

