Properties Of Universally Prestarlike Functions

T.N. Shanmugam * and J.Lourthu Mary **

Abstract

Universally prestarlike functions of order $\alpha \leq 1$ in the slit domain $\Lambda = \mathcal{C} \setminus [1, \infty)$ have been recently introduced by S. Ruscheweyh. This notion generalizes the corresponding one for functions in the unit disk Δ (and other circular domains in \mathcal{C}). In this paper, we obtain properties of universally prestarlike functions of order α .

Mathematics Subject Classification: 26A33 (main), 33C44

Key Words and Phrases: Prestarlike functions, Universally Prestarlike functions, Properties, etc.,

1. Introduction

Let $H(\Omega)$ denote the set of all analytic functions defined in a domain Ω . For domain Ω containing the origin $H_0(\Omega)$ stands for the set of all function $f \in H(\Omega)$ with f(0) = 1. We also use the notation

 $H_1(\Omega) = \{zf : f \in H_0(\Omega)\}$. In the special case when Ω is the open unit disk $\Delta = \{z \in \mathcal{C} : |z| < 1\}$, we use the abbreviation H, H_0 and H_1 respectively for $H(\Omega), H_0(\Omega)$ and $H_1(\Omega)$. A function $f \in H_1$ is called starlike of order α with $(0 \le \alpha < 1)$ satisfying the inequality

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (z \in \Delta) \tag{1.1}$$

and the set of all such functions is denoted by S_{α} . The convolution or Hadamard Product of two functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ is defined as

$$(f*g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

A function $f \in H_1$ is called prestarlike of order α if

$$\frac{z}{(1-z)^{2-2\alpha}} * f(z) \in S_{\alpha} \tag{1.2}$$

The set of all such functions is denoted by \mathcal{R}_{α} . The notion of prestarlike functions has been extended from the unit disk to other disk and half planes containing the origin by Ruscheweyh and Salinas(see [2]). Let Ω be one such disk or half plane. Then there are two unique parameters $\gamma \in \mathcal{C} \setminus \{0\}$ and $\rho \in [0, 1]$ such that

$$\Omega_{\gamma,\rho} = \{ w_{\gamma,\rho}(z) : z \in \Delta \}$$
(1.3)

where,

$$w_{\gamma,\rho}(z) = rac{\gamma z}{1-\rho z}.$$

Note that $1 \notin \Omega_{\gamma,\rho}$ iff $|\gamma + \rho| \le 1$. DEFINITION 1.1. (see[1][2][3]) Let $\alpha \le 1$, and $\Omega = \Omega_{\gamma,\rho}$ for some admissible

DEFINITION 1.1. (see[1][2][3]) Let $\alpha \leq 1$, and $\Omega = \Omega_{\gamma,\rho}$ for some admissible pair (γ, ρ) . A function $f \in H_1(\Omega_{\gamma,\rho})$ is called prestarlike of order α in $\Omega_{\gamma,\rho}$ if

$$f_{\gamma,\rho}(z) = \frac{1}{\gamma} f(w_{\gamma,\rho}(z)) \in \mathcal{R}_{\alpha}$$
(1.4)

The set of all such functions f is denoted by $\mathcal{R}_{\alpha}(\Omega)$. Let Λ be the slit domain $\mathcal{C} \setminus [1, \infty)$ (the slit being along the positive real axis).

DEFINITION 1.2.(see[1][2][3]) Let $\alpha \leq 1$. A function $f \in H_1(\Lambda)$ is called universally prestarlike of order α if and only if f is prestarlike of order α in all sets $\Omega_{\gamma,\rho}$ with $|\gamma + \rho| \leq 1$. The set of all such functions is denoted by \mathcal{R}^u_{α} .

NOTE1.1.(see[2]) Let
$$F(z) = \sum_{k=0}^{\infty} a_k z^k = \int_0^1 \frac{d\mu(t)}{1-tz}$$
 where $a_k = \int_0^1 t^k d\mu(t)$,

 $\mu(t)$ is a probability measure on [0, 1]. Let T denote the set of all such functions F. They are analytic in the slit domain Λ .

LEMMA 1.3. (see [6]) Let w(u, v) be a complex valued function, that is

$$w: \mathcal{D} \to \mathcal{C} \qquad (\mathcal{D} \subset \mathcal{C} \times \mathcal{C})$$

and let $u = u_1 + iu_2$ and $v = v_1 + iv_2$ Suppose that the function w(u, v) satisfies the following conditions:

- 1. w(u, v) is continuous in \mathcal{D} ;
- 2. $(1,0) \in \mathcal{D}$ and $Re\{w(1,0)\} > 0;$
- 3. $Re\{w(iu_2, v_1)\} \leq 0$ for all $(iu_2, v_1) \in \mathcal{D}$ and such that

$$v_1 \le -\frac{(1+u_2^2)}{2}$$

Let

$$p(z) = 1 + p_1 z + p_2 z^2 + \dots$$

be regular in Δ such that

for all
$$z \in \Delta$$
. If

then

Some Properties of Universally prestarlike functions are discussed in (see[4][5]).

 $(p(z), zp'(z)) \in \mathcal{D}$ $Re\{w(p(z), zp'(z))\} > 0$ $Re\{p(z)\} > 0.$

2. Properties of Universally prestarlike functions of order α

THEOREM 2.1.If $f \in H_1(\Lambda)$ satisfies

$$\Re\left\{\frac{D^{\beta+2}f(z)}{D^{\beta+1}f(z)}\right\} > \beta_1$$

 $(z \in \Delta, \beta = 2 - 2\alpha, 0 \le \alpha < 1.)$ for some β_1 $(\frac{1}{2} \le \beta_1 < 1)$, then

$$\Re\left\{\frac{D^{\beta+1}f(z)}{D^{\beta}f(z)}\right\} > \gamma$$

where,

$$\gamma = \frac{(2\beta_1(\beta+2)-3) + \sqrt{(2\beta_1(\beta+2)-3)^2 + 8(\beta+1)}}{4(\beta+1)}$$
(2.0)

Hence $f \in \mathcal{R}^u_{\alpha}$. The result is Sharp. P r o o f. It is known that for $\beta \geq 0$

$$z(D^{\beta}f(z))' = (\beta+1)D^{\beta+1}f(z) - \beta D^{\beta}f(z)$$
(2.1)

where $(D^{\beta}f)(z) = \frac{z}{(1-z)^{\beta}} \star f$, for $\beta \ge 0$.In particular, for $\beta = n \in \mathbb{N}$. we have $D^{n+1}f = \frac{z}{n!}(z^{n-1}f)^{(n)}$. This implies

$$\frac{z(D^{\beta}f(z))'}{D^{\beta}f(z)} = (\beta+1)\frac{D^{\beta+1}f(z)}{D^{\beta}f(z)} - \beta$$
(2.2)

If we define the function p(z) by

$$\frac{D^{\beta+1}f(z)}{D^{\beta}f(z)} = \gamma + (1-\gamma)p(z)$$
(2.3)

with γ defined as before (2.0), then

$$p(z) = 1 + p_1 z + p_2 z^2 + \dots$$

is analytic in Δ .

Now, differentiating both sides of equation (3.3) logarithmically, we have

$$(\beta+2)\frac{D^{\beta+2}f(z)}{D^{\beta+1}f(z)} = (\beta+1) + \frac{z(D^{\beta}f(z)')}{D^{\beta}f(z)} + \frac{(1-\gamma)p'(z)}{\gamma+(1-\gamma)p(z)}.$$
 (2.4)

Now, using (2.1) in (2.4) we get,

$$\frac{D^{\beta+2}f(z)}{D^{\beta+1}f(z)} = \frac{\beta+1}{\beta+2}\frac{D^{\beta+1}f(z)}{D^{\beta}f(z)} + \frac{1}{\beta+2} + \frac{(1-\gamma)zp'(z)}{(\beta+2)(\gamma+(1-\gamma)p(z)))} \quad (2.5)$$

which readily yields

$$Re\left\{\frac{D^{\beta+2}f(z)}{D^{\beta+1}f(z)}\right\} > \beta_1.$$

Therefore, if we define the function w(u, v) by

$$w(u,v) = (\beta+1)\gamma + (\beta+1)(1-\gamma)u(z) + 1 - \beta_1(\beta+2) + \frac{(1-\gamma)v(z)}{\gamma + (1-\gamma)u(z)}$$
(2.6)

then we see that

1. w(u, v) is continuous in $\mathcal{D} = \mathcal{C} \setminus [1, \infty)$

2.
$$(1,0) \in \mathcal{D}$$
 and $Re\{w(1,0)\} = (\beta + 2)(1 - \beta_1) > 0$

3. for all $(iu_2, v_1) \in \mathcal{D}$ and such that

$$v_1 \le -\frac{(1+u_2^2)}{2}$$

$$\begin{aligned} Re\{w(iu_2, v_1)\} &= (\beta + 1)\gamma + 1 - \beta_1(\beta + 2) + \frac{\gamma(1 - \gamma)v_1}{\gamma^2 + (1 - \gamma)u_2^2} \\ &\leq (\beta + 1)\gamma + 1 - \beta_1(\beta + 2) + \frac{\gamma(1 - \gamma)(1 + u_2^2)}{2(\gamma^2 + (1 - \gamma)u_2^2)} \end{aligned}$$

Now, by simple computation and using (2.0) we get

$$2(\beta + 1)\gamma^2 - (2\beta_1(\beta + 2) - 3)\gamma - 1 = 0$$

for $\beta_1 \ge \gamma$ and $\beta_1 \ge \frac{1}{2}$. Hence $Re\{w(iu_2, v_1)\} \le 0$. This implies that the function w(u, v) satisfies the hypothesis of lemma 1.3. Thus we conclude that

$$\Re\left\{\frac{D^{\beta+1}f(z)}{D^{\beta}f(z)}\right\}>\gamma$$

which completes the proof.

COROLLARY 2.2. If $\beta = 2 - 2\alpha \ge 0$ and $0 \le \beta_1 < 1, 0 \le \alpha < 1$, then

$$\mathcal{R}^{u}_{\beta+1}(\beta_1) \subset \mathcal{R}^{u}_{\beta}\left((\beta+1)(\gamma-\beta)\right)$$

where, γ is defined as before in (2.0) and

$$(\beta+1)(\gamma-\beta) \ge \beta_1$$

P r o o f. Let $f \in \mathcal{R}^{u}_{\beta+1}(\beta_1)$. Then we have

$$Re\left\{\frac{z(D^{\beta+1}f(z))'}{D^{\beta+1}f(z)}\right\} > \beta_1$$
(2.7)

By a simple computation, using (2.2) and (2.7), we obtain

$$Re\left\{\frac{D^{\beta+2}f(z)}{D^{\beta+1}f(z)}\right\} > \frac{\beta+\beta_1+1}{\beta+2}$$
(2.8)

Applying the theorem (2.1) we have

$$Re\left\{\frac{D^{\beta+1}f(z)}{D^{\beta}f(z)}\right\} > \gamma$$
(2.9)

where γ is defined as before in (2.0) Now, by a simple computation we get

$$\frac{z(D^{\beta}f(z))'}{D^{\beta}f(z)} = \frac{(\beta+1)D^{\beta+1}f(z)}{D^{\beta}f(z)} - \beta$$

This implies

$$\frac{z(D^{\beta}f(z))'}{D^{\beta}f(z)} > (\beta+1)(\gamma-\beta)$$

Hence

$$f \in \mathcal{R}^{u}_{\beta}\left((\beta+1)(\gamma-\beta)\right)$$

which completes the corollary.

References

- S. Ruscheweyh, Some properties of prestarlike and universally prestarlike functions, Intern. Conf. Geometric Function Theory, J. Analysis., 15 (2007), 247-254.
- [2] S. Ruscheweyh, L. Salinas, Universally prestarlike functions as convolution multipiers, *Mathematische Zeitschrift*, (2009), 607-617.
- [3] S. Ruscheweyh, L. Salinas, T. Sugawa, Completely monotone sequences and universally prestarlike functions, *Israel J. Math.*, **171** (2009), 285-304.
- [4] T.N. Shanmugam, J. Lourthu Mary, Fekete-Szego inequality for universally prestarlike functions, *Fract. Calc. Appl. Anal.*, **13**, No.4, (2010), 385-394.
- [5] Tirunelveli Nellaiappan Shanmugam, Joseph Lourthu Mary, A Note on universally prestarlike functions, "Stud. Univ. Babes-Bolyai Math.",57, No. 1, (2012), 5360

[6] S.S. Miller, P.T. Mocanu, Second order differential inequalities in the complex plane, J.Math.Anal.Appl.,65 (1978),289-305.

* Department of Mathematics Anna University Chennai, Chennai-600025 India e-mail: shan@annauniv.edu

** Department of Mathematics Anna University Chennai, Chennai-600025 India e-mail: lourthu_mary@annauniv.edu

