

Propose Automated Software Testing Tools to Test Given

Application and Report Bugs

 T. Rajani Devi

 Andhra Pradesh, India

Abstract
Testing is the process of executing a program with

the intension of finding errors.

we want to propose automated testing tools to test

given application and report bugs.

Thorough testing is crucial to the success of a

software project. Testing or find defects or bugs is

time consuming, expensive often repetitive, and

subject to human error. Automated testing helps

teams test faster. Allow them to test substantially

more code, improves test accuracy, and frees up QA

engineers so they can focus on tests require manual

attention and their unique human skills.

1.INTRODUCTION
Thorough testing is crucial to the success of a

software project. If your software doesn’t work

properly, changes are strong that most people won

but or use it…atleast not for long. but testing or find

defects- or bugs- is time consuming, expensive, often

repetitive, and subject to human error. Automated

testing, in which quality assurance teams use

software tools to run detailed, Repetitive, and data-

intensive tests automatically, helps teams improve

software quality and make the most of their always-

limited testing resources. Automated testing helps

teams test faster. Allows them to test substantially

more code, improves test accuracy, and frees up QA

engineers so they can focus on tests require manual

attention and their unique human skills.

Use these best practices to ensure that your testing

is successful and you get their successful and you get

the maximum return on investment (ROI).

1.Decide what test cases to automate

2.Test early and test often

3.Select the right automated testing tool

4.divide your automated testing efforts

5. create good, quality test data

6. Create automated tests that are resistant to change

in the UI

1.1. Decide What Test Cases to Automate

It is impossible to automate all testing, the first

step to successful automation is to determine what

test cases should be automated first.

The benefit of automated testing is correlated with

how many times test can be repeated.Tests that are

only performed a few times are better left for manual

testing.

Good test cases for automation are those that are

run frequently and require large amounts of data to

perform the same action.

You can get the most benefit out of your

automated testing efforts by automating:

.Repetitive tests that run for multiple builts

.Tests that are highly subject to human error

.tests that require multiple data sets

.Frequently used functionality that introduces high

risk conditions

.Tests that are impossible to perform manually

.Tests that run on several different hardware or

software platforms and configurations

6 steps of getting started with automated

testing

Success in test automation requires careful

planning and design work. start out by creating an

automation plan. This plan allows you to identify the

set of tests to automate, and serve as a guide for

future tests. first, you should define your goal for

automated testing and determine which types of tests

to automate. there are few different types of testing,

and each has its place in the testing Process.for

instance, unit testing is used to test a small part of

the intended application. load testing is performed

when you need to know how a web service responds

under a heavy workload to test a certain piece of the

application’s UI, you would use functional or GUI

testing.

After determining your goal and which types of

tests to automate you should decide what actions

your automated tests will perform. don’t just create

tests steps that test various aspects of the

application’s

Behavior at one time. Large, complex automated

tests are difficult to edit and debug. It is best to divide

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

your tests into several logical, smaller tests. This

structure makes your test environment more coherent

and manageable and allows you to test code, test and

processes. you will get more opportunities to update

your automated tests just by adding small tests that

address new functionality. Test the functionality of

your application as you add it, rather than waiting

until the whole feature is implemented.

When creating tests, try to keep them small and

focused on one objective. For example, use separate

tests for read-only versus read/write tests. this

separation allows you to use these individual tests

repeatedly without including them in every

automated test. once you create several simple

automated tests. you can group your tests into one

larger automated test. you can organize automated

tests by the application’s functional area major/minor

division in the application, common functions or a

base set of test data. if an automated test refers to

others tests you may need to create a test tree, where

you can tests in a specific order.

1.2. Test Early and Test Often

To get the most out of your automated testing,

testing should be started as early as possible in the

development in the development cycle and run as

often as needed. The earlier testers get involved

In the life cycle of the project the better, and the

more you test, the more bugs you find. you can

implement automated unit testing on day one and

then you can gradually built your automated test

suite. bugs detected early are a lot cheapter to fix than

those discovered later in production or deployment.

1.3. Select the right automated testing tool
Selecting an automated testing tool is essential for

test automation. there are a lot of automated testing

tools on he market, and it is important to choose the

tool that best suits your overall requirements.

Consider these key points when selecting an

automated testing tool:

.Support for your platform and technology. are

you testing. Netc# or WPF

Application and on what operating systems?

.Flexibility for testers of all skills levels. can your

QU department write automated test scripts or is

there a need for keyword testing?

.Feature-rich but also easy to create automated

tests. does the automated testing tools support record-

and-playback test creation as well as manual creation

of automated tests does it include features for

implementing checkpoints to verify values databases,

or key functionality of your application?

.create automated tests that are reusable,

maintainable and resistant to changes in the

application UI. Will your automated tests break if

your UI changes?

For detailed information about selecting

automated testing tools for automated testing see

selecting automated testing tools.

1.4. Divide your automated testing efforts

Usually, the creation of different tests is based on

the skill level of the QA engineers. it is important to

identify the level of experience and skills for each of

your team members and divide your automated

testing efforts accordingly. For instance, writing

automated test scripts requires expert knowledge of

scripting languages. thus, in order to perform that

task, you should have QA engineers that know the

script language provided by the automated testing

tool.

Some team members may not be versed in writing

automated test scripts. These QA engineers may be

better at writing test cases. it is better when an

automated testing tool has way to create automated

tests that does not require an in-depth knowledge of

scripting languages, like test complete’s “keywords

tests” capability. a keyword test(also known as

keyword-driven testing) is a simple series of

keywords with a specified action. With keyword tests

you can simulate keystrokes. Click buttons, select

menu items, call object methods and properties, and

do a lot more. Keyword tests are often seen as an

alternative to automated test scripts. Unlike scripts,

they can be easily used by technical users and allow

users of all levels to create robust and powerful

automated tests.

You should also collaborate on your automated

testing project with other QA engineers in your

department. testing performed by a team is effective

for finding defects and the right automated tool

should allow you to share your projects with several

testers.

1.5. Create good, quality test data

Good test data is extremely useful for data-driven

testing. The data that should be enters into input

fields during an automated test is usually stored in an

external file. This data might be read from a database

or any other data source like text or XML files, Excel

sheets, and database tables. a good automated testing

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

tool actually understands the contents of the data files

and iterates over the contents in the automated test.

Using external data makes your automated tests

reusable and easier to maintain. to add different

testing scenarios, the data files can be easily extended

with new data without needing to edit the actual

automated test. creating test data for your automated

tests is boring but you should invest time and effort

into creating data that is well structured. with good

test data available writing automated tests become a

lot easier. The earlier you create good-quality data,

the easier it is to extend existing automated tests

along with the application’s development.

1.6. Create automated tests that are resistant

to changes in the UI

Automated tests created with scripts or keywords

are dependent on the application under test. The user

interface of the application may change between

builts, especially in the early stages. These changes

may effect the test results, or your automated tests

may longer work with future versions of the

application. The problem is that automated testing

tools use a series of properties to identify and locate

an object. Some times a testing tool relies on location

coordinates to find the object. For instance, if the

control caption or its location has changed, the

automated test will no longer be able to find the

object when it runs and will fail. To run the

automated test successfully, you may need to replace

old names with ones in the entire project, before

running the test against the new version of the

application. However, if you provide unique names

for your controls, it makes your automated tests

resistant to these UI changes and ensures that tour

automated tests work without having to make

changes to the test itself. This best practice also

prevents the automated testing tools from relying on

location coordinates to find he control which is less

stable and breaks easily.

automated testing with test complete

the best practices described in this article will help

you successfully implement test automation. our own

automated testing tool-automatedQA test complete-

includes a number of features that make it easy for

you to follow these best practices:

with test complete you can perform a different

type of software testing

.functional testing

.unit testing

.load testing

.keyword-driven testing

.data-driven testing

.regression testing

.distributed testing

.coverage testing

.Object-driven testing

 .manual testing

Test complete allow you to divide each test into

individuals test parts, called test items and organize

them in a tree-like structure. it lets you repeatedly use

individual test and run them in a certain order.

.test complete supports keyword-driven testing.

these automated tests can be easily created by in

experiences test complete users, and they are a good

option when a simple test needs to be created

quickly.

.test complete supports five scripting languages

that can used for creating automated test scripts:

VBScript, Jscript, Delphi script c++script and c#

script.

.when test complete, QA engineers can share a test

project with their team.

.test complete offers a name mapping feature that

allows you to create unique names for processes,

windows, controls and other objects. It makes your

names and test cleares and easier to understand, as

well as independent of all objects properties and less

prone to errors to understand if the UI changes. This

feature allows you to test your application

successfully even in the early stages of the

application life cycle when the GUI changes often.

.Test complete provides many other features that

help you get started quickly with you automated

testing.

Test complete addresses a full range of software

testing challenges facing corporate IT documents

Product developers, QA engineers, and

consultants. The software enhances the software

testing process by increasing efficiency, removing

complexity and covering costs

Viable automated testing methodologies

Now that we’ve eliminated record/playback as a

reasonable long-term automated testing strategy, lets

discuss some methodologies that I(as well as others)

have found to be effective for automating functional

or system testing for most business applications

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

 The “Functional Decomposition”

Method

The main concept behind the “functional

decomposition” script development methodology is

to reduce all test cases to their most fundamental

tasks, and write User-Defined functions. Business

function scripts, and “sub-routine” or “utility” scripts

which perform these tasks independently of one

another. In general, these fundamental area include:

1. navigation(eg. “access payment screen from

main menu”)

2.specific(business) function(e.g. “post a

payment”)

3.data verification(e.g. “verify payment updates

current balance”)

4.return navigation(e.g. “return to main menu”)

In order to accomplish this, it is necessary to

separate data from function. this allows an automated

test script to be written for a business function, using

data-files to provide the both input and the expected-

results verification. A hierarchical architecture is

employed, using a structured or modular design.

2.Conclusion
Test completes have many features that will help

you build a solid foundation for your automated

testing process that promotes high software quality.

you will be able to run test faster, test more code

improve the accuracy of your tests, and focus your

testing teams attention on more important tasks that

take advantage of their human capabilities.

3.References

[1]Automated software testing: introduction,

management, and performance by E.Dustin, et

al(1999)

[2]automated testing handbook, by L.hayes(1995)

[3]software testing automation:effective use of test

execution tools by D.Graham et al(1999)

[4]just enough software test automation, by

D.mosley, et al(2002)

[5]integrated test design and automation:using the

test frame method by H.buwalda,et al(2001)

Kolawa, Adam; Huizinga, Dorota (2007).

Automated Defect Prevention: Best Practices in

Software Management. Wiley-IEEE Computer

Society Press. p. 74. ISBN 0-470-04212-5.

.Brian Marick. "When Should a Test Be

Automated?". StickyMinds.com. Retrieved 2009-08-

20. Elfriede Dustin, et al. (1999). Automated

Software Testing. Addison Wesley. ISBN ISBN 0-

201-43287-0.

Elfriede Dustin, et al.. Implementing Automated

Software Testing. Addison Wesley. ISBN ISBN 978-

0-321-58051-1.

Mark Fewster & Dorothy Graham (1999).

Software Test Automation. ACM Press/Addison-

Wesley. ISBN 978-0-201-33140-0.

Roman Savenkov: How to Become a Software

Tester. Roman Savenkov Consulting, 2008, ISBN

978-0-615-23372-7

Hong Zhu et al. (2008). AST '08: Proceedings of

the 3rd International Workshop on Automation of

Software Test. ACM Press. ISBN 978-1-60558-030-

2.

Mosley, Daniel J.; Posey, Bruce. Just Enough

Software Test Automation. ISBN 0130084689..

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

