
Proxy-Side Web Prefetching Scheme for

Efficient Bandwidth Usage: A Probabilistic

Method

Swapnil S. Chaudhari

Research Scholar: Department of Computer Engineering

G.H. Raisoni College of engineering & Management

Pune, India

Prof. Poonam Gupta
Asst. Professor: Department of Computer Engineering

G.H. Raisoni College of engineering & Management

Pune, India

Abstract—The expansion of the World Wide Web on internet

has emphasize the need for upgrading in user latency. One of

the methods that are used for enhancing user latency is Web

Prefetching followed by web caching. Web prefetching is one

of the methods to condense user’s latencies in the World Wide

Web efficiently. User’s accesses makes it possible to predict

future accesses based on the previous objects and previous

sites. A prefetching engine makes use of these predictions to

prefetch the web objects and performed site before the user

demands them on the behalf of user. Web prefetching is

becoming important and demanding, even though the Web

caching system has been recover because of bandwidth usage.

Web prefetching is a helpful implement for upgrading the

access to the World Wide Web and it also diminish the

bandwidth usage at the time. Prefetching can be perform at

the client side or at the server side and in this paper we are

going through Proxy side web prefetching scheme. We

Propose Proxy side web prefetching scheme with probabilistic

method which improves cache hit rate with tiny amount of

supplementary storage space.

Keywords— Improvement of web caching followed by web

prefetching, Probabilistic method for web prefetching, Proxy

side web prefetching, Web prefetching objects,

I. INTRODUCTION

As the number of internet(World Wide Web) users forms,

web jamming enforces to enhance at an exponential pace of

WWW or web access users.[1] At present, Web traffic is

one of the chief parts of Internet traffic which we must

have to cut. Web traffic bandwidth usage in student cluster

for 24 hours at Organization or college, elevated bandwidth

is required in peak periods that is at college timings, while

leaving bandwidth at rest during off-peak periods(at night).

It is enforced to equilibrium the bandwidth usage between

peak periods and off-peak periods to shrink bandwidth

usage in peak periods. This will reduce Web access time

and make more efficient use of HTTP links and use of

repeated objects. [1]

One of the solutions to play down Web traffic and

speed up Web access is in the course of Web caching [2].

However, Web caching cannot tolerate network bandwidth

usage during peak periods [1, 4, and 5]. In this Paper we

are going to focus on the use of prefetching followed by

web caching, based on a caching server, for reducing

bandwidth during peak periods by using off-peak period

bandwidth. We have proposed a unique, proxy-side

prefetching scheme on the basis of probabilistic method

that progress cache hit rate. This prefetching scheme uses

Web access patterns of users. this scheme may increase

total bandwidth usage in comparison with particular Web

caching. However, the proposed scheme can efficiently

reduce Web traffic bandwidth usage during peak periods

by prefetching the objects during off-peak periods. Web

prefetching is a technique that makes efforts to resolve the

problem on access latencies. Specially, global caching

methods that include crosswise users work depend on their

access. Prefetching is used as an attempt to place data close

to the processor before it is required as the concept of

cache, removing as many cache misses as possible.

Caching offers the following benefits: Latency decline,

Less Bandwidth consumption, Lessens Web Server load

and the most important is faster work. Prefetching is the

means to anticipate probable future objects and to fetch the

most probable objects, patterns, before they are actually

requested. It is the retrieval of a resource into a cache in the

anticipation that it can be served from the cache in the near

future era. [1, 2, 3]

As the increased usage of internet services, the

performance of internet servers slows down and load

increases which affect user satisfaction. A not expensive

and effective way to advance the routine is Web caching

only. It is achieved by storing copies of documents, pages,

objects (HTML pages and images) in a cache to reduce

web site access times. A properly designed web cache can

save network bandwidth, reduce server load and perceived

cover on user waiting times. Assume that web documents

are prepared as pages. In common, the cache is smaller and

contains a lesser amount of number of pages than the origin

server because it has less memory and less efficient. All

pages are requested and served from the cache to memory

and memory to cache. When the requested page is not

present in the cache, it is requested from the origin server

where it is located originally. The requested page is then

transferred into the cache and served to the client as per

request. When the cache is full, a page must be aloof to

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061160 1698

make space for the page to be transferred from the origin

server. [1] A page can be removed at casual or one of the

page replacement policies can be used to choose which

page should be removed. A normally used page-

replacement algorithm is the least-recently used (LRU)

approach. It remove a page from the cache based upon its

“age” clear as the time onwards since it was last accessed.

The “very oldest” page is “thrown out” to make space for

latest pages. An LRU-based cache performs better than a

cache that selects a fatality page at random. The rationale

behind an LRU page-replacement policy is that a page that

has not been requested for a long time is less likely to be

requested another time. This idea has gained much interest

from the researchers and has been termed Prefetching. Web

prefetching is a helpful tool for upgrading the admission to

the World Wide Web and it also decrease the bandwidth

usage at the time. Prefetching can be done at the client side

or at the server side and in this paper we are going through

Proxy side web prefetching scheme. We Propose Proxy

side web prefetching scheme with probabilistic method

which improves cache hit rate with tiny amount of

supplementary storage space. [1, 4, 10]

One of the goals in advance cache routine is to

achieve superior hit rates. When a requested object found

in the cache, it is called a cache hit. Hit rate is the ratio of

“hits” over total demand. Higher hit rate implies less

contact to the web server. Therefore, both network traffic

and client waiting time are condensed. Although hit rate is

important for cache performance, other performance

metrics have to be taken into account in the evaluation. [4,

10]

A. Introduction to Proxy Servers

 In computer networks, a proxy server is a server (a

computer system or an application) that take action as an

mediator for requests from clients asking for resources

from added servers. A client fix to the proxy server,

requesting some service, such as connection, web page, file

or other resource existing from a unlike server. The proxy

server estimate the request as a way to make simpler and

control their density. Today, most proxies are web proxies,

help access to content on the World Wide Web. [5, 6]

Fig.1. Concept of Proxy server

B. Classification of Web Prefetching Techniques.

1. Short term Prefetching

In usual short-term prefetching, store use recent access

past to predict and prefetched objects and subjects likely to

be referenced in the next to future. In the short-term policy,

objects that are possible to be referenced in the next to

future are prefetched depends on the client‟s up to date

access history. Future requests are predicted to the cache‟s

new access history. Based on these predictions, clusters of

Web objects and subjects are prefetched. In this

framework, the short-term prefetching schemes use

Dependency Graph (DG), where the patterns of contact are

held by a graph and Prediction by Partial Match (PPM),

[4,8] where a method is used, approve from the text density

domain. In addition, several short-term prefetching policies

are stay alive namely semantic web prefetching, Predictive

Web prefetching and proxy surface web prefetching. [2]

2. Long-term prefetching policies

The long-term prefetching uses long-term steady-state

object access rates and update frequencies to identify

objects to duplicate to content sharing locations. Compared

to demand caching, long-term prefetching boost network

bandwidth and disk room costs but may benefit a system

by recover hit rates. In the long term policy, objects are

prefetched and reorganized based on long-term global

access and modernize patterns. Global object access pattern

data (e.g., objects‟ status, objects‟ reliability) are used to

identify costly objects for prefetching. In this type of

method, the objects with advanced access frequencies and

no longer modernize time period are more likely to be

prefetched. There are a mixture of types of long term

prefetching exist namely frequency based prefetching,

hungry dual size prefetching and popularity based

prefetching. Prefetching is a method to anticipate future

Web object requests and prefetch objects in a local cache.

A prefetching approach can be classify by following three

aspects. [2]

C. prefetching approaches

1. Server-Side, Client-Side and Proxy-Side Prefetching

Prefetching can be initiated by Web servers, by clients

or by cache servers (also called proxies). When a client

demands a Web object, a Web server may anticipate the

next request and immediately preload the corresponding

Web objects to the client [2]. A client can also initiate the

prefetching of Web objects by changing the user‟s

configuration. A client can also use a Web access pattern

monitoring system, which observes the past access patterns

for particular Web objects and prefetches. Web objects on

the behalf on the user [16]. Also, a proxy can initiate the

prefetching of Web objects. A proxy can analyze the Web

access patterns of clients, anticipate future requests and

prefetch them [11, 12, and 15].

2. Statistical and Deterministic Prefetching

The decision whether a Web object should be

prefetched can be either statistical [5] or deterministic [1].

In statistical prefetching, the prefetching system uses the

Web access patterns of users. In a deterministic scheme,

prefetching can be configured statically by clients or by

proxies. For example, a user may organize Web objects

such as the home page of a popular broadsheet with the

deterministic prefetching manner. These Web objects are

always prefetched all time the prefetching is enabled.

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061160 1699

3. Prediction and Batch Prefetching

The criteria for fixing when a Web object should be

prefetched by prediction or by batch. In the prediction

proposal, when a client requisite a Web object, a Web

server, proxy server or client may predict the subsequently

request and immediately preload the predicted Web

subjects to the client [2, 5]. The purpose of most prediction

prefetching is to diminish delay in Web access moment.

However, if the prediction is not correct, network

possessions are wasted and network bottlenecks are created

during peak periods. In the batch scheme, Web objects that

the user is accesses in the future are prefetched during off-

peak periods [1, 9]. Prefetching can be applied in a mixture

of domains to recover the system performance. A location

awake prefetching mechanism is introduced that is

autonomous of any additional infrastructure and that

assemble information exclusively over deployed, low

bandwidth wireless links. Location-awareness becomes

more and more important for delivering significant data.

The concluding is a challenging duty when facing with

unstable and low-bandwidth wireless networks, especially

in domain that are not or only feebly covered. Prefetching

is an well-designed technique to handle information

provisioning for users under these conditions. In this paper,

new tactic for prefetching in a location-aware surrounding

are explored. The method, as well as the fundamental

location model, could however also be relocate to other

application areas such as airline networks and rail

networks. The vibrant service precedence allocation and

the expansion of location aware cache termination

algorithms are the focus of research in this domain. To

defeat the problem of long retrieval latency caused by the

volatile user behaviors during multimedia arrangement, a

prefetching scheme using the association rules from the

data mining procedure was proposed.

II. METHODOLOGY

A. Problem Definition :

We describe several prefetching routines in the

previous section. In the server side prefetching scheme, the

client has to aware of prefetching and both the client and

web server system has to be maintained. Client side

prefetching cannot contribute their web access blueprint of

all users in the intranet, because this plan uses only one

users web access blueprint. Deterministic Prefetching has

partial expansion to all web objects in the prediction

prefetching rule, Network traffic may be generated during

peak periods so this method is not proper for reducing peak

bandwidth usage. Therefore we decided to develop a

statistical web Proxy-Side Prefetching scheme for

resourceful usage of bandwidth.

The problem Definition is to design and implement

probabilistic cache prediction procedure to improve cache

hit ratio in web proxy servers.

To design Prefetch List Generator, Cache Request

Generator and Refreshing Algorithm of Proxy server for

freshness of objects.

B. System Architecture

Fig.2. Proxy Side Web Prefetching Scheme

1. Prefetchable Object List Generator

The prefetch list generator is used to make your mind

up whether a Web object should be prefetched. It bring into

play the access log that reports the entrance information of

HTTP requests, url requests from clients, and the store log

that reports the information of Web objects in the cache.

The access log stay records of Web cache requests. For

each requested Web object, time of request, size of the

object, and URL of the object are pull out to understand

access model of Web objects in the cache. The store log

stay records of category, class of cached Web objects.

OBJ_DATE is a value of the HTTP or url date [1]

described by the date and time at which the message

originated. OBJ_LASTMOD is a value of the HTTP,

url(TCP,UDP) Last- Modified, indicating the date and time

when the sender believes the object was last modified. By

monitoring the above points in the log files, the prefetch

list generator forms a list of Prefetchable objects with

calculated reference counts. [1]

2. Cache Refreshing Algorithm of Proxy Server

Web objects need to be detached from the cache when

they die. When a cached Web object is requested, proxy

server in our case windows proxy server or squid proxy

server checks the freshness of the object, and then records

the incident in access log and store log format. If an object

is „FRESH,‟ it is obtainable to clients. If an object is

„STALE,‟ it wants to be fetched from the original or master

server. The refresh algorithm is checked in the order listed

and the first matching entrance is used. If none of the

entries matches, then the default will be used. [6, 8, 17]

The CLIENTS_MAX_AGE is the maximum object

age the client will accept from the HTTP/URL Cache

Control request header. The OBJ_AGE described as how

much the object and subject has aged since it was retrieved.

The LM_AGE is how old the object was when it was

retrieved. The LM_FACTOR is the fraction of OBJ_AGE

to LM_AGE. The NOW is current time. AGE is how much

the object has aged since it was retrieved: OBJ_AGE =

Req

Response

Prefetch
able

Object

Access

.log

cach

e

Prefetchable

object list

Generator

Request

Generat

Caching
Server

Server

Client

Prefetching

System
Catching Server

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061160 1700

NOW - OBJ_DATE. LM_AGE is how old the object was

when it was retrieved: LM_AGE = OBJ_DATE -

OBJ_LASTMOD. MS_FACTOR is the ratio of AGE to

LM_AGE: LM_FACTOR = OBJ_AGE / LM_AGE.

MAX_AGE, MIN_AGE and CONF_PERCENT are

compared with the parameters of the refresh pattern rules.

These values are used for the evasion value of Expires. [1]

3. Access Log Format & Store Log Format of Proxy

Server[14]

Time Elapsed Remote Code/status Bytes Method URL

Fig.3. Access Log Format of Proxy server

Time Action Status Date Mod Exp Type Len Method URL

Fig.4. Store Log Format of Proxy server

4. Request Generator

The request generator utility runs as a Web client. The

request generator will generate HTTP/URL or web objects

requests from the prefetch inventory and send the HTTP

requests to the Web server during off-peak periods. We

have developed the request generator using “wget,” which

is a command-line command in Unix for gathering web

from server without use of browser Web client that

supports HTTP [1]. Implementation of the request

generator is undemanding and the most vital thing is that

this request is generated by itself on behalf of client itself.

The prefetched objects are amassed in client‟s cache [1].

5. Algorithm of Coordinated Prefetching On The Basis

Of Probability

In our algorithm, we still include the input from the

clients even when a hit come to pass in the browser cache.

Upon a client request of an object file, if the request hits in

the browser, the object will be accessed locally from cache

itself. The client will also inform the proxy about the

access to the object file, and begin the coordinated proxy–

server prefetching process [3]. If the request is not in the

browser, the request will be forwarded to the proxy, and

the coordinated proxy–server prefetching process is open.

Starting in the proxy, the coordinated proxy–server

prefetching process will handle the following four

parameter class in the proxy:

 The pattern object exists and a prediction can be made

in the proxy server;

 The pattern object does not exist and a prediction can

be made in the proxy;

 The pattern object exists and a prediction cannot be

made in the proxy;

 The pattern object does not exist and a prediction

cannot be made in the proxy;

And Proxy based web Prefetching Includes:-

 The proxy launches the requested object to the client,

beside with a list of URLs of predicted objects itself;

 After a local searching, the client launches a selected

list of URLs of predicted objects to the proxy;

 The proxy launches the selected objects to the original

server.

III. MATHEMATICAL MODEL

PAi(t):-is defined as the probability p that the previous

access to object i was t time units before the current time,

and

PBi(t) :-is the probability p that no updates were done to

object i since its last access t time units in the past.[13]

Then, the probability of a hit on a request to a demand

cache is

Phitd = (1)

Here we provide a model H/B for the measurement of their

balance, where the hit ratio and network resource

consumption of demand cache serve as baseline for

evaluation. This model defines the ratio of hit ratio

upgrading over increased bandwidth cost.

 (2)

Hitprefetching/Hitdemand is the hit ratio step up of

prefetching over demand caching.

BWprefetching=BWdemand is network bandwidth boost

over demand caching. [13]

The H/B ratio is a quantity that demonstrates how much

possible advantage the prefetching algorithms can convey

compared to demand caching with respect of their

capability to balance hit ratio improvement next to

increased bandwidth cost. It is always enviable that

prefetching can attain the same amount of latency reduction

at not as much of expense as possible, which acquiesce a

higher H/B value. H/B model works as an appraisal metric

for a given prefetching algorithm to find out, at which

prefetching step, e.g., how many objects to duplicate in

move on; it can obtain the most favorable value if H/B is

fretful. Or it can also be considered as a metric for the

assessment between prefetching algorithms. In later

sectors, we will scrutinize what H/B values can be

accomplish by the four prefetching algorithms, which

prefetching approach can obtain the best balance of

increased resource expenditure and superior response time

when H/B is concerned and what it advocate.

 (3)

Compared with H/B ratio, Hk/B never does healthier in

comparison between prefetching algorithms. However,

Hk/B ratio is a enhanced metric for a given prefetching

system to settle on at which prefetching point it achieves

the unsurpassed benefit/cost balance. By increasing the

power of hit ratio improvement (k), we increase the

consequence of hit ratio improvement on evaluating the

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061160 1701

benefit/cost balance. When measuring with Hk/B, we judge

that even relatively small hit ratio perfection at cost of a

relatively large amount of bandwidth can be defensible if

there is copiousness of spare network resource. [13]

A. Performance Measures

There are numerous metrics used to investigate the

efficiency and the performance of Web pre-fetching

techniques. The subsequent measures are frequently used

for evaluating performance of web prefetching [13]

1. Precision (Pc): The proportion or ratio of prefetch

hits to the full amount number of objects prefetched as

shown in Eq.

 (4)

2. Byte Precision (BPc): Byte precision determine

by taking the fraction of prefetched bytes that are

subsequently requested. It can be calculated by reinstate the

number of prefetched objects with their size in bytes.

3. Byte Recall (BRc): Byte recall measures the

percentage of demanded bytes that were beforehand

prefetched and afterward requested.

4. Latency per page ratio: The latency per page ratio

is the ratio of the latency that prefetching attain to the

latency with no prefetching. The latency per page is

calculated by measure up to the time between the browser

initiation of an HTML page GET and the browser reception

of the last byte of the most recent embedded image or

object for that page. This metric represents the advantage

perceived by the user, which will be finer as minor its

value is.

IV. EXPECTED RESULTS

A. Performance of Prefetching Strategies

 The cache hit rate should have to increase by 65% on

the average compared with non prefetching scheme.

when the reference count is increased the request

saving is decreased

 The cache hit rate should have to increase by 60% on

the average compared with non prefetching scheme.

When the reference count is increased the Bandwidth

saving is decreased and wastage Bandwidth decreases.

V. SUMMARY AND FUTURE WORK

Enhancement of cache performance in web proxy

servers is tremendously important. This can be realizing

through mixture of ways. In our critique we aim to achieve

this performance expansion using Proxy side web

prefetching scheme for the efficient use of bandwidth using

web object prefetching probabilistic method. For that we

use Statistical proxy side web prefetching proposal. Proxy

side prefetching can show the way to significant reduction

of peak bandwidth usage using extra network assets to

prefetch web object during off-peak period

The work presented in this paper explores the use of

the web in studious environment. We believe that we could

achieve similar or better results in a business environment

where the off-peak period is typically larger.

 REFERENCES

[1] Jae-young Kim “A Sttistical Prefetching Web Caching Scheme for

Efficient Internet Bandwidth Usage” Distributed processing and network

Managemrnt Lab Dept of computer Engg.San 31,Hyoja,Nam-gu
Pohang,Korea 790-784,Jan,2005

[2] Bin Wu; Ajay D. Kshemakalyani. "Objective optimal algorithm for long

term web prefetching", Journal of IEEE Transactions on Computers, Vol.
55, Is- sue 1, 2006.

[3] H.T. Chen, Pre-fetching and Re-fetching in Web caching systems:

Algorithms and Simulation, Master Thesis, TRENT UNIVESITY,
Peterborough, Ontario, Canada (2008).

[4] J. Cobb, and H. ElAarag, “Web proxy cache replacement scheme based on

back-propagation neural network”, Journal of System and Software, 81(9),
(2008), pp. 1539-1558.

[5] P. Venketesh, R. Venkatesan, “A Survey on Applications of Neural
Networks and Evolutionary Techniques in Web Caching”, IETE Tech Rev,

26, (2009), pp.171-80 .

[6] T. Palpanas and A. Mendelzon, “Web prefetching using partial match
prediction”, In Proceedings of the 4th International Web Caching

Workshop. San Diego, USA, (1999).

[7] D. Duchamp. Prefetching hyperlinks. In Proceedings of 2nd USENIX
Symposium on Internet Technologies and Systems, pages 127–138,1999

[8] Farhan, Intelligent Web Caching Architecture. Master thesis. Faculty of

Computer Science and Information System, UTM University, Johor,
Malaysia, (2007).

[9] W. Tian, B. Choi, and V.V. Phoha,“An Adaptive Web Cache Access

Predictor Using Neural Network”. Proceedings of the 15th international
conference on Industrial and engineering applications of artificial

intelligence and expert systems: developments in applied artificial

intelligence, Lecture Notes In Computer Science(LNCS), Springer-
Verlag London, UK 2358, (2002).450-459

[10] K. Tirdad, F. Pakzad, and A. Abhari, “Cache replacement solutions by

evolutionary computing technique”, Proceedings of the 2009 Spring
Simulation Multiconference, San Diego, California, Society for Computer

Simulation International,(2009), pp. 1-4.

[11] B. Zhijie, G. Zhimin, and J. Yu, “A Survey of Web Prefetching”, Journal
of computer research and development, 46(2), (2009), pp. 202-210.

[12] J. Domenech, J. A. Gil, J. Sahuquillo, and A. Pont, “Using current web

page structure to improve prefetching performance”, Computer Network
Journal, 54(9), (2010), 1404-1417.

[13] Y. Jiang, M.Y Wu, and W. Shu, “Web prefetching: Costs, benefits and

performance”, Proceedings of the 11th International World Wide Web
Conference, New York, ACM, (2002).

[14] Q.Yang, H. Zhang, and T. Li, “Mining web logs for prediction models in

WWW caching and prefetching”, Proceedings of the 7th ACM
International Conference on Knowledge Discovery and Data Mining,

(2001), pp. 473–478.

[15] J. Domenech, A. Pont-Sanju´an, J. Sahuquillo, and J. A. Gil,
“Evaluation, Analysis and Adaptation of Web Prefetching Techniques in

Current Web”, Web-based Support Systems, Springer, London, (2010).

239-271.
[16] W. Teng, C. Chang, and M. Chen, “Integrating Web Caching and Web

Prefetching in Client-Side Proxies”, IEEE Transaction on Parallel and

Distributed Systems, 16(5), (2005), pp 444-455.
[17] B. Jin, T. Sihua, C. Lin, X. Ren, and Yu. Huang, “An Integrated

Prefetching and Caching Scheme for Mobile Web Caching System”.

Eighth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD),

(2007).

[18] T.I.Ibrahim, C.Xu, “Neural net based predic- tive pre-fetching to tolerate
WWW latency”, Pro- ceedings of the 20th International Conference on

Distributed Computing Systems, 2000.

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061160 1702

