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Abstract -- For selecting from a list of functionally similar 

services, users regularly decide based on multiple QoS criteria 

which they require on the target service. In selection process, 

different decision making strategies (compensatory and non-

compensatory) are followed by various users. Recent works on 

QoS-based service selection systems are not considering these 

decision strategies while ranking the similar services, which are 

vital to generate exact ranking for individual users. This paper 

proposes a novel service ranking model based on decision 

strategy. Furthermore, since those different users follow 

diverse strategies in various contexts at different times, a 

learning to rank algorithm is used to learn a personalized 

ranking model for individual users constructed on how 

services are selected by them in the previous usage. Experiment 

result shows that the proposed approach is effective. 

 
Keywords – Decision strategies, learning to rank, Web services, 

Quality of Services (QoS) 

  
I. INTRODUCTION AND BACKGROUND 

 

Web services are self-contained, loosely coupled, 

discoverable, autonomous and dynamic entities that are 

available in the network. They are used to support the 

development of fast growing, reusable, low cost and 

interoperable software and applications [1][2]. Web services 

construction is established according to common standards 

that ensures the successful interaction between service 

providers, service requestors and service brokers. 

  Because of the huge number of web services, it is 

very difficult to discover and select the required services. 

Therefore, discovery and selection of web services is 

considered as an important challenge for the web service 

community. In the first phase which is the discovery phase, 

the user searches for a particular web service from the 

service directory or service registries and this search is 

based on the user’s functional requirement. Functional 

requirements of web services determine the overall behavior 

of web services and determine if a service is relevant 

according to user’s query. The discovery in this phase is to 

do the matchmaking between the functional requirements 

and the WSDL descriptions of web services. After the 

functional matchmaking, the user may get huge number of 

web services satisfying the functional requirements which 

the user has submitted. 

In order to select the best functionally similar 

services, users must be further supported to select the 

suitable web service from the list, which is the selection 

phase. In this work, Quality of Service (QoS) attributes are 

considered as non-functional requirements. QoS are 

normally used to the show the difference between 

functionally equivalent services.   

 

II. RELATED WORKS 

QoS-based Web Service Selection 

QoS-based service selection methods are commonly 

considered as an optimization problem, and thus different 

optimization models are used to solve this problem in order 

to attain the quality tradeoffs and optimizations. 

In [3], users state their preferences by utility 

functions, quality distributions of providers are learned from 

a probabilistic trust model, and then the services which 

might maximize the anticipated utility are selected. 

In [4], Mixed Integer Programming (MIP) is used to 

solve the problem of web service selection and match-

making.   

In [5], WS-QoSOnto is recommended to design and 

building QoS ontology for web services. The proposed 

ontology has several aspects t o  describe the QoS 

properties, trends, relationships and metrics.  An Analytic 

Hierarchy Process (AHP) model is used to define the user 

preferences which is a multi-criteria decision making 

approach to develop a flexible and dynamic ranking 

algorithm. The main problem in this proposed model is that 

while calculating the overall service ranking, the proposed 

model totally overlooks the user defined QoS requirements 

and also does not take in the user defined constraints over 

the QoS properties. 

Skyline computation is utilized to solve the problem 

of QoS based web service selection in [6]. In this paper, the 

authors deals with the issues that the users are required to 

convert personal preferences into numeric weights and the 

users may not be aware of converting these preferences into 

numeric weights. Also how to deal with the dynamic 

environment of the QoS properties in skyline approach are 

addressed. 

Most of the above selection systems are not 

considering the variations of the individual decision 

strategies which are involved in the selection process. 

 

Personalized Service Ranking 

Personalized service ranking and selection are used in 

many of the research in recent years. Most of the efforts in 

this area uses recommendation algorithms. In [9], personal 

profiles are built based on the collaborative filtering method.      

In [7], user similarities are measured as the 
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similarity between the rankings of their witnessed QoS 

values on commonly invoked services. Also, a QoS driven 

component ranking framework for cloud applications which 

uses the previous experiences from similar users is 

implemented. 

 In [8], former interactions between service providers 

and requestors are exhibited as a social network. Ranking of 

the web services is performed from three different 

aspects such as the service aspect, the consumer aspect and 

the non-functional properties aspect.   

In [9], query and invocation logs are utilized in order 

to calculate user similarities and then services are ranked 

using most similar users’ invocation accounts. Once 

functionally matching services are determined, ranking is 

done using the QoS requirements given by the current user 

based on how they were selected and invoked by former 

users with the same QoS requirements.   

In [10], to calculate the similarity and to recommend 

services, functional interests as well as QoS preferences of 

users from their past usage history are utilized. Also the 

proposed framework finds the similarity between the 

consumer’s functional requirements and web services. Then, 

a hybrid approach is proposed and developed which merges 

the functional similarity and non-functional similarity. 

Finally, the top k web service list is generated for the 

consumer considering the non-functional and functional 

requirements from the previous usage history. 

Compared to the above mentioned research works, in 

this proposed work, the same problems are attacked from a 

totally different perception considering the previous 

invocation histories and query which are used. Assuming 

that various users might follow different decision strategies 

for different queries, and learning to rank algorithm [11] is 

used in order to learn a personalized decision-strategy-based 

ranking model. 

 

Learning to Rank 

Learning to rank has been widely used in 

information retrieval and web searching for ranking the 

documents and it is used to automatically construct a 

ranking model by means of training data for ranking objects.  

It has been proved in [6] that listwise ranking algorithms 

gives the better result compared to the pointwise and 

pairwise algorithms. 

Freund et al. [12] developed a learning to rank 

algorithm called Rank Boost and he has applied it on 

information retrieval problem. Rank Boost is a pairwise 

boosting algorithm which is based on AdaBoost algorithm.   

Burges et al. [13] presented the RankNet algorithm 

and proved the effectiveness in order to improve the search 

relevance. RankNet requires a label dataset for training 

the model. The method requires the pairwise preference 

information along with the gradient descent to training 

the model. The algorithm is simple to use and provides 

good performance when considering large amount of data. 

Cao et al. [14] developed a listwise approach named 

ListNet for learning to rank and compared with the pairwise 

approaches such as Rank-Boost, Rank Net, Ranking SVM.  

Metzler and Croft [15] debated in detail the linear feature 

based models.   

User Decision Strategies 

 In [16], two types of strategies such as compensatory 

and non-compensatory are discussed.  Two usually used 

compensatory strategies are weighted additive (WA) and 

equal weight (EQW) and two generally used non-

compensatory strategies are elimination by aspects (EBA) 

and lexicographic (LX).    

In [17], more strategies which are classified based on 

their characteristics, such as whether all attribute values are 

processed or some of the attribute values are processed, 

whether they are attribute based or option based are 

discussed. The paper also illuminates the classification 

method which is used for detecting the user decision 

strategies.   

According to [18], multiple strategies for making 

choices may be used by decision makers and then they may 

select strategies from a choice of strategies which represents 

the best accuracy and choice for the specific decision 

problem.   

The diversity of the individual decision strategies is 

acknowledged in some domain-specific applications and 

then integrating multiple strategies which prove to offer a 

better result [19].  Also in this work, two aggregation 

strategies are joined using a single weighting strategy.   

Compared to the above mentioned works, this 

proposed work do not want users to express their strategies 

explicitly, the ranking order of all alternative services instead 

of just finding the best one are generated automatically, and 

an automated solution is well-defined by using a learning 

to rank algorithm in order to find the optimal way for 

combining multiple strategies. 

 

III. PROPOSED RANKING METHOD 

 

After the functionally matched web services have 

been selected, next step is to select the web services 

based on the non-functional requirements. Here the main 

task is to find the list of optimal web services based on the 

user requirement on various QoS properties.  This selection 

and ranking is based on the QoS weights, user constraints 

and requirements on the QoS properties which are already 

defined in the previous sections. For the selection and 

ranking of web services we are using the decision strategies 

which will be explained in this section. 

There are many decision strategies reported in the 

literature [16] [17]. In this work, four of them, namely, 

Weighted Additive (WA) strategy, Majority of Confirming 

Dimensions (MD) strategy, Weighted Majority of 

Confirming Dimensions (WMD) and Lexicographic (LX) 

strategy [16] are considered. These strategies are used to 

reduce the number of alternatives and improve the 

processing efficiency. Since most of the decision strategies 

only target at finding optimal solutions without handling the 

constraints, in this work two rules are developed which 

could rank services based on how well they satisfy the 

constraints. Below, are the definitions and explanations of 

two rules.  
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• Layer Rule: Services satisfying all of the 

constraints (category 1) are ranked higher than 

services satisfying some of the constraints (category 

2), which are ranked higher than services satisfying 

none of the constraints (category 3). 

• Quantity Rule: A service satisfying more 

constraints is ranked higher. To simplify the case, 

we do not consider the user preferences on QoS 

criteria, and only count the number of satisfying 

criteria. 

 

In the proposed work, the service ranking algorithm is 

based on one of the combinations between rules and 

strategies. The three rules (No Rule, Layer Rule, and 

Quantity Rule) decide how a user wants the system to 

handle the constraints, and the four decision strategies (WA, 

MD, WMD, and LX) define the preference-guided 

optimization process.  If the number of satisfying constraints 

really matters to a user, Quantity Rule is applied in the 

ranking process. If the number of satisfying constraints is 

important but the exact number is not so critical, Layer Rule 

is applied. If a user does not care about satisfying 

constraints, No Rule is applied. If no rule is applicable, one 

of the four strategies is used directly to rank all the services. 

If Layer Rule is selected, services are first ranked based on 

the Layer Rule, and then services which fall into the same 

category are ranked according to one of the four strategies. 

If Quantity Rule is selected, services are first ranked based 

on the Quantity Rule, and then services which satisfy the 

same number of constraints are ranked according to one of 

the four strategies. There are in total 12 combinations, and 

thus we have 12 decision-strategy-based ranking algorithms. 

A user may follow one decision strategy all the 

time when selecting services based on QoS criterion. 

However, it is more likely that a user may follow a few 

decision strategies and choose among them according to the 

context of search or the tasks service is used for. The user 

preferred strategy may also change over time. Below, a few 

scenarios are given that could describe the typical patterns 

when users follow multiple decision strategies. There could 

be more patterns, but in this work mainly these four are 

considered. 

 

• Pattern 1: users follow one strategy all the time. In 

this case, users may only know one strategy, or are only 

comfortable with one strategy, and thus always use it. 

• Pattern 2: users follow a few strategies with different 

probabilities. In this case, users are aware of a few 

decision strategies. The probability of following each 

strategy may depend on the context, tasks, the 

feasibility of the strategy, user’s familiarity with the 

strategy, user’s preference on the strategy, etc. 

• Pattern 3: users follow a few strategies randomly. In 

this case, users are aware of a few decision strategies 

and use them constantly, however, without any obvious 

patterns or favorites. 

• Pattern 4: users follow a few strategies among which 

some are dominating, e.g., their probabilities are much 

higher than the others. In this case, users have 

preferences on some strategies, so that they use them 

often, but they do not rule out other strategies and they 

still use them when necessary. 

 

Among these four patterns, Pattern 4 can be 

considered as a special case of Pattern In order to 

understand which decision strategies users follow when 

selecting services, we could either ask them to specify 

explicitly or we can learn implicitly from history logs. In 

the former case, if they have knowledge on decision 

strategies, they could choose directly from a list of provided 

options, otherwise, if they want to spend time to fill in 

questionnaires, the system can identify the strategy by 

checking their answers. 

In order for the system to learn user’s service 

selection pattern or decision strategy pattern, the service 

invocation request is sent to the Invocation Proxy first, and 

then forwarded to the service provider. The delivered service 

also goes through the Invocation Proxy first and then to the 

user, in this way, the actual QoS data can be monitored and 

saved into the Monitored QoS Repository. The History 

Log keeps the records of all the users’ search requests 

as well as invocation requests.  Every record has the 

following information:  user ID, query, matching services 

in the result list, and invoked service. With the history 

data, the Learning to Rank Component can learn the 

personalized service ranking algorithm for individual 

users, which could identify user’s pattern on following 

decision strategies. 

In the proposed service ranking problem, there are 

multiple ranking algorithms based on different decision 

strategies, and since users normally do not specify what 

strategy they follow for each selection process, we would 

like to learn a ranking model which could best mimic the 

way individual users switch between strategies according to 

the context and the tasks. The history log saved in the 

service registry can provide the training data for the learning 

algorithm. Through learning, the strategies a user follows as 

well as the best way of combining the corresponding 

ranking algorithms are identified, and eventually provide a 

personalized ranking algorithm for user’s service selection. 

This personalized ranking algorithm is adaptive because it 

can be constantly learned and updated when new user data 

is available, and it is also extensible because more decision 

strategies or more QoS-based ranking algorithms can be 

fed into the learning model. 

In this work, AdaRank [20] is used as the learning to 

rank algorithm. The reason for choosing it is that it can 

directly optimize the metrics used in the selection system, 

whereas many other algorithms such as RankBoost [21] 

define loss functions loosely related to those metrics. The 

metric considered in this work is Mean Reciprocal Rank 

(MRR) [22], which measures the accuracy of ranking based 

on the position of the selected result in the ranked result 

list, the higher the position, the higher the MRR value. 

Since in the proposed system, personalized ranking is 

learned for each individual user, the history log is first 

partitioned on users. Then the training dataset for each user 

is represented as a collection of m records, and each record 

is represented as (qi, rsi, si), where qi  is the ith  query 
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from the user, rsi  is a ranked list of returned services for 

query qi, and si  is the service the user selects from the list 

rsi. The learning to rank algorithm is going to learn a 

ranking function, so that the ranking scores generated for 

the returned services for a query can optimize the 

performance measure MRR. 

 

IV. EXPERIMENTS AND OBSERVED RESULTS 

 

 In the experiment, mainly the case when the explicit 

strategy information is not available is tested, which means 

the learned personalized ranking model is used to rank 

services. The proposed system was implemented using 

java language under the platform Windows 7 as the 

operating system and mySql as the database server. 

There is no publicly available dataset for our 

experiment, and it is also hard to find many users to use our 

system so that we could collect enough usage data in the 

logs. Therefore, simulation is run to generate the dataset. 

In the simulated scenario, a user submits a QoS request, 

checks all the results returned from the system, and then 

selects one service based on a certain decision strategy. 

Since the decision making could be affected by the order 

of the results, the service selected by the user may not 

necessarily be the best service based on the strategy. We 

assume that the user is patient enough to review many 

results to find a good one so that it will be one of the top K 

results based on the strategy. Usually if the K value is not 

big, all the top K results can provide good results and thus 

the user is still satisfied with the selected service. 

 The QWS dataset [23] is used as our QoS dataset, 

which includes 2507 services. Only seven QoS properties 

out of the original 9 are considered, including availability, 

successability, throughput, documentation, compliance, best 

practices and reliability. There are 12 ranking algorithms 

considered in the work, and based on how they combine 

decision strategies and ranking rules, they are shown in the 

Table 1. Users may follow multiple strategies in different 

ways. Table 2 lists all the multi- strategy following patterns 

of users which are considered in the experiment conducted, 

together with their corresponding number of users. 

 Our dataset has are 440 users where each user has 

submitted 25 queries, and each query has 1 to 7 QoS   

requirements. For all queries, the matching services 

satisfying all its QoS requirements, the strategy user follows, 

and the service selected by the user based on the strategy. It 

is made sure that the number of strategies a user follows and 

the number of queries for every strategy matches with what 

are specified in the user pattern are saved. For example, if a 

user always uses one strategy, then all the queries from 

that user use that strategy for service selection and  for a 

user using two strategies with chance 80%, 20%, then 80% 

of the queries use one strategy and 20% of the queries use 

the other one. The strategy is arbitrarily chosen from 12 

strategies. 

 After the dataset was produced, the learning 

algorithm is applied where for each user’s usage data, 60% 

is considered as training data set and 40% is used as testing 

dataset. The MRR metric is used for result evaluation.  

In experiments conducted, the value 5 is  assigned  

to  K meaning the service chosen by the user could be one 

of top 5 results created on the user’s strategy. Fig.1 shows 

the comparison between the proposed algorithm and that 

single strategy based ranking algorithms for every multi-

strategy following patterns.  The value of MRR is averaged 

on all the queries given by the user and the MRR value is 

averaged for each algorithm on all the users with the same 

strategy following pattern. The MRR value for the proposed 

algorithm is calculated on the testing data. 

Fig.1 proves that the proposed learned ranking model 

merging multiple strategies performs much better than the 

ranking model considering only one strategy and also it is 

observed that the MRR value of the proposed algorithm is 

stable across all patterns. However, no individual algorithms 

perform steadily well for all patterns. Also it is observed 

that for each pattern, the best performing individual 

algorithm varies a lot.  It shows that if the traditional 

ranking approach is used, considering only one strategy, it 

may work for some scenarios, but not all the time. Overall, 

the best performing algorithms are from the MD family, 

either one of the WMD or MD algorithms. 

Many QoS-based service selection algorithms use the 

weighted sum (WA) as the default decision strategy. 

Therefore, the results from the proposed algorithm with the 

WA algorithm are matched as shown in Fig. 2. The 

perfection from proposed algorithm is obvious and if the 

proposed algorithm is integrated into any existing selection 

system, its accuracy can be improved. 

 

V. CONCLUSIONS AND FUTURE WORKS 

 

Regarding functionally similar services, the active 

user has to rank and select the services centered on non-

functional requirements such as response time, 

throughput etc.  Different users may follow diverse 

strategies during selection and ranking process which are 

classified as compensatory and non-compensatory decision 

strategies.  The service selection system proposed in this 

work has been improved reflecting user’s view for 

selecting and ranking services based on her QoS 

necessities and decision strategies.   

 As future work, the decision strategy may well be 

incorporated into the selection models namely CP, AHP as 

the base selection algorithms where only simple ranking 

rules are considered. To conclude, the influence of 

incorporating decision strategies into the service selection 

process in the context of service composition can also be 

tested. 

Table 1: User Decision Strategies and Ranking Rules 

User Decision Strategies and Ranking Rules Abbreviations 

Lexicographic LX 

Lexicographic + Layer Rule LXL 

Lexicographic + Quantity Rule LXQ 

Weighted Additive WA 

Weighted Additive + Layer Rule WAL 

Weighted Additive + Quantity Rule WAQ 

Majority of Confirming Dimensions MD 

Majority of Confirming Dimensions + Layer Rule MDL 

Majority of Confirming Dimensions +  

Quantity Rule 

MDQ 
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Weighted Majority of Confirming Dimensions WMD 

Weighted Majority of Confirming Dimensions + 

 Layer Rule 

WMDL 

Weighted Majority of Confirming Dimensions + 

 Quantity Rule 

WMDQ 

 

Table 2: User Pattern of Following Multiple Strategies 

Pattern 

Name 
Multi-Strategy Following Pattern of Users 

Number 

of  Users 

O1 Always use one ranking strategy 10 

U2 Uniformly use 2 ranking strategies 10 

R2 Randomly use 2 ranking strategies 10 

Dom Some ranking strategies dominate 10 

T91 Follow 2 strategies with probability 90%, 

10% 

10 

T80 Follow 2 strategies with probability 80%, 

20% 

10 

 

 

Fig.1: MRR values for all user patterns for proposed and individual 
algorithms 

 

 

 

Fig. 2: Comparison of proposed method with WA method 
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