

Quad-Byte Transformation as a Pre-processing to Arithmetic Coding

 Jyotika Doshi

GLS Inst.of Computer Technology

Opp. Law Garden, Ellisbridge

Ahmedabad-380006, INDIA

Savita Gandhi

Dept. of Computer Science; Gujarat University

Navrangpura Ahmedabad-380009, INDIA

Abstract

Transformation algorithms are an interesting

class of data-compression techniques in which one

can perform reversible transformations on datasets

to increase their susceptibility to other compression

techniques. In recent days, due to its optimal

entropy, arithmetic coding is the most widely

preferred entropy encoder in most of the

compression methods. In this paper, we have

proposed QBT-I (Quad-Byte Transformation using

Indexes) method to be used as a pre-processing

stage before applying arithmetic coding

compression method. QBT-I is intended to

introduce more redundancy in the data and make it

more compressible using arithmetic coding. QBT-I

transforms most frequent quad-bytes; i.e.4-byte

integers. Dictionary of frequent quad-bytes is

divided in a group of 256 quad-bytes. Each quad-

byte in the dictionary is encoded using two tokens:

group number and the location in a group. Group

number is denoted using variable length codeword;

whereas location within a group is denoted using

8-bit index. QBT-I can be applied on any source;

not necessarily text or image or audio. QBT-I is

expected to be faster due to 32-bit integer

comparison which is faster than 4-byte pattern

matching. QBT-I may also compress data along

with transformation.

1. Introduction

Data transformation means transforming data

from one format to another. When data

transformation is applied as a pre-stage to

conventional compression, the main purpose of a

data transformation is to re-structure the data such

that the transformed file is more compressible by a

second-stage conventional compression algorithm.

Thus, the intent is to use the paradigm to improve

the overall compression ratio in comparison with

what could have been achieved by using only the

compression algorithm.

Arithmetic coding [8, 11, 30] is the most widely

preferred efficient entropy coding technique

providing optimal entropy. Most of the data

compression algorithms like LZ algorithms [22, 28,

31, 32]; DMC (Dynamic Markov Compression) [2,

4]; PPM [15] and their variants such as PPMC,

PPMD and PPMD+ and others, context-tree

weighting method [29], Grammar—based codes [9]

and many methods of image compression, audio

and video compression transforms data first and

then apply entropy coding in the last step. Earlier-

generation image and video coding standards such

as JPEG, H.263, and MPEG-2, MPEG-4 relied

heavily on Huffman coding for the entropy coding

steps in compression; but recent generation

standards including JPEG2000 [5, 24] and H.264

[12, 26] utilize arithmetic coding.

With arithmetic coding, further improvement in

compression is not possible due to entropy

limitations. Better compression can be achieved if

the data can be transformed to be more skewed.

Here, we have proposed Quad-Byte

Transformation using Index (QBT-I) method with

an intention to introduce more redundancy in the

data and make it more compressible using

arithmetic coding at the second stage as shown in

figure 1. Both the transformation and compression

algorithms are lossless.

QBT-I transforms most frequent quad-bytes (4-

byte integer) using indexes from the dictionary of

most frequent quad-bytes.

2268

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120938

Figure 1 Data Transformation before

Compression

In general, due to two-stage process of

transformation and then compression, compression

process is somewhat slower in performance.

However, this slowness in the run-time

performance is acceptable since the transform will

truly skew the data source to allow more effective

compression. QBT-I can help to solve this speed

problem as follows:

 Quad-byte transformation needs less number

of transformations as compared to 1 to 3 byte

transformations

 Integer comparison is faster as compared to 4-

byte pattern matching

Main advantage of QBT-I is that it is not

intended to specific type of data. It can be applied

to any source.

2. Literature Review

Most of the research work in data

transformation is intended to compress specific

type of files like text, image, audio etc.

Transformation techniques like DCT and wavelet

are used for image files. After transformation,

entropy encoding is applied in the final stage.

Following research work to transform data is

intended to compress text files.

 Burrows Wheeler Transform (BWT) described

in [3, 16] performs block encoding.

 Star family transformation encodes words of

different length. According to Dictionary-

Based Multi-Corpora Text Compression

system by Weifeng Sun, Amar Mukherjee,

Nan Zhang [23], to gain a much better

compression performance for the backend data

compression algorithm, only letters [a..z, A..Z]

are used to present the codeword. Star

Transform [10], Length Index Preserving

Transform (LIPT) [1, 17], and StarNT [23] are

some of the transformation techniques that fall

in this category.

 Transformation using index position of words

in dictionary is performed by Intelligent

Dictionary Based Encoding (IDBE) [21],

Enhance Intelligent Dictionary Based

Encoding (EIDBE) [19] and Improved

Intelligent Dictionary Based Encoding (IIDBE)

[20] methods.

 Two-byte transformation is applied in BPE

(Byte Pair Encoding) [7], digram encoding and

ISSDC (Iterative Semi-Static Digram Coding)

[14].

 LZ family of algorithms fall in the category of

techniques known as Sliding Window based

techniques.

Even though above techniques are intended for

text files, methods like BPE and digram encoding

can be applied to any type of source. But, they will

benefit more when applied to small-alphabet source

like text files.

Many of the present day transformation

techniques, along with transforming data, may

introduce some compression also. Additionally

they retain enough context and redundancy for

compression algorithms to be beneficial.

2.1. BWT

BWT (Burrows-Wheeler Transform), named

after its inventors Michael Burrows and David

Wheeler, is introduced in 1994 in research report

[3]. BWT is a block sorting algorithm used in data

compression techniques such as bzip2 [18]. BWT

generates output file with long sequence of same

character repeating consecutively. Burrows and

Wheeler recommend combining BWT with ad-hoc

compression techniques Run Length Encoding

(RLE) and Move-To-Front (MTF) encoding and

then Huffman coding to provide one of the best

compression ratios available on a wide range of

data. Efficient variation of BWT uses arithmetic

coding instead of Huffman coding in the last stage

of entropy coding.

BWT is a lossless data compression algorithm

that operates on blocks of data. For each block, it

performs rotation-sorting-indexing. It is very time

consuming and requires better data structures for

efficient pattern matching. Bigger blocks will

generate longer runs of repeats, leading to

improved compression. At the same time, the

sorting operations will slow down the speed

considerably. BWT will usually have O(N logN)

performance where N is block size. Burrows and

Wheeler point out that a suffix tree sort can be done

in linear time and space [16].

Much of research work has been done on the

BWT and its different variations are proposed from

time to time. Some of them include a variation in

suffix tree constructions for faster transform by

Weiner [27], McCreight [13], Ukkonen [25].

2269

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120938

2.2. Star Transform
The Star Encoding, which is also called a

changing skill, is introduced by Kruse and

Mukherjee [10].

To generate codewords for representation of

words, Star encoding uses a large static dictionary

of commonly used words expected in the input

files. The dictionary is partitioned into 22 disjoint

sub-dictionaries based on the word length i (1 ≤ i ≤

22), assuming the maximum length of an English

word to be 22 letters. Words in sub-dictionary are

arranged in the decreasing order of their frequency.

Codeword for the first word at index 0 is encoded

using * repeated i times. The next 52 words are

assigned codeword that is a sequence of (i-1)

characters * followed by a single alphabet letter

from {a, b, …, z, A, B, ..., Z} respectively. For next

52 words at index 53 to 104, codeword is having

first *, 2nd lowercase/uppercase alphabet letter, and

then * repeated (i-2) times.

A source file thus transformed can be used by

conventional data compression algorithms for

better compression. In entropy coding compression

methods like Huffman, the most frequent character

‗*‘ is compressed using only 1 bit codeword.

Arithmetic coding also uses shortest possible

number of fraction bits for most probable symbol.

Large number of repeated *s will give better effect

even in RLE. In the LZW algorithm, the long

sequences of ‗*‘ and spaces between words allow

efficient encoding of large portions of pre-

processed text files.

2.3. Length Index Preserving Transform

(LIPT)
Length Index Preserving Transform (LIPT) has

been published by F. Awan and A. Mukherjee [1].

Star-Encoding does not work well with bzip2

because the long runs of ‗*‘ characters are removed

in the first step of the bzip2 algorithm [6].

With LIPT, concept of sub-dictionaries and

building dictionaries is same as that with Star

encoding.

LIPT differs from Star encoding in generating

codewords for transforming English words. In

LIPT, the codeword is made up of three

components <*,LengthChar,OffSet>. A word

prefixed with ‗*‘ denotes that it is an encoded

word. A word not found in the dictionary is left

unaltered, and thus does not have a ‗*‘ as prefix.

Second component ‗LengthChar‘ denotes the

length of the actual word. Length is represented

using characters <a-z> corresponding to length <1-

26>. Third component ‗Offset‘ represents the index

of the actual word in sub-dictionary. Index is also

represented using letters of alphabet. Offset of first

word is ―a‖, 26th word is ―z‖, 27th word is ―A‖,

52nd word ―Z‖, 53rd word ―aa‖ and so on.

2.4. Star New Transformation (StarNT)
StarNT differs from earlier Star family

transforms with respect to the meaning of the

character ‗*‘. In LIPT, first character ‗*‘ denotes

the encoded codeword; whereas in StarNT, first

character ‗*‘ denotes that the word is not encoded.

StarNT uses a semi-static single dictionary of

words. Most frequently used 312 words are listed

in the beginning of the dictionary in the decreasing

order of their frequency of occurrence. The

remaining words are sorted according to their

lengths in decreasing order. This enables words

with longer lengths to be encoded using shorter

length codeword. Words with same length are

sorted in the decreasing order of their frequency of

occurrence.

Here the words are encoded with codeword of

maximum three characters. The first 26 words in

the dictionary are assigned ―a‖, ―b‖, …, ―z‖ as their

codewords. The next 26 words are assigned ―A‖,

―B‖, …, ―Z‖. The 53rd word is assigned ―aa‖, 54th

―ab‖ and so on up to ―ZZ‖. Thereafter the words

are assigned codeword ―aaa‖, to ―ZZZ‖.

Use of maximum 3-character codeword reduces

the size of the transformed intermediate file, thus

the encoding/decoding time of the backend

compression algorithm can be minimized. StarNT

results in better compression ratio. StarNT is faster

than LIPT both in transform encoding module and

in transform decoding module.

2.5. Intelligent Dictionary Based Encoding

(IDBE)
Shajeemohan and Govindan [21] proposed an

encoding strategy called Intelligent Dictionary

Based Encoding (IDBE) which offers better rate of

compression. Words in the dictionary are encoded

using two components <length of the codeword,

codeword>. ASCII characters 33-250 are assigned

as the codeword for the first 218 words in the

dictionary. For the remaining words, permutation

of two of the ASCII characters in the range of 33-

250 is assigned as the codeword. For the left out

words, if any, permutation of up to four of the

ASCII characters is assigned. The length of the

codeword is represented by the ASCII characters

251-254 with 251 for a code of length 1, 252 for

length 2 and so on. Thus the words of maximum

length 4 are encoded.

A better compression is achieved by using IDBE

as the preprocessing stage for the BWT based

compressor.

Senthil and Robert [19] brought a variation in

IDBE and called it Enhanced Intelligent Dictionary

2270

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120938

Based Encoding (EIDBE). In EIDBE, words in the

input text are categorized as two letter words, three

letter words and so on up to twenty two letter

words. A dictionary is created with these words

sorted by length in ascending order, followed by

sorting on frequency of occurrence in descending

order. First 199 words in each segment have single

ASCII character (from 33 – 231) code. Code

assigning for the rest of the tokens is same as in

IDBE. The actual codeword consists of < word

length, code>. Length is represented by the ASCII

characters 232 – 253; 232 for two- letter words,

233 for three-letter words and so on up to 253for

22-letter words.

Senthil and Robert [20] also presented Improved

Intelligent Dictionary Based Encoding (IIDBE).

IIDBE uses dictionary same as EIDBE, codeword

is also same <length, code> but code is determined

as with starNT. Here authors suggested two

operations for the first stage of pre-processing, first

transforming the text into some intermediate form

with IIDBE scheme and then applying BWT. The

pre-processed text is then piped through a Move-

To-Front encoder stage, followed by a Run Length

Encode stage, and finally through an Entropy

encoder, which is usually arithmetic coding.

Thus, IDBE, EIDBE and IIDBE can be

considered as a pre-processing to bzip2.

2.6. Digram Coding
In digram coding, the dictionary consists of all

letters of the source alphabet followed by as many

pairs of letters, called digrams, as can be

accommodated by the dictionary size.

A dictionary is built before starting encoding. In

this semi-static dictionary, all of the individual

characters are added to the first part of the

dictionary and the most frequently used digrams

are added to the second part of the dictionary. If the

source contains n individual characters, and the

dictionary size is d, then the number of digrams

that can be added to the dictionary is d − n.

Digram coding uses fixed length code to encode

symbols and digrams using the index position in

the dictionary as codeword. Number of bits to be

used for index codeword depends on dictionary

size.

Altan Mesut and Aydin Carus [14] in their

Iterative Semi-Static Digram Coding (ISSDC) use

repeated digram coding. Like digram coding, all of

the used characters and most frequently used two

character digarms in the source are found and

inserted into a dictionary in the first-pass,

compression is performed in the second-pass. With

ISSDC, this two-pass process is repeated several

times. At each iteration, particular number of

elements is inserted in the dictionary until the

dictionary is full. Each two-pass iteration needs to

scan the file two times. To reduce the need of

repeated file i/o operations, authors of ISSDC have

suggested to read the file once and store it in main

memory for repeated use. For large files, this may

not be feasible.

2.7. Byte-Pair Encoding
Byte Pair Encoding (BPE) presented by P Gage

[7] is a simple universal text compression scheme

based on the 2-byte pattern-substitution.

Byte pair encoding works by finding the most

common pair of bytes in a file, and replacing all

such pairs with a single unused byte. This

substitution information is also stored with the

compressed data. This process is repeated using the

output of previous iteration as an input. BPE

encoder stops when either no byte-pair occurs more

than once or no unused characters are left.

BPE decodes most frequent byte-pairs using

unused symbols in the source file, thus using 8-bits

per 16-bit byte-pair. If there are no zero-frequency

(i.e. unused) symbols, it will not be beneficial.

3. Research Scope

Transformation methods Star encoding, LIPT,

StarNT use letters of English alphabet (a..z, A..Z)

in the codeword. Methods IDBE, EIDBE, IIDBE

can exploit the unused symbols like ASCII values

129 to 255 in text source files for most frequent or

longer text patterns. All these methods are using

dictionary of words or patterns and requires better

data structures and pattern matching algorithms for

efficiency.

BWT is very slow due to the need of rotations,

sorting and mapping. It gives good compression

only when later applied sequence of MTF, RTF and

entropy encoding.

Byte-pair encoding, digram encoding and its

variations can be applied to any type of source, but

they will be beneficial only for small-alphabet

source files like text.

Digram encoding and its variation ISSDC give

better compression only when the source alphabet

is small. If all 256 1-byte symbols are used in the

source, the dictionary size needs to be longer than

256 words and each 1-byte character will be

encoded using more than 8 bits. ISSDC has an

additional drawback of the entire source to be in

memory due to its two-pass multi-iterations. So, it

can be applied to small size source files.

BPE decodes most frequent byte-pair using

unused symbol in the source file, thus using only 8-

bits per 16-bit byte-pair. It is also a repetitive

process, repeating till there are no unused symbols

or no repeated symbols. Thus BPE is beneficial

2271

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120938

only when the source is having some unused

symbols in it.

As mentioned before, arithmetic coding is the

widely used entropy encoding method used with

most of the compression methods. So, we saw a

research scope here to have transformation method

that can be applied to any type source data and

introduce redundancy to skew the distribution for

getting better compression using arithmetic coding

later. There is also a scope to decrease the

transformation time.

4. Proposed Transformation Method

QBT-I

Proposed method QBT-I transforms 4-byte

integers. It has following advantages over existing

methods:

 It can be used with any type of source; not

limited to text.

 Data transformation is expected to be faster

due to following:

 No pattern matching algorithms are needed

during transformation or inverse

transformation. Integer comparison is faster

to execute as compared to matching a

pattern of 4 bytes.

 4-byte transformation needs fewer

transformations.

QBT-I transforms most frequent quad-bytes. It

uses Index based transformation. QBT-I first

prepares the dictionary of quad-bytes sorted in

decreasing order of their occurrence. The dictionary

is then logically divided into groups of 256 quad-

bytes. Number of groups may vary and can be

specified by a user. If number of groups is nGrp,

then the dictionary size is to accommodate (256 x

nGrp) quad-bytes.

Each quad-byte found in the dictionary is then

encoded using two tokens; group number and the

location of quad-byte within a group. Group

number is denoted using variable length prefix

codeword and location is denoted using 8-bit index.

Quad-bytes in different groups may be at same

location index. Thus, redundancy is introduced due

to 8-bit index codeword denoting the location of

quad-bytes. More the number of groups; more is

the redundancy and better is the compression

achieved using arithmetic coding later.

For decoder, it needs to know whether it has to

reverse transform the quad-byte or not. Assuming

the worst case of majority of integers not available

in the dictionary, encoder uses group codeword 0 to

notify that quad-byte integer is not transformed. As

explained in Table 1, variable length prefix code

starting with bit 1 denotes that an integer is found

in the dictionary and is encoded using the index

position within a group.

Thus, a quad-byte integer is transformed using

two components <group code, index code>.

Group code starting with 0 implies no

transformation, with as many 1s as the number of

groups implies the quad-byte from the last group

and otherwise it implies quad-byte in other groups.

For quad-bytes found in dictionary, 8-bit index

codeword will introduce redundancy in the dataset.

To exploit redundancy at the time of compressing

data using arithmetic coding, it is advisable to keep

group code and index code separate in a file or in

files.

Use of variable length code helps to reduce the

size of transformed file. Here most frequent codes

are in the initial groups and are assigned shorter

prefix code. Shortest prefix code 0 is used for

untransformed integers assuming smaller dictionary

size. Smaller dictionary sizes will speedup the

search process.

Table 1 Prefix Code and Index Code for Quad-

byte found in Dictionary
Group 1

Prefix code:

If last group,

(1)2

If not last

group, (10)2

Integer

Data

D0 D1 D2 ... D255

Location 0 1 2 ... 255

Index

Codeword

0 1 2 ... 255

Group 2

Prefix code:

If last group,

(11)2

If not last

group,

(110)2

Integer

Data

D256 D257 D258 ... D511

Location 256 257 258 ... 511

Index

Codeword

0 1 2 ... 255

Group 3

Prefix code:

If last group,

(111)2

If not last

group,

(1110)2

Integer

Data

D512 D513 D514 ... D767

Location 512 513 514 ... 767

Index

Codeword

0 1 2 ... 255

·∙·

5. Conclusion

In this paper, our hypothesis is that the proposed

method QBT-I of quad-byte data transformation

will give better compression when used at pre-

processing stage with arithmetic coding and will

take relatively less time due to the need of fewer

transformations and use of integer comparison

instead of pattern matching.

2272

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120938

6. References

[1] F. D. Awan, N. Zhang, N. Motgi, R. T. Iqbal, A.

Mukherjee. ―LIPT: A reversible lossless text

transform to improve compression performance‖,

Proceedings of the IEEE Data Compression

Conference (DCC‘2001), pp. 481, March 27–29,

2001

[2] T.C. Bell, A. Moffat, ―A Note on the DMC Data

Compression Scheme‖, Computer Journal, vol.

32(1), pp.16-20, 1989

[3] M. Burrows,D. J. Wheeler. ‖A block-sorting

lossless data compression algorithm‖, Digital

Systems Research Center, Research Report 124,

Digital Equipment Corporation, Palo Alto,

California, May 10, 1994

[4] G.V. Cormack, R.N. Horspool, ―Data Compressing

Using Dynamic Markov Modeling‖, Computer

Journal, vol. 30(6), pp.541-550, 1987

[5] M. Dyer,D. Taubman, S. Nooshabadi, ―Improved

throughput arithmetic coder for JPEG2000‖, Proc.

Int. Conf. Image Process., Singapore, pp. 2817–

2820, Oct. 2004

[6] R. Franceschini, H. Kruse, N. Zhang, R. Iqbal, A.

Mukherjee, ―Lossless, Reversible Transformations

that Improve Text Compression Ratio,‖ Project

paper, University of Central Florida, USA, 2000

[7] Philip Gage, "A New Algorithm For Data

Compression", The C Users Journal, vol. 12(2)2, pp.

23–38, February 1994

[8] P. G. Howard, J. S. Vitter, "Arithmetic coding for

data compression", Proc. IEEE. , vol.82: pp.857-

865, 1994

[9] J. C. Kieffer, E. H. Yang, ―Grammar-based codes: A

new class of universal lossless source codes‖, IEEE

Trans. Inform. Theory, vol. 46, pp. 737–754, 2000

[10] H. Kruse, A. Mukherjee. ―Preprocessing Text to

Improve Compression Ratios‖,Proc. Data

Compression Conference, pp. 556, 1998

[11] G. Langdon, "An introduction to arithmetic coding",

IBM Journal Research and Development, vol. 28,

pp. 135-149, 1984

[12] Detlev Marpe, Heiko Schwarz, Thomas Wiegand,

―Context-Based Adaptive Binary Arithmetic Coding

in the H.264/AVC Video Compression Standard‖,

IEEE Trans. On Circuits and Systems for Video

Technology, vol. 13(7), pp. 620-636, July 2003

[13] E. M. McCreight. ―A space-economical suffix tree

construction algorithm‖. Journal of the ACM, 23(2),

PP.262–272, 1976

[14] Altan Mesut, Aydin Carus, ―ISSDC: Digram

Coding Based Lossless Dtaa Compression

Algorithm‖, Computing and Informatics, Vol. 29,

pp.741–754, 2010

[15] Moffat, ―Implementing the PPM Data Compression

Scheme‖, IEEE Transactions on Communications,

vol.38, pp.1917-1921, 1990

[16] M. Nelson, "Data Compressin with the Burrows-

Wheeler Transform", Dr. Dobb's Journal, pp. 46-50,

Sept 1996 available at

http://marknelson.us/1996/09/01/bwt/

[17] Radescu R., "Lossless Text Compression Using the

LIPT Transform", Proceedings of the 7th

International Conference Communications 2008

(COMM2008), ISBN 978-606-521-008-0., pp. 59-

62, Bucharest, Romania, 5-7 June 2008

[18] Rexline S.J, Robert L. ―Dictionary Based

Preprocessing Methods in Text Compression - A

Survey‖, International Journal of Wisdom Based

Computing, vol. 1(2), August 2011

[19] Senthil S, Robert L, ―Text Preprocessing using

Enhanced Intelligent Dictionary Based Encoding

(EIDBE)‖, Proceedings of Third International

Conference on Electronics Computer Technology,

pp.451-455, Apr 2011

[20] Senthil S, Robert L, "IIDBE: A Lossless Text

Transform for Better Compression", International

Journal of Wisdom Based Computing, vol. 1(2),

August 2011

[21] Shajeemohan B.S, Govindan V.K, "Compression

scheme for faster and secure data transmission over

networks", IEEE Proceedings of the International

conference on Mobile business, 2005

[22] Storer J. A., Szymanski T. G., "Data Compression

via Textual Substitution", Journal of ACM Vol.

29(4), pp. 928-951, Oct 1982

[23] W. Sun, A. Mukherjee, N. Zhang, ―A Dictionary-

based Multi-Corpora Text compression System‖,

Proceedings of the 2003 IEEE Data Compression

Conference, March 2003

[24] S. Taubman and M. W. Marcellin, "JPEG2000:

Image Compression Fundamentals", Standards and

Practice. Norwell, MA: Kluwer Academic, 2002

[25] Ukkonen. ―On-line construction of suffix tress‖,

Algorithmica, vol. 14(3), pp. 249–260, 1995

[26] T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra,

―Overview of the H.264/AVC video coding

standard‖, IEEE Trans. Circuits Syst.Video

Technol., vol. 13(7), pp. 560–576, Jul 2003

[27] P. Weiner, ―Linear pattern matching algorithms‖, In

Proceedings of the 14th IEEE Annual Symposium

on Switching and Automata Theory, The University

of Iowa, pp.1–11, 1973.

[28] T. Welch, ―A Technique for High-Performance Data

Compression‖, IEEE Computer, vol. 17(6), pp. 8-

19, June 1984

[29] M. J. Willems, Y. M. Shtarkov, T. J. Tjalkens, ―The

context-tree weighting method: Basic properties‖,

IEEE Trans. Inform. Theory, vol.41, pp. 653–664,

May 1995

[30] H. Witten, R. M. Neal, J. G. Cleary, ―Arithmetic

coding for data compression‖, Commun. ACM, vol.

30(6), pp. 520–540, 1987

[31] J. Ziv, A. Lempel, "Compression of individual

sequences via variable rate coding", IEEE

Transactions on Information Theory, IT-24(5),

pp.530-536, 1978

[32] J. Ziv, A. Lempel. ―A Universal Algorithm for

Sequential Data Compression‖, IEEE Trans.

Information Theory, IT-23, pp.337-343, 1977

2273

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120938

 BWT Star

encoding

LIPT StarN

T

IDBE EIDBE IIDBE Digram

encodin

g

ISSDC BPE

Source

Type

Any Text Text Text Text Text Text Any Any Any

Dictionary --- static, 22

sub-dict

static,

22

sub-

dict

semi-

static,

single

semi-

static

semi-

static

semi-

static

semi-

static

semi-

static

Size of

token to be

encoded

block word

upto 22

letters

word

upto

22

letters

Word Word word word digram digram 2 bytes

Matching string string string String String string string string or

integer

string or

integer

string or

integer

comparison

time per

token

high O(Sub-

Dict-

size)

O(Sub

-Dict-

size)

O(Dict

- size)

O(Dict-

size)

O(Dict-

size)

O(Dict-

size)

O(Dict-

size)

O(Dict-

size)

single 2-

byte

compariso

n

Code length For

Block

variable

length:

word-

size

variabl

e

length:

<*,

word

length,

index>

variabl

e

length:

index

with

max.

3-

letters

variable

length:

<1-byte

codeword

length,

codeword

>

variable

length:

<1-byte

word

length,

codeword

>

variable

length:

<1-byte

codeword

length,

codeword

>

fixed,

depends

on

dictionar

y size

fixed,

depends

on

dictionar

y size

1 byte

Redundanc

y using

Index * index,

length

index,

length

index,

length

index,

length

index,

length

index index substitutio

n

Compresssi

on methods

that can be

applied

later

MTF,

RLE and

then

Huffman

or

arithmeti

c coding

RLE,

LZW,

Huffman,

Arithmet

ic coding

Huffman or

Arithmetic

Coding

Pre-processing to BWT, Later

MTF and RLE and entropy

encoding

Huffman or Arithmetic

coding

2274

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120938

Drawback needs

better

data

structure

s for

sorting,

comparin

g

only for text source benefits

only

with

small-

alphabet

source

repetitiv

e,

benefits

only

with

small

size

source

file and

small

alphabet

source

repetitive,

benefits

only

when

source

have

some

unused

symbols,

i.e. for

small

alphabet

source

2275

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120938

