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ABSTRACT 
It is very complex to write programs that behave accurately in 

the program verification tools. Automatic mining techniques 

suffer from 90–99% false positive rates, because manual 

specification writing is not easy. Because they can help with 

program testing, optimization, refactoring, documentation, 

and most importantly, debugging and repair. To concentrate 

on this problem, we propose to augment a temporal-property 

miner by incorporating code quality metrics. We measure 

code quality by extracting additional information from the 

software engineering process, and using information from 

code that is more probable to be correct as well as code that is 

less probable to be correct. When used as a pre-processing 

step for an existing specification miner, our technique 

identifies which input is most suggestive of correct program 

behaviour, which allows off-the-shelf techniques to learn the 

same number of specifications using only 45% of their 

original input.  

 

1. INTRODUCTION 
Software remains buggy and testing is still the 

leading approach for detecting software errors. Incorrect and 

buggy behaviour in deployed software costs up to $70 billion 

each year in the US[1]. Thus debugging, testing, maintaining, 

optimizing, refactoring, and documenting software, while 

time-consuming, remain significantly important. Such 

maintenance is reported to consume up to 90% of the total 

cost of software projects[2].  Maximum maintenance time is 

spent studying existing software since maintenance concern is 

incomplete documentation. 

Consistently, however, verification tools require 

specifications that describe some aspect of program accuracy. 

Creating accurate specifications is difficult, time-consuming 

and error-prone. Verification tools can only point out 

disagreements between the program and the specification. 

Even assuming a sound and complete tool, an defective 

specification can still yield false positives by pointing out 

non-bugs as bugs or false negatives by failing to point out real 

bugs. Crafting specifications typically requires program-

specific knowledge. 

Specification mining can be compared to learning 

the rules of English grammar by reading essays written by 

high school students; we propose to focus on the essays of 

passing students and be doubtful of the essays of failing 

students. We claim that existing miners have high false 

positive rates in large part because they treat all code equally, 

even though not all code is created equal. For example, 

consider an execution trace through a recently modified, 

rarely-executed piece of code that was copied-and-pasted by 

an inexperienced developer. We argue that such a trace is a 

poor guide to correct behaviour when compared with a well-

tested, infrequently-changed, and commonly-executed trace. 

Various pre-existing software projects are not yet 

formally specified[3]. Formal program specifications are 

difficult for humans to construct[4], and incorrect 

specifications are difficult for humans to debug and 

modify[5]. Accordingly, researchers have developed 

techniques to automatically infer specifications from program 

source code or execution traces[6],[7],[8],[9]. These 

techniques typically produce specifications in the form of 

finite state machines that describe legal sequences of program 

behaviours.  

Unfortunately, these existing mining techniques are 

insufficiently precise in practice. Some miners produce large 

but approximate specifications that must be corrected 

manually [5]. As these large specifications are indefinite and 

difficult to debug, this article focuses on a second class of 

techniques that produce a larger set of smaller and more 

precise candidate specifications that may be easier to evaluate 

for correctness. These specifications typically take the form of 

two-state finite state machines that describe temporal 

properties, e.g. “if event a happens during program execution, 

event  b must eventually happen during that execution.” Two-

state specifications are limited in their expressive power; 

comprehensive API specifications cannot always be expressed 

as a collection of smaller machines[8].  

Recognize and illustrate lightweight, automatically 

collected software features that fairly accurate source code 

quality for the purpose of mining specifications. In this 

approach explain how to lift code quality metrics to metrics 

on traces, and empirically measure the utility of our lifted 

quality metrics when applied to previous static specification 

mining techniques. To avoid false positives recommend two 

novel specification mining techniques that use our automated 

quality metrics to learn temporal safety specifications. 

 

2. ON GOING METHODOLOGY: 

 

2.1 Specification Mining With Few False 

Positive 
 

This methodology presents a new automatic 

specification miner that uses artifacts from software 

engineering processes to capture the reliability of its input 

traces. 

The main contributions of this project are: 
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– A set of source-level features related to software 

engineering processes that capture the     

   trustworthiness of code for specification mining. We 

analyze the relative analytical power    

   of  each of these features. 

– Experimental evidence that our notions of trustworthy code 

serve as a basis for evaluating   

   the trustworthiness of traces. We provide a characterization 

for such traces and show that   

   off- the-shelf specification miners can learn just as many 

specifications using only 60% of    

   traces. 

– A novel automatic mining technique that uses our trust-

capturing features to learn temporal 

  safety specifications with few false positives in practice. We 

evaluate it on over 800,000 

  lines of code and explicitly compare it to two  previous 

approaches. Our basic mining     

  technique learns specifications that locate more safety-policy 

violations than previous       

  miners (740 vs. 426) while presenting far fewer false 

positive specifications (107 vs. 567). 

  When focused on precision, our technique obtains a low 5% 

false positive rate, an order-of- 

  magnitude improvement on previous work, while still 

finding specifications that locate 265 

  violations. To our knowledge, this is the first specification 

miner that produces multiple 

  candidate specifications and has a false positive rate under 

90%. 

 

2.1.1 Approach 
In this approach present a specification miner that 

works in three stages: 

1. Statically estimate the trustworthiness of each code 

fragment. 

2. Lift that judgment to traces by considering the code visited 

along a trace. 

3. Weight the contribution of each trace by its trustworthiness 

when counting event   

   frequencies for specification mining. 

 

The  code is most trustworthy when it has been 

written by experienced Programmers   

who are familiar with the project at hand, when it has been 

well-tested, and when it has been mindfully written. 

 

2.2 Mining Temporal Specification for 

Error Detection 
If we  use implicit language-based specifications 

(e.g., null pointers should not be dereferenced) or to reuse 

standard library specifications then it can  reduce the cost of 

writing specifications. More recently, however, a variety of 

attempts have been made to conclude program-specific 

temporal specifications and API usage rules automatically. 

These specification mining techniques take programs (and 

possibly dynamic traces, or other hints) as input and produce 

candidate specifications as output. Basically specifications 

could also be used for documenting, refactoring, testing, 

debugging, maintaining, and optimizing a program. Centre of 

attention is that finding and evaluating specifications in a 

particular context: given a program and a generic verification 

tool, what specification mining technique should be used to 

find bugs in the program and thereby improve software 

quality? Thus we are concerned both with the number of 

“real” and “false positive” specifications produced by the 

miner and with the number of “real” and “false positive” bugs 

found using those “real” specifications.  

In this methodology propose a novel technique for 

temporal specification mining that uses information about 

program error handling. Our miner assumes that programs 

will generally adhere to specifications along normal execution 

paths, but that programs will likely violate specifications in 

the presence of some run-time errors or exceptional situations. 

Intuitively, error-handling code may not be tested as often or 

the programmer may be unaware of sources of run-time 

errors. Taking advantage of this information is more 

important than ranking candidate policies. 

 

2.2.1 Contributions  
–Propose a novel specification mining technique 

based on the observation 

   that programmers often make mistakes in 

exceptional circumstances or along 

              uncommon code paths.  

– Present a qualitative comparison of five miners 

and show how some   

   miner assumptions are not well-supported in 

practice. 

  – Finally, we give a quantitative comparison of our 

technique’s bug-finding 

               powers to generic “library” policies. For our domain 

of interest, mining finds   

               250 more bugs. We also show the relative 

unimportance of ranking candidate 

               policies. In all, we find 69 specifications that lead to 

the discovery over 430 

               bugs in 1 million lines of code. 

 

3.  PROPOSED SYSTEM FOR 

QUANTITATIVE ANALYSIS OF FAULT  

    AND FAILURE: 
In proposed system,  aim to develop a system 

which can be used to measure the quality of the code 

considering different aspects affecting the quality of the 

code. The term quality of the code can be explained using 

different factors such as code clone, author rank, code 

churn, code readability, path feasibility etc. 

To Present a new specification miner that works in 

three stages. First, it statically estimates the quality of source 

code fragments. Second, it lifts those quality judgments to 

traces by considering all code visited along a trace. Finally, it 

weights each trace by its quality when counting event 

frequencies for specification mining.  

 This system develops an automatic specification 

miner that balances true positives – as required behaviours –

with false positives – non-required behaviours. We claim that 

one important reason that previous miners have high false 

positive rates is that they falsely assume that all code is 

equally likely to be correct. For example, consider an 

execution trace through a recently modified, rarely-executed 

piece of code that was copied and-pasted by an inexperienced 

developer. We believe that such a trace is a poor guide to 

correct behaviour, especially when compared with a well-

tested, stable, and commonly-executed piece of code. Patterns 

of specification adherence may also be useful to a miner: a 

candidate that is violated in the high quality code but adhered 

to in the low quality code is less likely to represent required 

behaviour than one that is adhered to on the high quality code 

but violated in the low quality code. We  assert that a 

combination of lightweight, automatically collected quality  
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Figure 1 

metrics over source code can usefully provide both positive 

and negative feedback to a miner attempting to distinguish 

between true and false specification candidates. 

Code quality information may be gathered either 

from the source code itself or from  

related artifacts, such as version control history. By 

augmenting the trace language to include information from  

the software engineering process, we can evaluate the quality 

of every piece of information supporting a candidate 

specification (traces that adhere to a candidate as well as those 

that violate it and both high and low quality code) on which it 

is followed and more accurately evaluate the likelihood that it 

is valid. 

The system architecture of the system is as in 

following figure, which explains the modules to be 

generated. 

 

3.1  Description of proposed system 
 Proposed system for quantitative analysis of and 

fault and failure using software metrics uses the following 

stages- 

1. Accept input in the form of computer program code. 

2. Perform input sanitization. 

3. Check for error occurrence in the code. 

4. Check for the quality specification regarding the 

given code. 

5. Specify the rank for the different condition, using 

calculated result. 

6. Generate output in the form of quality report. 

 

 

4. CONCLUSION 
 Testing, maintenance, optimization, refactoring, 

documentation, and program repair these are the various 

applications of formal specification. Though  human 

programmers should not produce and verify such specification 

manually. These technique is also problematic since it treat all 

parts of program as equally indicative as correct behaviour.  

 

 

 

 

 

 

 

 

We encode this intuition using dependability metrics such as 

analytical execution frequency, copy paste code 

measurements, code duplication software readability or path 

feasibility.   We compare the bug finding power of various 

miners. This technique improves the performance of existing 

trace based miners by focusing on high quality traces. Our 

technique is also useful to improve the quality of code through 

specification mining. 
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