

Quantitative Analysis Of Fault And Failure Using

Software Metrics

Ms. Shital V. Tate

Department of Information Technology, Bharati
Vidyapeeth Deemed University,College of

Engineering, Pune-46

 Prof . S. Z. Gawali
Department of Information Technology, Bharati

Vidyapeeth Deemed University,College of
Engineering, Pune-46

ABSTRACT
It is very complex to write programs that behave accurately in

the program verification tools. Automatic mining techniques

suffer from 90–99% false positive rates, because manual

specification writing is not easy. Because they can help with

program testing, optimization, refactoring, documentation,

and most importantly, debugging and repair. To concentrate

on this problem, we propose to augment a temporal-property

miner by incorporating code quality metrics. We measure

code quality by extracting additional information from the

software engineering process, and using information from

code that is more probable to be correct as well as code that is

less probable to be correct. When used as a pre-processing

step for an existing specification miner, our technique

identifies which input is most suggestive of correct program

behaviour, which allows off-the-shelf techniques to learn the

same number of specifications using only 45% of their

original input.

1. INTRODUCTION
Software remains buggy and testing is still the

leading approach for detecting software errors. Incorrect and

buggy behaviour in deployed software costs up to $70 billion

each year in the US[1]. Thus debugging, testing, maintaining,

optimizing, refactoring, and documenting software, while

time-consuming, remain significantly important. Such

maintenance is reported to consume up to 90% of the total

cost of software projects[2]. Maximum maintenance time is

spent studying existing software since maintenance concern is

incomplete documentation.

Consistently, however, verification tools require

specifications that describe some aspect of program accuracy.

Creating accurate specifications is difficult, time-consuming

and error-prone. Verification tools can only point out

disagreements between the program and the specification.

Even assuming a sound and complete tool, an defective

specification can still yield false positives by pointing out

non-bugs as bugs or false negatives by failing to point out real

bugs. Crafting specifications typically requires program-

specific knowledge.

Specification mining can be compared to learning

the rules of English grammar by reading essays written by

high school students; we propose to focus on the essays of

passing students and be doubtful of the essays of failing

students. We claim that existing miners have high false

positive rates in large part because they treat all code equally,

even though not all code is created equal. For example,

consider an execution trace through a recently modified,

rarely-executed piece of code that was copied-and-pasted by

an inexperienced developer. We argue that such a trace is a

poor guide to correct behaviour when compared with a well-

tested, infrequently-changed, and commonly-executed trace.

Various pre-existing software projects are not yet

formally specified[3]. Formal program specifications are

difficult for humans to construct[4], and incorrect

specifications are difficult for humans to debug and

modify[5]. Accordingly, researchers have developed

techniques to automatically infer specifications from program

source code or execution traces[6],[7],[8],[9]. These

techniques typically produce specifications in the form of

finite state machines that describe legal sequences of program

behaviours.

Unfortunately, these existing mining techniques are

insufficiently precise in practice. Some miners produce large

but approximate specifications that must be corrected

manually [5]. As these large specifications are indefinite and

difficult to debug, this article focuses on a second class of

techniques that produce a larger set of smaller and more

precise candidate specifications that may be easier to evaluate

for correctness. These specifications typically take the form of

two-state finite state machines that describe temporal

properties, e.g. “if event a happens during program execution,

event b must eventually happen during that execution.” Two-

state specifications are limited in their expressive power;

comprehensive API specifications cannot always be expressed

as a collection of smaller machines[8].

Recognize and illustrate lightweight, automatically

collected software features that fairly accurate source code

quality for the purpose of mining specifications. In this

approach explain how to lift code quality metrics to metrics

on traces, and empirically measure the utility of our lifted

quality metrics when applied to previous static specification

mining techniques. To avoid false positives recommend two

novel specification mining techniques that use our automated

quality metrics to learn temporal safety specifications.

2. ON GOING METHODOLOGY:

2.1 Specification Mining With Few False

Positive

This methodology presents a new automatic

specification miner that uses artifacts from software

engineering processes to capture the reliability of its input

traces.

The main contributions of this project are:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

– A set of source-level features related to software

engineering processes that capture the

 trustworthiness of code for specification mining. We

analyze the relative analytical power

 of each of these features.

– Experimental evidence that our notions of trustworthy code

serve as a basis for evaluating

 the trustworthiness of traces. We provide a characterization

for such traces and show that

 off- the-shelf specification miners can learn just as many

specifications using only 60% of

 traces.

– A novel automatic mining technique that uses our trust-

capturing features to learn temporal

 safety specifications with few false positives in practice. We

evaluate it on over 800,000

 lines of code and explicitly compare it to two previous

approaches. Our basic mining

 technique learns specifications that locate more safety-policy

violations than previous

 miners (740 vs. 426) while presenting far fewer false

positive specifications (107 vs. 567).

 When focused on precision, our technique obtains a low 5%

false positive rate, an order-of-

 magnitude improvement on previous work, while still

finding specifications that locate 265

 violations. To our knowledge, this is the first specification

miner that produces multiple

 candidate specifications and has a false positive rate under

90%.

2.1.1 Approach
In this approach present a specification miner that

works in three stages:

1. Statically estimate the trustworthiness of each code

fragment.

2. Lift that judgment to traces by considering the code visited

along a trace.

3. Weight the contribution of each trace by its trustworthiness

when counting event

 frequencies for specification mining.

The code is most trustworthy when it has been

written by experienced Programmers

who are familiar with the project at hand, when it has been

well-tested, and when it has been mindfully written.

2.2 Mining Temporal Specification for

Error Detection
If we use implicit language-based specifications

(e.g., null pointers should not be dereferenced) or to reuse

standard library specifications then it can reduce the cost of

writing specifications. More recently, however, a variety of

attempts have been made to conclude program-specific

temporal specifications and API usage rules automatically.

These specification mining techniques take programs (and

possibly dynamic traces, or other hints) as input and produce

candidate specifications as output. Basically specifications

could also be used for documenting, refactoring, testing,

debugging, maintaining, and optimizing a program. Centre of

attention is that finding and evaluating specifications in a

particular context: given a program and a generic verification

tool, what specification mining technique should be used to

find bugs in the program and thereby improve software

quality? Thus we are concerned both with the number of

“real” and “false positive” specifications produced by the

miner and with the number of “real” and “false positive” bugs

found using those “real” specifications.

In this methodology propose a novel technique for

temporal specification mining that uses information about

program error handling. Our miner assumes that programs

will generally adhere to specifications along normal execution

paths, but that programs will likely violate specifications in

the presence of some run-time errors or exceptional situations.

Intuitively, error-handling code may not be tested as often or

the programmer may be unaware of sources of run-time

errors. Taking advantage of this information is more

important than ranking candidate policies.

2.2.1 Contributions
–Propose a novel specification mining technique

based on the observation

 that programmers often make mistakes in

exceptional circumstances or along

 uncommon code paths.

– Present a qualitative comparison of five miners

and show how some

 miner assumptions are not well-supported in

practice.

 – Finally, we give a quantitative comparison of our

technique’s bug-finding

 powers to generic “library” policies. For our domain

of interest, mining finds

 250 more bugs. We also show the relative

unimportance of ranking candidate

 policies. In all, we find 69 specifications that lead to

the discovery over 430

 bugs in 1 million lines of code.

3. PROPOSED SYSTEM FOR

QUANTITATIVE ANALYSIS OF FAULT

 AND FAILURE:
In proposed system, aim to develop a system

which can be used to measure the quality of the code

considering different aspects affecting the quality of the

code. The term quality of the code can be explained using

different factors such as code clone, author rank, code

churn, code readability, path feasibility etc.

To Present a new specification miner that works in

three stages. First, it statically estimates the quality of source

code fragments. Second, it lifts those quality judgments to

traces by considering all code visited along a trace. Finally, it

weights each trace by its quality when counting event

frequencies for specification mining.

 This system develops an automatic specification

miner that balances true positives – as required behaviours –

with false positives – non-required behaviours. We claim that

one important reason that previous miners have high false

positive rates is that they falsely assume that all code is

equally likely to be correct. For example, consider an

execution trace through a recently modified, rarely-executed

piece of code that was copied and-pasted by an inexperienced

developer. We believe that such a trace is a poor guide to

correct behaviour, especially when compared with a well-

tested, stable, and commonly-executed piece of code. Patterns

of specification adherence may also be useful to a miner: a

candidate that is violated in the high quality code but adhered

to in the low quality code is less likely to represent required

behaviour than one that is adhered to on the high quality code

but violated in the low quality code. We assert that a

combination of lightweight, automatically collected quality

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 1

metrics over source code can usefully provide both positive

and negative feedback to a miner attempting to distinguish

between true and false specification candidates.

Code quality information may be gathered either

from the source code itself or from

related artifacts, such as version control history. By

augmenting the trace language to include information from

the software engineering process, we can evaluate the quality

of every piece of information supporting a candidate

specification (traces that adhere to a candidate as well as those

that violate it and both high and low quality code) on which it

is followed and more accurately evaluate the likelihood that it

is valid.

The system architecture of the system is as in

following figure, which explains the modules to be

generated.

3.1 Description of proposed system
 Proposed system for quantitative analysis of and

fault and failure using software metrics uses the following

stages-

1. Accept input in the form of computer program code.

2. Perform input sanitization.

3. Check for error occurrence in the code.

4. Check for the quality specification regarding the

given code.

5. Specify the rank for the different condition, using

calculated result.

6. Generate output in the form of quality report.

4. CONCLUSION
 Testing, maintenance, optimization, refactoring,

documentation, and program repair these are the various

applications of formal specification. Though human

programmers should not produce and verify such specification

manually. These technique is also problematic since it treat all

parts of program as equally indicative as correct behaviour.

We encode this intuition using dependability metrics such as

analytical execution frequency, copy paste code

measurements, code duplication software readability or path

feasibility. We compare the bug finding power of various

miners. This technique improves the performance of existing

trace based miners by focusing on high quality traces. Our

technique is also useful to improve the quality of code through

specification mining.

REFERENCES
[1] National Institute of Standards and Technology ,”The

 economic impact of inadequate infrastructure for software

 testing,” Tech. Rep. 02-3, may 2002.

[2] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing

 Legacy Practices, 2003.

[3] M. Das, “Formal specifications on industrial-strength code

 from myth to reality,” in Computer-Aided Verification,

 2006, p. 1.

[4] H. Chen, D. Wagner, and D. Dean, “Setuid demystified,”

 in USENIX Security Symposium, 2002, pp. 171–190.

[5] G. Ammons, D. Mandelin, R. Bod´ık, and J. R. Larus,

 “Debugging temporal specifications with concept

 analysis,” in Programming Language Design and

 Implementation, 2003, pp. 182–195.

[6] G. Ammons, R. Bodik, and J. R. Larus, “Mining

 specifications,” in Principles of Programming Languages,

 2002, pp. 4–16.

[7] D. R. Engler, D. Y. Chen, and A. Chou, “Bugs as

 inconsistent behaviour: A general approach to inferring

 errors in systems code,” in Symposium on Operating

 System Principles, 2001, pp. 57–72.

[8] M. Gabel and Z. Su, “Symbolic mining of temporal

 specifications,” in ICSE, 2008, pp.

 51–60.

[9] J. Whaley, M. C. Martin, and M.S. Lam, “Automatic

 extraction of object-oriented component interfaces,” in

 ISSTA, 2002.

[10] Claire Le Goues, Westely Weimer “Measuring code

 quality to improve specificatio mining” IEEE Trans.

 Software Eng.

[11] Mohammed Kayed and Chia-Hui Chang, “ FiVaTech:

 Page-Level Web Data Extraction from Template Pages”

 IEEE Transactions On Knowledge And Data Engineering,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Vol. 22, No. 2, February 2010

[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite for

 object oriented design,” IEEE Trans. Softw. Eng., vol.

 20, no. 6, pp. 476–493, 1994.

[13] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a

 theorem prover for program checking,” J. ACM, vol. 52,

 no. 3, pp. 365–473, 2005.

[14] M. Di Penta and D. M. German, “Who are source code

 contributors and how do they change?” in Working

 Conference on Reverse Engineering. IEEE Computer

 Society, 2009, pp. 11–20.

 [15] C. Kapser and M. W. Godfrey, “”Cloning Considered

 Harmful” in WCRE, 2006, pp. 19–28.

[16] J. Krinke, “A study of consistent and inconsistent

 changes to code clones,” in WCR. IEEE Computer

 Society, 2007, pp. 170–178.

[17] C. Le Goues and W. Weimer, “Specification mining with

 few false positives.” In TACAS, 2009, pp. 292–306.

[18] T. J. McCabe, “A complexity measure,” IEEE Trans.

 Software Eng., vol. 2, no. 4, pp. 308–320, 1976.

[19] N. Nagappan and T. Ball, “Using software dependencies

 and churn metrics to predict field failures: An empirical

 case study,”in ESEM, 2007, pp. 364–373.

[20] J. C. Sanchez, L. Williams, and E. M. Maximilien, “On

 the Sustained Use of a Test Driven Development Practice

 at IBM,” in Agile 2007. IEEE Computer Society, August

 2007, pp. 5–14.

[21] W.Weimer and N. Mishra, “Privately finding

 specifications,” IEEE Trans. Software Eng., vol. 34, no.

 1, pp. 21–32, 2008.

[22] W. Weimer and G. C. Necula, “Mining temporal

 specifications for error detection,” in TACAS, 2005, pp.

 461– 476.

[23] D. R. Engler, D. Y. Chen, and A. Chou. “Bugs as

 inconsistent behavior: A general approach to inferring

 errors in systems code”. In Symposium on Operating

 Systems Principles, pages 57–72, 2001.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

