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Abstract:- Quantum teleportation for continuous variables is 

generally described in phase space by using Wigner function 

.Quantum variables states can be analyzed  using the 

quasiprobability functions .We study problem of quantum 

teleportation using continuous variables in term of density 

operator and Wigner function. A continuous  variables can be 

teleported with use of two mode squeezed vacuum for a 

quantum channel.  
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INTRODUCTION 

Quantum teleportation(4,5) is a process of transferring 

quantum information between two parties commonly called 

Alice and Bob . Alice the sender, has two systems in her 

hand. One of them is system 1 , in an unknown state which 

is to be transmitted to Bob and system 2, which is 

entangled  with  system 3. Bob is in possession of system 

3. Using local measurement and information sent by 

classical channel, the goal of quantum teleportation is that 

Bob’s system acquires the unknown state of system 1 with 

almost 100 % fidelity. This information transfer is essential 

in many quantum technologies including quantum 

cryptography, enabling secure communication and 

quantum dense coding boosting the data rates with respect 

to classical transmission and finally quantum internet, 

which is a network of system using quantum information 

transfer protocol.  

Quantum teleportation requires entanglement (9,6)as a 

resource. This weird property of quantum system was once 

dismissed as “spooky action at a distance” by Einstein as it 

implies instantaneous change in the state of system B 

entangled with system A when measurement is done on 

system A even if they are space like separated. Such EPR 

correlation (1) was considered as a potential threat to the 

entire edifice of quantum physics. But the developments of 

last 30 years have shown that quantum entanglement is 

experimentally verifiable and it underpins all quantum 

information technologies.   

 Quantum teleportation using optical schemes can be done 

with qubits as well as continuous  variables(7). However 

,Bell-operator measurement cannot be done with high 

efficiency using qubits . Recently photon added and photon 

subtracted states generated from classical field have 

attracted much attention. Such processes are useful because 

starting from classical field state ρ̂𝑐𝑙  one can obtain non 

classical field states  ∪̂ ρ̂𝑐𝑙�̂�†(2) with tailor made 

nonclassical properties, depending on operator ∪̂ which is 

not unitary. Wigner functions of such nonclassical states , 

teleportation of such states and how noise induced by 

environment can affected fidelity of teleportation.  

Statistical properties of quantized field in term of quasi 

probability distribution functions. Properties of these 

functions are summarized below. 

 

 

QUASI PROBABILITY DISTRIBUTION FUNCTIONS: 

 

In quantum optics quasiprobabiulity distribution functions 

such as the Glauber- Sudarshan P function, the Q function 

and the Wigner function play an important role. For photon 

added states �̂�†𝑚|𝛼 > and squeezed states, these 

distribution functions are given below. 

 

(1) Photon added states (�̂�†𝒎|𝜶 >): These states are 

obtained  by the application of photon creation operator 

�̂�†𝑚 on the coherent state |α>. 

           |𝛼, 𝑚 > = √𝑁�̂�†𝑚|𝛼 >         . . . . .(1)   (m=integer) 

Where N is the normalization constant given by 

                   N =  [< 𝛼 |�̂�𝑚�̂�†𝑚|𝛼 >]-1                           . ..(2) 

This can be evaluated by using normal ordering of the 

operator �̂�𝑚�̂�†𝑚. 

           �̂�𝑚�̂�†𝑚  = ∑
(𝑚!)2

(𝑚−𝑝)2!𝑝!

𝑚
𝑝=0   �̂�†𝑚−𝑝 �̂�𝑚−𝑝         . . .(3) 

Thus  

     < 𝛼 |�̂�𝑚�̂�†𝑚|𝛼 >] = ∑
(𝑚!)2

(𝑚−𝑝)2!𝑝!

𝑚
𝑝=0  |𝛼|2(𝑚−𝑝)  

                                     = 𝐿𝑚(−|𝛼|2)𝑚!                        . ..(4) 

where Lm(x) is the Laguerre polynomial of order  m 

defined by 

              𝐿𝑚(𝑥) =  ∑
(−1)𝑛 𝑥𝑛𝑚!

(𝑛!)2(𝑚−𝑛)!

𝑚
𝑛=0                                . ..(5) 

The state |α,m > can then be written as 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ETRASECT - 2016 Conference Proceedings

Volume 4, Issue 12

Special Issue - 2016

1



                              |α, m > =  
â†m |α>

 [Lm(−|α|2)m!]
1
2

  .              ...(6) 

In the limit α→ 0 this state reduces to the Fock state. 

                         |α,m> = |0,m >= |m > 

and in the limit m → 0, it reduces to the coherent state 

                              |α,0> = |α> .  

Thus the state |α,m > is intermediate between the Fock state 

and the coherent state. 

 

(a) P - function: 

 

Glauber  and Sudarshan, independently, have introduced 

the P representation for the probability density. This 

function is defined by 

 

                         �̂� = ∫ 𝑃(𝛼)|𝛼 >< 𝛼|d2α             . . . (7) 

 

where |α> is a coherent state. It can also be defined as the 

Fourier transform of the normally ordered characteristic 

function 

        P(z) = 
1

π2 ∫ Tr [ρ̂eβâ
†
 e-β

*
â] exp(zβ* – z*β) d2β     . . .(8) 

 

The Glauber-Sudarshan P function associated with the state 

|α,m> can be calculated using the inversion formula. 

 

P(z) = 
exp ( |𝑍|2 )

𝜋2  ∫ 𝑑2β < - β|α,m> < α,m| β> exp[|β|2-( βz*- 

β*z)]                                                       . . .(9) 

      = 
exp( |𝑍|2 

)

𝜋2𝐿𝑚(−|𝛼|2)𝑚!
∫ 𝑑2𝛽 (-ββ*)m exp[- |α|2 + (z - α) β*- (z-

α)*β] 

                                                                                  . . . (10) 

        = 
exp ( |𝑍|2 −|𝛼|2 )

𝑚! 𝐿𝑚 (−|𝛼|2 )

𝜕2𝑚

𝜕𝑧∗𝑚𝜕𝑧𝑚  𝛿2(𝑧 − 𝛼)                . . . (11) 

 

Thus the P function is highly singular which is quite 

typical of states exhibiting nonclassical nature. 

 

(b) Q- function : 

 

The Q representation is defined as the Fourier transform of 

the antinormally ordered characteristic function. 

Q(z) = 
1

π2 ∫ Tr [ρ̂e-β
*
âeβâ

†
] exp(zβ* – z*β) d2β            . . .(12) 

 

which can be shown to be the absolute magnitude squared 

of the projection of a state of the field on to a coherent state 

. 

 

                                  Q(z) = 
1

𝜋
< 𝑧|�̂�|𝑧 >               . . . .(13) 

This is particularly useful in calculating the antinormally 

ordered expectation values. Example 

 

                        < �̂��̂�†>  =  
1

𝜋
∫ 𝑑2𝛼 |𝛼|2Q(α).            . . .(14) 

 

Thus, the Q function for the field in the state |α,m> is 

 

     Q(z) =  
1

𝜋
< 𝑧|𝛼, 𝑚 >< 𝛼, 𝑚|𝑧 >                       . . .(15) 

 

             =    
|𝑍|2𝑚

𝑚!𝐿𝑚(−|𝛼|2 )
 exp (−|𝑧 − 𝛼|2)               . . .(16) 

 

  which is no longer centered at  z = α. 

 

 

(c) Wigner function : 

 

Wigner was the first to propose the construction of a phase 

space(3,10) distribution function from quantum mechanical 

wave function . It is defined as the Fourier transform of the 

symmetrically ordered characteristic function. 

  

        W(z) = 
1

π2 ∫ Tr[ρ̂ �̂�(𝛽)] exp(z*β – zβ*) d2β     . . . (17) 

 

         =  
1

π2 ∫ Tr [ρ̂e(βâ†−β∗â)

 
]  exp(z∗β –  zβ∗) d2β   . . .(18) 

It can also be evaluated in terms of coherent state matrix 

elements by using the formula. 

 

W(z) =  
2

𝜋
 exp (2|𝑧|2) ∫ d2β <-β|α,m> <α,m|β>exp[2(β*z-

βz*)                                                     . . .(19) 

which on simplification reduces to  

 

W(z)=
2exp( 2|𝑍|2 − |𝛼|2

)

𝜋2𝐿𝑚(−|𝛼|2)𝑚!
∫ d2β(-β*β)mexp(-|β|2+β*(2z-α)-

β(2z-α)*                                                   . . .(20) 

the Wigner function for the state|α,m> is, with   ξ= 2z-α 

 

W(z)= 
2exp( 2|𝑍|2 − |𝛼|2

)

𝜋𝐿𝑚(−|𝛼|2)𝑚!

𝜕2𝑚

𝜕ξ∗𝑚 𝜕ξ𝑚 

1

𝜋
∫ d2βexp(-|β|2+ β*ξ -

βξ*)                                                                          . . .(21) 

 

W(z)=
2exp( 2|𝑍|2 − |𝛼|2

)

𝜋𝐿𝑚(−|𝛼|2)𝑚!
 

𝜕2𝑚

𝜕ξ∗𝑚 𝜕ξ𝑚 exp(-|ξ|2)           . . .(22) 

 

   =
2(−1)mexp( 2|𝑍|2 − |𝛼|2

)

𝜋𝐿𝑚(−|𝛼|2)𝑚!
exp(−|ξ|2)Lm(||ξ|2)m!   .. .(23) 

 

         = 
2(−1)𝑚𝐿𝑚 (|2𝑧−𝛼|2)

𝜋𝐿𝑚(−|𝛼|2)
 exp[-2(z-α)2]                 . . .(24) 

It is obvious from Eq.(24) that the Wigner function can 

become negative. This crosses zero whenever  Lm(|2z-α|2) = 

0. For m = 0 (α = 0), the expression in Eq.(24) reduces to 

that for a coherent state (number state). 

 

 

(2) Squeezed sates :     

 

(a) Q- function    

 Single mode squeezed state |ξ> via the application of the 

unitary operator  
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          S(ξ) = exp ( 
1  

2
ξ �̂�† −  

1

2
ξ∗�̂�2)                         . . .(25) 

 On the vacuum state  

                                     |ξ> = S(ξ)|0>                      . . .(26)  

We can write |ξ> as a superposition of fock state by  

decomposing the unitary  operator S(ξ)  as 

S(ξ)=exp (eiφtanhr
�̂�†

2
) exp[− (ln coshr)( â†â +

1

2
)]      exp (−e−iφ tanhr

â2

2
)                                   . . .(27) 

The advantage of the form is that the action of the last 

exponential on the vacuum would yield unity as a|0>=0. 

The middle exponential on the vacuum would  lead to  

exp[-(ln coshr) 
1

2
|0 >] and thus 

              |ξ>   =  
1

√coshr
exp (eiφtanhr

â†

2
) |0 >     . . . (28) 

(b) P- function: 

    The  P- function for  the squeezed state  does not  exist. 

 

(c) Wigner function   

      𝑊ξ(𝛼)= 
1

π2 ∫ Tr[ρ̂ �̂�(𝛽)] 𝑒−(𝛽𝛼∗−𝛽∗𝛼) 𝑑2𝛽       . . .(29) 

          Tr[ρ̂ �̂�(𝛽)]   = < ξ |�̂�(𝛽)| ξ >                       . . .(30) 

                              = <0|𝑆†(ξ) �̂�(𝛽)) S(ξ )|0>        . . . (31) 

Eq.(31) putting in eq.(29) 

 𝑊ξ(𝛼)= 
1

π2 ∫ 𝑑2𝛽 < 0|𝑆†( ξ) �̂�(𝛽)S( ξ)|0 > 𝑒−(𝛽𝛼∗−𝛽∗𝛼)                                                             

                                                                            ….. (32) 

 Using properties of displacement  operator 

         𝑆†(ξ)�̂�(𝛽)S( ξ) =  exp [β�̂�†(ξ) − β∗â (ξ)]  . . . (33)  

But the putting value of â†(ξ)and â (ξ) 

        =   exp[(β(â†coshr + âe−iφsinhr) − β∗(â coshr +
â†eiφsinhr)]                                      . . .(30) 

= exp[(βâ†coshr + βâe−iφsinhr) − β∗â coshr −
β∗â†eiφsinhr)]                                                .(34) 

=exp[(βcoshr − β∗â sinhr)â† − â(β∗coshr −
βe−iφsinhr)]                                         ……  (35) 

   =exp (𝛽′â† − âβ′∗ )                               . . . (36) 

    =�̂�(𝛽′)                                                   . . .(37) 

 We can change the eq.(32)(using eq.36,37) 

Wξ(α)= 
1

π2 ∫ 𝑑2𝛽′  < 0|D̂(β′)|0 > 𝑒−(𝛽′𝛼′∗−𝛽′∗𝛼′)  . .  (38) 

The  relation (38) show that the wigner function for the 

squeezed  vacuum can be obtained from the wigner  for the  

vacuum state by changing  α to 𝛼′ 

       𝑊ξ(𝛼) =  
2

𝜋
 exp (−2|coshr − α∗eiφ sinhr|2)     . (39) 

Result : 

 

Reformulated the problem of quantum teleportation using 

continuous variables in terms of density operator and 

Wigner function .This approach will be used to study the 

effect of various decohrence inducing processes which are 

inevitable in any realistic scenario. 

The initial density operator of three system state is  

          ρi (1,2,3) = ρi
ent (2,3)  ρi (1).                . . .(40) 

Here i refer to initial state and labels 1,2and 3 correspond 

to system 1, system 2 and system 3 respectively. The state 

ρi(1) is unknown state of system 1 to be teleported .To  

start with, system 2 and system 3 are in entangled state 

described by density operator  ρi
ent (2,3) and combined state 

of three systems is outer product of density operator ρi
ent 

(2,3) and ρi (1) . 

 

A basic scheme of quantum teleportation is shown in fig.1 

 

Fig 2. Configuration of the joint measurement scheme. The homodyne 
detectors, which are boxed in the figure, are placed after mixing two fields 

by a 50:50 beam splitter. 
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Joint measurement of commuting quadrature is made by 

Alice on system 1 and system 2. As a result of this 

measurement   ρi (1,2,3) is projected to state with density 

operator  

 <q1 p2|�̂�(θ)† �̂�i
ent (2,3)  �̂�i (1) �̂� (θ )q1 p2>|q1 p2><q1 p2|.                                                      

..(41)                                                                               

The result of these quadrature measurements are sent to 

Bob in terms of parameter μ which depend on θ. Now Bob 

applies unitary transformation �̂�(μ) on system 3 which is in 

his hand. Then system 3 find itself in state �̂�(3)  such that  

�̂�(3)= �̂�(μ) < q1 p2|�̂�(𝜃)† �̂�i
ent(2,3)�̂�i(1) �̂�(θ )|(q1 p2>�̂�(μ)† 

      = <q1 p2|�̂�(𝜃)† �̂�(μ)†�̂�i
ent (2,3) �̂�(μ) �̂�i (1) �̂�(θ )|q1 p2˃                                                         

. . .(42)                                                                                         

Operations described above are made such that �̂�(3) is as 

close to �̂�i(1). In other words, after these operations, state 

of system 1 is teleported to system 3. Efficiency of 

teleportation is measured by fidelity F defined as  

  F=Tr[�̂�i(1) �̂�(3)].                                         . . . (43) 

For perfect teleportation of quantum state, F=1. 

Result of reference(8) is special case of approach adopted 

by us, when ρi
ent(2,3) is written in coherent state 

representation and squeezing parameter is infinite . 

Moreover, our approach is easily generalized to deal with 

more general case including decoherences because then 

unitary evolution is replaced by transformation on �̂� 

preserving its positivity . The details would depend on the 

model used to describe decoherence. I propose to study all 

these in future work. 
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