Quasi Nonexpansive Sequences In

Dislocated Quasi - Metric Spaces

K. P. R. Sastry¹, S. Kalesha Vali², Ch. Srinivasa Rao³ and M.A. Rahamatulla⁴ ¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatanam-530 017, India,

² Department of Mathematics, JNTUK University College of Engineering, Vizianagaram - 535 003, A.P., India,

³ Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam -530 001, India

⁴ Department of Mathematics, Al-Aman College of Engineering, Visakhapatnam – 531 173, India

Abstract :

We introduce the notion of a quasi - nonexpansive sequence with respect to a non - empty subset of a dislocated quasi - nonexpansive metric space and extend the results of **M.A.Ahmed and F.M.Zeyada** [1] to such sequences.

Mathematical Subject Classification : 47 H 10, 54H25 .

Key Words :

Dislocated quasi - nonexpansive w.r.to F, quasi – metric spaces, asymptotically regular, decreasing sequences and metric spaces.

1.INTRODUCTION

M.A.Ahmed and F.M.Zeyada [1] established the convergence of a sequence $\{x_n\}$, in a dislocated - quasi metric space (X,d) if a map $T: X \to X$ is quasi – nonexpansive with respect to $\{x_n\}$. We observe that the role playe by the map T in proving the convergence, is meagre. Consequently, we introduce the notion of a quasi – nonexpansive sequence with respect to a non empty subset of a dislocated quasi metric space and establish the convergence of such sequences under certain conditions. These results extend the results of [1].

We begin with various definitions

Definition 1.1:

Let *X* be a non - empty set and let $d : X \times X \rightarrow [0,\infty)$ be a function called a distance function satisfying one or more of (1.1.1) - (1.1.5). $(1.1.1) : d(x,x) = 0 \forall x \in X$. $(1.1.2) : d(x,y) = d(y,x) = 0 \Rightarrow x = y \forall x, y \in X$. $(1.1.3) : d(x,y) = d(y,x) \forall x, y \in X$. $(1.1.4) : d(x,y) \le d(x,z) + d(z,y) \forall x, y, z \in X$.

 $(1.1.5): d(x, y) \le \max\{d(x, z), d(z, y)\} \forall x, y, z \in X.$

- (i) If d satisfies (1.1.2) and (1.1.4) then d is called a dislocated quasi metric
 (or) dq metric and (X,d) is called a dq metric space.
- (ii) If d satisfies (1.1.2), (1.1.3) and (1.1.4) then d is called a dislocated metric and (X,d) is called a dislocated metric space.
- (iii) If d satisfies (1.1.1), (1.1.2) and (1.1.4) then d is called a quasi metric (or) q metric and (X, d) is called a quasi metric space (or) q metric space.
- (iv) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4) then d is called a metric and (X, d) is called a metric space.
- (v) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.5) then d is called an ultra metric and (X, d) is called an ultra metric space.

We observe that every ultra metric is a metric.

Let *D* be a subset of a quasi metric space (X, d) and $T: D \to X$ be any mapping. Assume that F(T) is the set of all fixed points of *T*. For a given $x_0 \in D$, the sequence of iterates $\{x_n\}$ is defined by

(I): $x_n = T(x_{n-1}) = T^n(x_0)$, where $n \in N$ and N is the set of all positive integers. Definition 1.2: (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11])

A sequence $\{x_n\}$ in a dislocated quasi metric space (X, d) is called Cauchy,

if to each $\epsilon > 0$, there exists $n_0 \in N$, such that for all $m, n \ge n_0$, $d(x_m, x_n) < \epsilon$.

Definition 1.3 :

A sequence $\{x_n\}$ in a dislocated quasi metric space (X, d) is said to be

dislocated quasi - convergent (or) dq - convergent to x, if

 $\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0.$

In this case x is called a dislocated quasi – limit (or) dq - limit of $\{x_n\}$ and

we write $x_n \to x$. It can be shown that dq-limit of a sequence $\{x_n\}$, if exists is unique.

Note : In a dislocated quasi metric space, when we talk of dq – convergence or dq – limit,

we conveniently drop the prefix "dq", in the absence of any ambiguity.

Definition 1.4 :

A dislocated quasi metric space (X, d) is complete, if every Cauchy sequence

in it is dq - convergent.

Definition 1.5 :

Let (X, d) be a dislocated quasi metric space. Let $\phi \neq A \subseteq X$.

Then $d(x, A) = inf_{a \in A}\{d(x, a), d(a, x)\}$.

Definition 1.6: (M.A.Ahmed and F.M.Zeyada [1], definition 2.1)

Let (X, d) be a quasi - metric space and $\phi \neq D \subset X$. The mapping

 $T: D \to X$ is said to be quasi - nonexpansive w.r.to a sequence $\{x_n\}$ of D,

if for all $n \in N \cup \{0\}$ and for every $p \in F(T)$,

 $d(x_{n+1}, p) \le d(x_n, p)$, where F(T) = the fixed point set of T

(we assume that $F(T) \neq \phi$).

The following results are proved in (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11])

Lemma 1.7: (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11])

Let (X, d) be a dislocated quasi metric space.

Then every dq – convergent sequence in X is Cauchy.

It may be noted that the converse of lemma 1.7 is not true.

Lemma 1.8: (F.M.Zeyada, G.H.Hassan and M.A.Ahmed [11]) Let (X, d) be a dislocated quasi metric space. If $\{x_n\}$ is a sequence in Xdq - converging to $x \in X$, then every subsequence of $\{x_n\}$ dq - converges to x.

Lemma 1.9: (F.M.Zevada, G.H.Hassan and M.A.Ahmed [11])

mma 1.9: (F.M.Zeyada, G.H.Hassan and M.A.Anmed [11]

Dislocated quasi - limits in a dq - metric space are unique .

(M.A.Ahmed and F.M.Zeyada [1]) proved the following results .

Theorem 1.10: (M.A.Ahmed and F.M.Zeyada [1], Theorem 2.1)

Let $\{x_n\}$ be a sequence in a subset D of a q – metric space (X, d) and

- $T: D \to X$ be a map such that $F(T) \neq \phi$. Then
- (a) $\lim_{n\to\infty} d(x_n, F(T)) = 0$ if $\{x_n\}$ converges to a unique point in F(T);
- (b) $\{x_n\}$ converges to a unique point in F(T) if $\lim_{n\to\infty} d(x_n, F(T)) = 0$, F(T) is a closed set, T is quasi - nonexpansive w.r.to $\{x_n\}$ and X is complete.

Theorem 1.11: (M.A.Ahmed and F.M.Zeyada [1], Theorem 2.2)

Let $\{x_n\}$ be a sequence in a subset D of a complete q – metric space (X, d)

and $T: D \to X$ be a map such that $F(T) \neq \phi$ is a closed set. Assume that

- (i) T is quasi nonexpansive w.r.to $\{x_n\}$;
- (ii) $\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$
- (iii) if the sequence $\{y_n\}$ satisfies $\lim_{n\to\infty} d(y_n, y_{n+1}) = 0$, then $\lim_n d(y_n, F(T)) = 0$ or $\limsup_n d(y_n, F(T)) = 0$.

Then $\{x_n\}$ converges to a unique point in F(T).

Note: The presence of conditions (ii) and (iii) guarantees that $\lim_{n\to\infty} d(x_n, F(T)) = 0$. We show in Example 2.6 that condition(ii) alone may not guarantee that $\lim_{n\to\infty} d(x_n, F(T)) = 0$.

2. MAIN RESULTS

In this section, we introduce the notion of a quasi – nonexpansive sequence with respect to a non - empty subset of a dislocated quasi – nonexpansive metric space and extend the results in [1] to such spaces.

Definition 2.1 :

Let (X, d) be a dislocated quasi metric space, $\phi \neq F \subset X$ and $\{x_n\} \subset X$ such that $x_n \notin F \forall n = 1,2,3, ...,$

Then $\{x_n\}$ is said to be quasi - nonexpansive w.r.to F, if

 $d(x_{n+1}, p) \le d(x_n, p)$

and

$$d(p, x_{n+1}) \le d(p, x_n) \quad \forall p \in F \text{ and } n = 1, 2, 3, ...,$$

Lemma 2.2 :

Let (X, d) be a dislocated quasi metric space, $\phi \neq F \subseteq X$ and $\{x_n\} \subset X$, $x_n \notin F \forall n$. Suppose that $\{x_n\}$ is quasi - nonexpansive w.r.to F. Then $\lim_{n\to\infty} d(x_n, F) = 0 \implies d(x_n, x_{n+1}) \longrightarrow 0$ and $d(x_{n+1}, x_n) \longrightarrow 0$.

Proof:

Let $\epsilon > 0$. Then there exists $p \in F$ and positive integer M such that $d(x_M, p) < \frac{\epsilon}{2}$ and $d(p, x_M) < \frac{\epsilon}{2} \quad \forall n \ge M$. $\because \{x_n\}$ is quasi - nonexpansive w.r.to F, $d(x_{n+1}, p) \le d(x_n, p) \le \cdots \le d(x_M, p) < \frac{\epsilon}{2}$

and

$$d(p, x_{n+1}) \leq d(p, x_n) \leq \cdots \leq d(p, x_M) < \frac{\epsilon}{2}$$

Now

$$d(x_n, x_{n+1}) \le d(x_n, p) + d(p, x_{n+1})$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon \quad \forall n \ge M.$$

and

$$d(x_{n+1}, x_n) \leq d(x_{n+1}, p) + d(p, x_n)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon \quad \forall \quad n \geq M.$$

 $\therefore d(x_n, x_{n+1}) \to 0 \quad \text{and} \quad d(x_{n+1}, x_n) \to 0.$ Lemma 2.3:

Suppose $\{x_n\}$ is quasi - nonexpansive w.r.to F. Then

 $\lim_{n\to\infty} d(x_n, F) = 0 \implies \{x_n\}$ is a Cauchy sequence.

Proof:

Let $\epsilon > 0$. Then there exists *a* positive integer *M* such that

$$d(x_n, F) < \frac{\epsilon}{2} \quad \forall n \geq M.$$

Now

$$d(x_{M,F}) < \frac{\epsilon}{2} \implies \exists p \in F \ni d(x_{M,P}) < \frac{\epsilon}{2} \text{ and } d(p, x_{M}) < \frac{\epsilon}{2}$$

$$\therefore d(x_{n,P}) \le d(x_{M,P}) < \frac{\epsilon}{2}$$

and

$$d(p, x_n) \le d(p, x_M) < \frac{\epsilon}{2} \forall n \ge M.$$

Now suppose $m, n \ge M$. Then
$$d(x_m, x_n) \le d(x_m, p) + d(p, x_n)$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon$$

and

$$d(x_n, x_m) \leq d(x_m, p) + d(p, x_m)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

 \therefore { x_n } is a Cauchy sequence.

Lemma 2.4 :

Let (X, d) be a dislocated quasi metric space and $\{x_n\}$ be a sequence in X. Assume that F be a non – empty subset of X. If $\{x_n\}$ is quasi - nonexpansive w.r.to F, then $d(x_n, F)$ is a monotonically decreasing sequence in $[0, \infty)$.

Proof :

Since $\{x_n\}$ is quasi - nonexpansive w.r.to F,

 $d(x_{n+1},p) \leq d(x_n,p) \rightarrow (\ 2.4.1\) \ , \mbox{ for all } n \in N \cup \{0\} \mbox{ and for every } p \in F \ .$

From (2.4.1) , taking the infimum over $p \in F$, we get that

 $d(x_{n+1}, F) \le d(x_n, F) \text{ for all } n \in N \cup \{0\}.$

Hence $\{d(x_n, F)\}$ is a monotonically decreasing sequence in $[0,\infty)$.

Lemma 2.5 :

Let (X, d) be a dislocated quasi metric space and $\{x_n\}$ be a sequence in X. Suppose $\{x_n\}$ is quasi - nonexpansive w.r.to $F \neq \phi$ satisfying $\lim_{n\to\infty} d(x_n, F) = 0$. Then $\{x_n\}$ is a Cauchy sequence.

Proof:

Since $\{x_n\}$ is a quasi - nonexpansive w.r.to $F \neq \phi$, to each $\epsilon > 0$, there exists $p \in F$ and positive integer M such that $d(x_m, p) < \frac{\epsilon}{2}$ and $d(p, x_n) < \frac{\epsilon}{2} \quad \forall m, n \ge M$. Suppose $m, n \ge M$. Then $d(x_m, x_n) \le d(x_m, p) + d(p, x_n)$ $< \frac{\epsilon}{2} + \frac{\epsilon}{2}$ $= \epsilon$

and

$$d(x_n, x_m) \leq d(x_m, p) + d(p, x_m)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

 \therefore { x_n } is a Cauchy sequence.

The following example shows that converse of Lemma 2.5 is not true . Example 2.6 :

 $X = \{ (-1,0), (1,0) \text{ and the segment } [(0,1), (0,2)] \text{ of the } Y \text{- axis } \}$ *d* is the usual Euclidean distance in R^2 .

$$F = \{ (-1, 0), (1,0) \}, x_n = (0, 1 + \frac{1}{n}), n = 1,2,3 \dots$$

Then $\{x_n\}$ is dislocated quasi - nonexpansive w.r.to F $d(x_n, F) \ge d(x_{n+1}, F)$, $d(x_n, x_{n+1}) \rightarrow 0$ and $x_n \rightarrow (0, 1) \notin F$.

Now we state and prove our first main result , which is an extension of

Theorem 1.10 to quasi – nonexpansive sequences .

Theorem 2.7:

Let $\{x_n\}$ be a sequence in a subset D of a dislocated quasi – metric space (X, d)

and $\phi \neq \mathbf{F} \subset D$ $(x_n \notin F \forall n)$. Then

- (a) $\lim_{n\to\infty} d(x_n, F) = 0$, if $\{x_n\}$ converges to a point in F
- (b) $\{x_n\}$ converges to a unique point in F, if $\lim_{n\to\infty} d(x_n, F) = 0$, F is a closed set, $\{x_n\}$ is quasi - nonexpansive w.r.to F and X is complete.

Proof of (a) :

Since $\{x_n\}$ converges to a point in F, there exists a point $p \in F$ such that

 $\lim_{n\to\infty} d(x_n, p) = 0 \text{ and } \lim_{n\to\infty} d(p, x_n) = 0$

$$\therefore$$
 Given $\epsilon > 0$, there exists a positive integer M such that

$$d(x_n, p) < \frac{\epsilon}{2} \quad \text{and} \quad d(p, x_n) < \frac{\epsilon}{2} \quad \text{for every } n \ge M .$$

$$\therefore \quad d(p, p) \leq d(p, x_n) + d(x_n, p) < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon \forall n > M$$

$$\therefore d(p,p) < \epsilon$$
 for every $\epsilon > 0$,

$$\therefore d(p,p) = 0.$$

Now

$$d(x_n, F) \le d(x_n, p) < \frac{\epsilon}{2} \quad \forall \ n \ge M$$

$$\therefore \quad \lim_{n \to \infty} d(x_n, F) = 0$$

$$\therefore \quad (a) \text{ holds }.$$

Proof of (b) :

Let (X, d) be a complete dislocated quasi - metric space and $\{x_n\}$ be a sequence in Xand $\phi \neq F \subset X$. Assume that $\{x_n\}$ is quasi - nonexpansive w.r.to F, F is closed and $\lim_{n\to\infty} d(x_n, F) = 0$. Then $\{x_n\}$ is a Cauchy sequence by lemma 2.5, hence there exists p such that $\{x_n\}$ converges to p.

Let $\epsilon > 0$. There exists a positive integer *M* such that

$$d(x_n, F) < \frac{\epsilon}{2} \text{ for every } n \ge M \text{ and}$$

$$d(x_n, p) < \frac{\epsilon}{2} \text{ and } d(p, x_n) < \frac{\epsilon}{2} \quad \forall n \ge M.$$

$$\therefore \text{ There exists } q_M \in F \text{ such that}$$

$$d(x_M, q_M) < \frac{\epsilon}{2} \text{ and } d(q_M, x_M) < \frac{\epsilon}{2}$$

$$\therefore d(p, q_M) \le d(p, x_M) + d(x_M, q_M)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$d(p, q_M) < \epsilon$$
and similarly we have

 $d(x_{n+1},F) \le d(x_{n+1},P) \le d(x_n,p) \forall p \in F$

$$\Rightarrow \quad d(q_M, p) \leq d(q_M, x_M) + d(x_M, p) \\ < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$\therefore \quad d(q_M, p) < \epsilon$$

 \therefore *p* is a limit point of *F*

 $\therefore p \in F$, since F is closed

Since limits are unique (by **lemma 1.9**), $\{x_n\}$ converges to a unique point $p \in F$. Hence (b) holds.

The following theorem which is an analogue of Theorem 1.11 establishes the convergence of the sequence .

Theorem 2.8 :

Let (X, d) be a complete dislocated - quasi metric space. Assume that $\{x_n\}$ is a sequence in X and $\phi \neq F \subseteq X$. Further assume that there is a mapping $\varphi : [0, \infty) \rightarrow [0,1)$ such that φ is monotonically increasing and $d(x_{n+1}, F) \leq \varphi (d(x_n, F)) d(x_n, F)$ for $n = 1,2,3 \dots \rightarrow (2.8.1)$

Then $\{x_n\}$ is Cauchy and $\{x_n\}$ converges to a point q. If further F is closed then $q \in F$. **Proof :**

By hypothesis

 $d(x_{n+1},F) \le \varphi(d(x_n,F)) d(x_n,F) \le d(x_n,F)$, so that { $d(x_n,F)$ } is decreasing and hence { $\varphi(d(x_n,F))$ } is decreasing since φ is increasing.

$$\begin{aligned} \therefore \ d(x_{n+1},F) &\leq \varphi(d(x_n,F))d(x_n,F) \leq \varphi(d(x_n,F))\varphi(d(x_{n-1},F))d(x_{n-1},F)) \\ &\leq \varphi(d(x_n,F))\varphi(d(x_{n-1},F)) \dots \varphi(d(x_1,F))d(x_1,F) \\ &\leq \varphi(d(x_1,F))\varphi(d(x_1,F)) \dots \varphi(d(x_1,F))d(x_1,F) \\ &= (\varphi(d(x_1,F)))^n \cdot d(x_1,F) \to 0 \quad \text{as} \quad n \to \infty . \\ &\quad (\ \because \ \varphi(d(x_n,F) < 1) \end{aligned}$$

Thus $d(x_n, F) \to 0$ as $n \to \infty$.

∴ By lemma 2.5, $\{x_n\}$ is Cauchy sequence and hence converges to a point qsince X is complete. If F is closed by (Theorem (2.7) (b)) follows that $q \in F$. The following Example shows that

Theorem 2.8 may not hold good if (2.8.1) is replaced by

 $d(x_{n+1}, F) \le d(x_n, F)$ for $n = 1, 2, 3, ... \rightarrow (2.8.2)$

even if we assume that (even in a metric space)

 $\lim_{n \to \infty} d(x_n, x_{n+1}) = 0 \quad \longrightarrow \quad (2.8.3)$

Example 2.9 :

Let *X* be the subset of *R* x *R* consisting of the points (-1,0), (1,0) and the segments of the *Y* – axis joining the two points (0,1) and (0,2). Hence *X* = {(-1,0), (1,0) and {(0, y)/1 ≤ y ≤ 2}} Let *d* be the Euclidean metric in R^2 . Take *F* = { (-1,0), (1,0)} and $x_n = {(0, 1 + \frac{1}{n})/n = 1,2,..}$ Then { x_n } is quasi – nonexpansive w.r.to to *F*, $d(x_{n+1}, F) \le d(x_n, F)$ for n = 1,2,3,... $d(x_n, x_{n+1}) \rightarrow 0$, F is closed but $\{d(x_n, F)\}$ does not converges to 0.

Acknowlegements :

The fourth author (M.A.Rahamatulla) is grateful to the authorities of Al - Aman College of Engineering ,Visakhapatnam and I.H.Farooqui Sir for granting permission to carry on this research . The fourth author is deeply indebted to the authorities of SITAM College of Engineering , Vizianagaram for permitting to use the facilities in their campus while doing the research.

REFERENCES

- M.A.Ahmed and F.M.Zeyada, Generalization of some results to quasi metric spaces and its applications, Bulletin of International Mathematical Virtual Institute, ISSN 1840-4367, Vol.2(2012),101-107.
- [2] M.A.Ahmed and F.M.Zeyada, On convergence of a sequence in complete metric spaces and its applications to some iterates of quasi – nonexpansive mappings, J.Math.Anal.Appl. 274(1)(2002), 458 – 465.
- [3] J.-P.Aubin, Applied Abstract Analysis, Wiley, 1977.
- [4] M.K.Ghosh and L.Debnath, Approximation of the fixed points of quasi-nonexpansive mappings in a uniformly convex Banach spaces, Appl.Math.Lett., 5(3)(1992), 47-50.
- [5] S.Ishikawa ,Fixed points by a new iteration method , Proc.Amer .Math.Soc. 44(1)(1974) , 147-150 .
- [6] W.A.Kirk, Nonexpansive mappings and asymptotic regularity, Nonlinear Anal., Theory, Methods, Appl. 40(2000), 323-332.
- [7] W.R.Mann , Mean value methods in iteration , Proc.Amer .Math.Soc. 4(3)(1953) , 506 510 .
- [8] W.V.Petryshyn and T.E.Williamson, Jr., Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings,
 J.Math.Anal.Appl. 43(2)(1973), 459 497.
- [9] J.J.M.M.Rutten, Elements of generalized ultrametric domain theory, Theoretic.Comput.Sci. 170(1-2)(1996), 349 – 381.
- [10] P.Waszkiewicz , The local triangle axioms in topology and domain theory , Applied General Topology , 4(1)(2003) , 47 70.
- [11] F.M.Zeyada, G.H.Hassan and M.A.Ahmed, A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi –metric spaces, Arab.Jour.Sci.Eng.Sect.A Sci.31, No.1A (2005), 111-114.