
Query Optimization Based on Heuristic

Rules

Vishal Hatmode

Department of Information Technology, Siddhant

College of Engineering, Pune, India.

Professor Sonali Rangdale

Department of Information Technology, Siddhant

College of Engineering, Pune, India.

.

 Abstract:

In this paper,

we will Rules based on Heuristic

approach

for query optimization.

It is often observed in

many

database industries

that a lot of time is spent

in

executing inefficient SQL queries. The problem here is that

although the DBA knows that the query

red are inefficient,

the large sections

of people who are actually running

these

queries are unable to write efficient queries. As a result, the

performance of the entire system affects

because of the major

fall

in the system performance i.e. the number of transactions

performed per unit time is reduced. Typically, to overcome

this problem, most of the people frequently consult the DBA

for writing efficient

and optimized

queries. This approach

results in a lot of time and money loss. A better solution is

using a Query Optimizer

Tool. A Query Optimizer will

accept the user query and automatically generate an

equivalent but highly optimized

and effective

query. This will

save a lot of time, cost

and effort. This in turn improves the

system performance

and its overall throughput capability.

The Query Optimizer in this paper is based on

Heuristic

Optimizer. It tries

to minimize the number of accesses by

reducing the number of tuples and number of columns to be

select operation.

Keywords:

Heuristic Approach,

Query Optimization,

tuples

 I. INTRODUCTION

 The main function of many relational database management

systems is query optimization in which multiple query plans are

to be prepared for satisfying a query are examined, and based on

result of examined queries

good query plan is identified. This

may or may not be the absolute best of all

strategies because there

are many ways of creating plans. There is a trade-off between

the

amount of time spent figuring out the best plan and the amount

running the plan. Different database management systems have

different quality and ways of balancing these two. The main

performance advantage is achieved in modern database system is

by means of query optimizers.

[1]

Given a request for data

retrieval; an Optimizer will select

an optimal plan for evaluating

with the given request from among the manifold different

strategies. The largest and most complex module of database

systems is

query optimizers

and it’s been proved its

difficulty

to

modify and extend to accommodate these areas. Query

optimization is very large

area

within the database field. It’s been

studied in a great variety of contexts and from many divergent

angles, giving rise to

several different

solutions in each case.

Over time, SQL has become as

the standard for relational query

languages.

Query optimization and query execution are the two

key components for

query evaluation of an

SQL database system

[1][6].Heuristic Optimization is less expensive than that of cost

based optimization. It is based on some heuristic rules by which

optimizer can decide

optimized query execution plan [6].

Backround

Need

Speed of execution is main factor in huge databases of

biological,

physical or chemical

projects. Optimization needed for

saving energy and resources

[2]. The query optimizer is

one of

the

important components

in today’s database management

systems. This component is

responsible for transform

user

submitted queries usually written in non procedural language into

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070992

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1001

efficient query evaluation program that can be executed against

database. In this paper, we will gain a feel for how query

processing works in a database management system, specifically

focusing on a simple Select-Project-Join query engine. We will

also see how various

query

execution plans have different

performance results, which will provide some motivation

for

query optimization

techniques

[5].

 Today all corporations, companies and organizations like

banks maintain their own

databases. These databases are used for

holding many different kinds of information like customer

details, employee details,

and so on and so forth. The size of

these

databases is too

huge i.e. containing large amount

of records.

Retrieval of information is done by querying the database using

SQL. Now if the query used is an

inefficient

one then it consumes

a lot of time before producing the result [6].

This is because

an

inefficient query requires a lot of memory

operations i.e. the

number of I/O operations

is very high. Since in any computer

system the main factor that hampers high speed

performance is

the I/O operation, an inefficient query is very slow in

performance

which consumes lot of time. Thus

an inefficient

query reduces

the system performance by reducing

the

throughput greatly.

Hence being able to write an efficient query is

a important. An efficient query reduces the

number of disk

operations and hence reduces the number of I/O operations

disk

access rate. As a result

an efficient query produces the results

much more quickly than its inefficient counterpart.

Now

obviously the question that arises is how to write such an efficient

query? This is

where Query Optimizer steps in. This

allows you

to write your own queries

and will in turn

generate an equivalent

but highly

and efficient optimized query. Thus the Query

Optimizer helps in enhancing the system performance by

increasing the throughput.

II.

LITERATURE SURVEY

Different Query Optimization Approaches

 Cost Based Optimization

 A cost-based query optimizer works as follows: First, it

generates all possible query execution plans. Next, the cost of

each plan is estimated. Finally, based on the estimation, the plan

with the lowest estimated cost is chosen. Since the decision is

made using estimated cost values, the plan chosen may not

be

optimal.

[1]

The quality of optimizer decisions depends on the

complexity and accuracy of cost functions used. It includes

different

techniques such as

the

use of dynamic

programming for

deciding best plan. Their main disadvantage is

that it is very

costly. As a result most of the optimizers do not employ this

strategy

[2]

[3]

 1.

Generates

all possible query execution plans and then based

on it cost is

calculated.

 2. Quality

depends on complexity and accuracy of the cost

Function.

 Algebraic Expressions for following query-

SELECT p.pname, d.dname FROM Patients p, Doctors d Where

p.doctor = d.dname AND d.gender ='M'

 Advantages:

1. Rather than considering

with the

time constraints, it adapts to

client requirements.

2. Speed of query retrieval increase

Disadvantages:

1.

Uses cost based optimization hence expensive.

Figure

1: Relational Algebra Expression for Query

Figure 2:

Execution Plan

 Semantic Query Optimization

 Two queries can be called as a semantically

equivalent if

they return the same answer for a database. For this purpose,

it

uses integrity constraints to match results. Semantic query

optimization is known as

process of

determining the set of

semantic conversion that result in

a semantically equivalent query

with a low

execution cost. ODB-Optimizer defines more

specialized classes to be accessed and reduces the number of

factors by applying

different integrity

constraint

rules.

[2][4]

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070992

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1002

Advantages

1. Supports recursive queries and queries having negation,

disjunction.

Disadvantages:

1. Suitable for only simple prototypes.

2. No commercial implementations exist.

III.PROPOSED

ARCHITECTURE

Proposed System

 The Query Optimizer in this project is a Heuristic

Optimiser. It tries to minimize the number of accesses by

reducing the number of tuples and number of columns to be

searched. Heuristic Optimization is less expensive than that of

cost based optimization. It is based on some heuristic rules by

which optimiser can decide optimized query execution plan.

[1][3][6]

Important Heuristic Rules used are:

1. Performing selection as early as possible.

2. Perform projections as early as possible.

 It’s been found that Cost-based optimization is

more

expensive, even with dynamic programming. Systems can

use

heuristics to decrease the

number of choices that have to

be made

in a cost-based fashion. Heuristic optimization transforms the

query into

query-tree by using a

set of rules that (but not in all

cases) improves execution performance

[2][6].

1. Perform

selection early (reduces the number of tuples)

2. Perform

projection early (reduces the number of attributes)

3. Performing

most restrictive selection and join operations (i.e.

with smaller

result size)

before other equivalent operations. [4][6]

 Few

systems use only heuristics; while others combine

both

heuristics with partial cost-based optimization.

Example of two rules

Perform selection as early as possible.

 Original Query:

Select * from branch, customer where

branch.name = 'Brooklyn' and customer. City = 'Brooklyn';

 Transformed Query:

Select * from (select * from branch

where branch.name = 'Brooklyn'), (select * from customer where

customer. City= 'Brooklyn');

 Performance enhancement:

Suppose there are branch

and customer tables each has

100 and 100 tuples respectively.

Original query: 100 * 100 tuples fetched

Optimized Query:

Selection performed early hence say only 10

and 20 tuples selected so 10*20 tuples fetched.

Perform projection as early as possible:

 Original Query:

Select branch.id, customer.cid from branch,

customer

where branch.name='Brooklyn';

Optimized Query:

Select * from (select branch.id from branch)

t, (select customer.cid from customer) where t.name='Brooklyn';

Performance Enhancement:

1) Projection operations reduce size of relations.

2) Reduces the number of columns in relation and hence relation

size reduces.

3) Better technique is to use selection rule.

Constraints

1. The optimizer is a Heuristic optimizer only. It does not contain

anything related to cost based optimization.

2. Parser has certain constraints like it takes only DML queries

(select queries) and not any DDL queries.

3. Also some of the clauses of SQL such as EXISTS, NOT

EXIST and ORDER BY is not taken into consideration.

4. Before changing the backend database the corresponding

database schema has to be specified before operating on it.

5. Transparency for

user application is not possible

Figure 3: Query Optimization Process Flow

IV. DESIGN OF THE PROPOSED SYSTEM

Design Specifications

 Query processing refers to

the

range of activities involved

in extracting data from a database. The cost of

any

processing a

query is usually dominated by disk access, which is slow

compared to memory access

Main tasks involved are:

1.

Parsing the given SQL query

2.

Transforming

it in the form of GLL

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070992

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1003

3. Convert GLL query into relational algebra,

4. Optimization

5. Regeneration

of Queries in SQL format.

 The steps involved in processing a query are as follows:

1. Parsing and translation

2.

Optimization and Evaluation

 Transforming query into internal form is the first action

must be taken by system.

The second action is query optimization

that is it will generate a variety of equivalent plans for a query,

and choose the least expensive one. And the third action is to

evaluate this query [3].

Need for GLL:

 Single GLL statement can have

many nested statements

inside and,

therefore, it is necessary that every

individual level
in

the nested query be optimized independently of the other levels

by using GLL format the different levels of nesting can be

represented by different levels in GLL.

Thus,

each level can be

translated separately into relational algebra expression and can be

processed independently.

For example if we have query as

 Select a from b where c<d;

The corresponding GLL is:

Figure 4: GLL Representation of Query

Relational algebra conversion

 Transforming an SQL

Queries into Relational Algebra in

SQL query

can itself be translated into a relational algebra

expression on one of the several ways:

1. SQL query is first translated into an equivalent extended

relational algebra expression.

2. SQL queries are divided into

query blocks, which form the

basic units that can be transformed into

the algebraic operators

and optimized.

3. Each query blocks

contains a single SELECT-FROM-WHERE

expression, along

with the

GROUP BY and HAVING clauses.

4. Nested queries within a query are identified as separate query

blocks.

Translating SQL Queries into Relational Algebra Example:

 SELECT LNAME, FNAME FROM EMPLOYEE WHERE

SAL < (SELECT MAX (SAL) FROM EMPLOYEE WHERE

DNO=15);

The inner block (SELECT MAX (SAL) FROM EMPLOYEE

WHERE DNO=15)

Translated in:

MAXSALARY (σDNO = 5(EMPLOYEE))

The Outer block

SELECT LNAME; FNAME FROM EMPLOYEE WHERE

SALARY < C

Translated in:

Π (LNAME; FNAME (σSALARY > C (EMPLOY EE)))

C

will represent the result returned by

the inner block.

1. The

query optimizer would then select

an execution plan for

each block.

2. The

inner block needs to be evaluated only once. (Uncorrelated

nested query).

3. It

is much harder to optimize the more complex correlated

nested queries.

Example 2:

 SELECT BALANCE FROM ACCOUNT WHERE

BALANCE < 2500;

Corresponding Relational Expressions are:

 σbalance < 2500 (π balance (account))or

Πbalance (σbalance < 2500(account))

 A relational algebra expression annotated with

instructions on how to evaluate it is called as evaluation

primitive. Several primitives may be grouped together into a

pipeline, in which several operations are performed in parallel.

The Query execution engine picks up a

query evaluation plan,

executes that plan, and returns the result to the query. The

various

evaluation plans for a given query can have different

costs. User

will write a query and optimizer executes the most

e client evaluation plan

[1][2].

Equivalence of expressions

 This phase includes matching of relational algebra with

one of the forms in equivalence

rules. An equivalence rule

states

that expressions of two forms are equivalent.

We can

transform either to the other while preserving equivalence.

Some important equivalence rules on relational algebra are as

follows:

Rule 1:

σθ1 ^ θ 2 = σθ1 (σ θ 2(E))

Sample query:

Select * from loan where lid < 100 and bid > 1200;

Optimized query is:

Select * from (select * from loan where lid < 100) where bid >

1200;

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070992

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1004

Rule 2:

ΠL1 (ΠL1; L2; (ΠL1…..Ln (E)) ..) = ΠL1 (E)

Sample query:

Select lid from (select lid, bid from loan);

Optimized query

is:

Select lid from loan;

Rule 3:

σθ1 (E1∞E2) = (σθ1 (E)) ∞ (E2)

Sample query:

Select from loan; branch where loan:lid < 100 and branch: bid =

loan:lid;

Optimized query is:

Select * from (select * from loan1 where loan1:lid < 100) t;

branch t1 where t1:bid = t:bid;

Rule 4:

σθ1 ^ θ2 (E1∞E2) = (σθ1 (E1)) ∞ (σθ2 (E2))

Sample query:

 Select * from loan, branch where loan.lid=100 and

branch.name=PUNE and branch.bid=loan1.lid;

Optimized query is:

Select * from (select * from loan where loan.lid=100 and

branch.name=PUNE) t1 where t.lid=t1.bid;

Rule 5:

ΠL1L2 (E1∞E2) = ΠL1 (E1)) ∞ (ΠL2 (E2))

Sample query:

Select lid, name from loan1, branch where branch.bid=loan.bid;

Optimized query is:

Select * from (select lid from loan1) t, (select name from branch)

t1 where t.bid=t1.bid;

Rule 6:

σθ1 (E1) -

(E2) = σθ1 (E1)-σθ2 (E2)

Sample query:

(Select bid from branch where bid < 1000) minus (select bid

from loan);

Optimized query for RHS is:

(Select bid from branch where bid < 1000) minus (select bid from

loan where bid < 1000);

Rule 7:

σθ1 (E1) ∩ E2 = σθ1 (E1) ∩ σθ1 (E1))

Sample query:

(Select bid from branch where bid < 1000) intersect (select bid

from loan);

Optimized query for RHS is:

(Select bid from branch where bid < 1000) intersect (select bid

from loan where bid < 1000);

Rule 8:

ΠL (E1 U E2) = ΠL1 (E1) U ΠL (E2)

Sample query:

Select bid from (select from branch where bid 1000) union

(select from loan1);

Optimized query for RHS is:

(Select bid from branch where bid 1000) union (select bid from

loan1 where bid < 1000);

Optimization

 In this stage, the query processor applies rules to the

internal data

block

structures of the query to translate

these

structures into equivalent, but more efficient client

representations. The rules are mostly

based upon mathematical

models of the relational algebra [2][4].

Expression and tree

(heuristics), upon cost estimates of various

algorithms, applied

for

operations or upon the semantics within the query and the

relations it has. Selecting the correct

rules to apply, when to

apply them and how should be they

applied is the function of

the query optimizer [3]

[6]. This phase includes the use of

some heuristic rules such as performing selections and

projection operations as early as possible.

Regeneration

 Finally integrate all the intermediate SQL statements that

will be passing

to backend database.

V.

CONCLUSION

 We have proposed a new approach to translating an

SQL queries into equivalent highly optimized SQL queries

found in many commercial databases. A test database is built

consisting of several lacks records. This test database will

then be used to time the execution speeds of "identical"

queries in the existing and new built query optimizer. It

proves that like

to the large amount of data, data structure,

complex transaction logic and request for high data integrity

and security in DBS query optimization is of at most

importance. Ability to process queries in a timely manner is

one of the most critical functional requirements of a

DBMS.

This is particularly proves

for very large, mission critical

applications such as

banking systems,

weather forecasting

and Stoke market

applications, which can contain millions or

even more than millions of records. The need for faster and

faster

results

never ceases. Thus, a great amount of research

and resources are

spent on creating highly efficient

query

optimization engines.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070992

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1005

VI. REFERENCES

[1]

Jayant R.Haritsa "Query Optimizer plan Diagram: Production, Reduction

and Application, Data Engineering

(ICDE)", 2011 IEEE 27th

International conference

[2]

G. R. Bamnote and S. S. Agrawal “Introduction to Query Processing and

Optimization”

IJRCSSE

Volume 3, Issue 7, July 2013.

[3]

Yannis E.Ioannidis paper on "Query Optimization" Computer Sciences
Department University of Wisconsin Madison, WI 53706 in 2011

[4]

Surajit Chaudhuri “An Overview of Query Optimization in Relational

Systems” Microsoft Research

[5]

Anuja K Gaikwad, Rupali A Davalgaonkar and Seema Vaidya. Article:

“Pathfinder of X Query for a Relational Database System.” International

Journal of Computer Applications

NTSACT (1):22-24, August 2011.

[6]

Classle.net “Query

Optimization

-

Heuristic

Approach”

Available

through: <https://www.classle.net/book/query-optimization-heuristic-

approach> [Accessed 3 March 2014]

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070992

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1006

