
Query Optimization Using Hierarchical Approach to Data Extraction, 

Multidimensional Modeling and Aggregation 
 

Neha Sharma 
Assistant Professor 

Northern India Engineering College 

Delhi, India  

 

Abstract 
Databases are generally accessed by asking a set of queries which 

return some information according to set of retrieval criteria‟s. In 

this paper, some such methods/ steps are introduced by applying 

which query performance can be optimized. The process starts 

with first analyzing the database schema and then applying 

mapping rules to map it to make multi dimensional model (star 

schema) and while making multi dimensional model, one need to 

keep track of representing it in hierarchical format . Now, in the 

star schema so formed apply aggregation. Aggregate the fact 

tables. This approach has been analyzed using the case study of 

bank management system. 

 
Keywords-Data-warehouse,multidimensional modelling, 

aggregation,Unified modelling language. 

1. INTRODUCTION  

      A database is a data repository which includes a 

collection of entity sets in the form of rows and columns, 

and each of these entity sets contains any number of 

entities of the same type. A relational database is a shared 

repository of data [1]. These databases are not able to fulfill 

out-of –the-ordinary tasks of data analysis and therefore, a 

new concept named Data Warehouse came into the picture 

and the technique through which the data is extracted out 

from data warehouse is called Data Mining. The companies 

use this process to collect useful information from the raw 

data. Data mining efficiency depends up querying also. 

Without queries, there is no significance of data 

warehouses. Queries help us to collect useful data from the 

bulk of data present in different data sources. The 

information gathered after querying helps in making 

analytical decisions for business making processes. 

Different strategical decisions are made upon this 

information. 

      Data-warehouse has a wider range and is fully 

operational with the most up-to-date technologies at the 

bottom of the decision making process. So, it‟s very 

important to collect accurate information using query and 

for this effectiveness in query results is required. This 

paper focuses on some such techniques. 

     Firstly, data need to be presented in hierarchical format. 

A hierarchy defines the navigating path for drilling up and 

drilling down. All attributes in a hierarchy belong to the 

same dimension. Large dimensions usually posses multiple 

hierarchies [2]. Now, from this hierarchical database design 

Multi-dimensional model, star schema is designed. Since, 

star schema is one of the multi-dimensional models, which 

is being designed query centric. Using UML, database 

schema is being designed and presented in hierarchical 

format to show data at the lowest level of granularity.UML 

is used to extend the data extraction process and show the 

various levels of granularity from where the source data is 

being accessed. UML has been as modeling language  

 

 

 

owing to its wide acceptance and the possibility of using 

and extending various complementary diagrams for 

modeling various system aspects. Then after, depending 

upon the queries, frequently asked queries and the 

requirement of company‟s fact table aggregates need to be 

made. This will help in reducing the query run time. 

2. LITERATURE REVIEW 

     Sukheja et al focused on query optimization technique 

which generates sequences of SQL statements in order to 

produce the requested information [3]. The analysis for this 

paper is exposed that many sequences of queries generated 

by commercial tools are not very efficient. Semantic query 

optimizer architecture is suggested for these applications. 

The main component is a SQO optimizer that accepts 

previously generated sequences of queries and rewrites 

them according to a set of optimization strategies, before 

they are executed by the underlying database system. 

Given a database and a query on it, several execution plans 

exist that can be employed to answer the query. In 

principle, all the alternatives need to be considered so that 

the one with the best estimated performance is chosen. 

Queries formulated using SQL query language provides 

little predictive information useful for estimating query 

performance. Internal knowledge of the database structure, 

data distribution, and semantic query optimizing strategy 

are necessary to develop effective query execution plan. 

This is possible if and only if when the indexing, referential 

integrity and naming conventions are properly defined at 

the database designing level so that the semantic query 

optimizer uses indexing, referential integrity to rewrite a 

new query. 

     Chaudhuri et al describes the System-R optimization 

framework since this was a remarkably elegant approach 

that helped fuel much of the subsequent work in 

optimization [4]. It focuses on the search space that is 

considered by optimizers and also provides the forum for 

presentation of important algebraic transformations that are 

incorporated in the search space. It addresses the problem 

of cost estimation and takes up the topic of enumerating the 

search space. It presents some of the recent developments 

in query optimization. Optimization is much more than 

transformations and query equivalence. The infrastructure 

for optimization is significant. Designing effective and 

correct SQL transformations is hard, developing a robust 

cost metric is elusive, and building extensible enumeration 

architecture is a significant undertaking. Despite many 

years of work, significant open problems remain. However, 

an understanding of the existing engineering framework is 

necessary for making effective contribution to the area of 

query optimization. 

      Balke et al addresses the problem of multi-objective 

retrieval in database query processing. Multi-objective 

retrieval is especially useful for personalization problems, 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org



where multiple user preferences have to be taken into 

account, and one has to compromise between certain 

desired characteristics of database objects to deliver high 

quality results [5]. However, up to now only for two 

extreme cases of such retrieval, namely top k retrieval and 

skyline queries, efficient algorithms have been 

investigated. Handling cases involving several distinct 

objectives, still needs to access and compare all database 

objects. It presented a novel multi-objective retrieval 

algorithm and proved that it always retrieves a correct 

result set and uses only an instance-optimal number of 

object accesses. Moreover, it contains the respective 

optimal algorithms for top k retrieval and skylining as 

special cases. It subsequently enhanced it by allowing for a 

successive output of result objects at the earliest possible 

time while the algorithm is still running. Finally they have 

addressed preliminary practical experiences with 

applications of our algorithm. The algorithm can be easily 

integrated into practical personalization frameworks or 

relational query processing. Concerning the manageability 

of query results, they have also shown that the cardinality 

of the multi-objective result set is bounded by the size of 

Pareto-optimal sets over the minimum of the number of 

score lists and objective function limiting down the set‟s 

cardinality in most practical cases. Implementing an 

advanced control flow then addressed how to save 

additional object accesses in the case of skewed data 

distribution by focusing on the most prominent objects at 

an early time.  

     Pahwa et al had described an object oriented approach 

to model the process of data extraction as part of 

extraction, transformation and loading process [6]. The 

hierarchies of each data element have been explicitly 

defined, thus highlighting the data granularity and hence 

simplifying the data extraction process. The object oriented 

features of generalization, aggregation, composition and 

association have been incorporated. These features help in 

identifying and establishing the relations between various 

data sources, thereby making the process of data extraction 

more reliable. Solving queries has been made easier 

because data sources at every level of granularity can be 

identified and targeted directly. 

     Pahwa et al introduces a framework which proposes 

design methodologies to map the relational database into a 

multidimensional model. The process starts with first 

cleaning the relational database and then categorizing the 

attributes of this cleansed relational database into metrics 

and dimensional attributes by applying the proposed set of 

mapping rules. The design of a data warehouse from 

relational databases is made possible in a user-friendly and 

semi-automated manner. The mapping of relational 

database to multidimensional model has been done by 

practically implementable mapping rules. These mapping 

rules are successful at conceptual as well as practical level 

mapping and are easy to understand. The approach 

followed is generic and simplified in nature.   

All the above mentioned approaches do not consider proper 

rules for query optimization and which rule to be 

considered in which case. This concept presents an 

approach to make query processing more efficient and 

easy. It also represents data Warehouse in more 

understandable form to developer as well as to end users. 

This framework also goes on to suggest a set of rules for 

performing the above mentioned rules to database schema. 

3. THE PROPOSED METHODOLOGY 

In this technique, different methodologies are presented to 

make query processing more efficient. The approach 

proposes three steps, by following them query processing 

will become comparatively more effective and efficient as 

compared to the present scenario: 

 Hierarchical Representation of data. 

 Use star schema, instead of snowflake. 

 Aggregate Fact Tables. 

Hierarchical Representation of data 

     Granularity is the extent to which a system is broken 

down into small parts, either the system itself or its 

description or observation. It is the "extent to which a 

larger entity is subdivided [8]. For example, a yard broken 

into inches has finer granularity than a yard broken into 

feet."  

Data Granularity models the level of detail present in the 

data sources. The data sources has been categorized to 

exhibit the fine grained data source which helps in efficient 

extraction of relevant and detailed data from different 

databases. By using object oriented concepts we have 

defined relationships between various data entities which 

help us to understand the interdependence between these 

data entities on every level of hierarchy. 

 

         
Figure 1: Framework 

    A hierarchy defines the navigating path for drilling up 

and drilling down. [9] All attributes in a hierarchy belong 

to the same dimension. Large dimensions usually posses 

multiple hierarchies. Rolling up and drilling down of data 

becomes more efficient by defining the data grain at each 

level of hierarchy. The fact table should to be at the lowest 

grain and there should to be multiple hierarchies present in 

the dimension tables. 

  So, hierarchical representation enhances the capabilities 

of query processing. With the help of this technique, 

number of joins required in query gets reduced, as a result 

query produce results faster and complexity also gets 

reduced. 

A. Use star schema 
     Star Schema is a query centric structure; it means it is 

more suitable for query processing as compared to other 

multi–dimensional representations of the data warehouse 

[2].  In star schema, irrespective of the number of

 

  
Database Schema   

Star Schema   

Aggregate   

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org



 
Figure 2: Bank Management System class diagram 

 
Figure 3: Star Schema 

dimensions that participate in the query and irrespective of 

the complexity of the query, every query is simply 

executed first by selecting the rows from the dimension 

table using the filters based on the query parameters and 

then finding the corresponding fact table rows. Navigation 

is quiet simple and straightforward in star schema.  So, Star 

Schema helps in query optimization by making 

visualization easier and decreasing query processing time. 

B. Aggregate Fact Tables 

     Aggregates are the pre-calculated summaries derived 

from the most granular fact table. These summaries form a  

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org



set of separate aggregate fact tables [2]. Aggregate tables 

can be created across a number of dimensions and there can 

be any number of aggregates too, depending upon the 

requirement. When we run queries in data warehouse 

environment, it produces large result sets. These queries 

produces result sets after manipulating metrics of fact 

tables which are being got form thousands of table rows. 

The handling of fact metrics and their calculation takes 

time and is very much complex.  So, it will produce large 

set of data as a result and will take long time to process 

such queries. 

 
Table 1: Dimension Table Attributes 

TABLE_

NO. 

TABLE_  

NAME 

ATTRIBUTES 

1 
account  act_no, withdrawal_amt, deposited_amt 

2 checking_act chk_act_no, overdraft_limit 

3 savings_act sav_act_no, interest_rate 

4 loan loan_no, loan_amt 

5 payment payment_id, payment_amt,        
payment_date 

6 employee emp_id, tel_no, start_date, 

emp_length,emp_name,dob,age,email,gend
er 

7 customer customer_id,street,city,dob,age,email,custo

mer_name ,gender 

8 branch branch_name, branch_city 

9 time time_id, year, quarter, month, week, day 

 

     So, on the behalf of this information one can design 

number of aggregates, e.g. select all the customers, 

instalments_left from fact having loan_remaining >= 

25,000 and branch_name = “delhi” and gender= “M”. 

This data might be useful for bank and since there‟s 

number of rows in fact table, so, always running query 

their will take long time (might be few minutes), whereas if 

will store aggregates initially, then query runtime will 

surely get reduced from minutes to few seconds. 

     Aggregate tables are used in the case when the data 

required to be analyzed requires number of dimensions and 

lots of rows of each dimension to be computed to calculate 

metrics of fact table. 

     So, formulation of aggregate fact tables is undoubtedly 

a very valuable method to improve query performance. 

Aggregate should to be hidden from the end users. 

Aggregates should to be chosen in the ways that do not 

increase overall storage space, i.e. aggregates with low 

sparsity.  

 

1) Number of possible aggregates  

     There are thousands of possibilities for summarizing a 

dimension according to the level of summarization. The 

level of summarization is being decided upon the 

company‟s requirement and often asked questions. The 

total number of aggregates possible can be easily 

determined by simply multiplying the number of levels in 

each dimension hierarchy.    

 

2) How to store aggregates 

     There are mainly 2 possibilities to store aggregates: 

 As new level field in already existing fact table. 

 As new fact table 

      Out of the above two approaches, second approach 

(storing aggregates as new fact table) is a better method. 

Due to following reasons: 

 If aggregates will be stored as a field in already 

existing fact table, then  there are following 

problems with that: 

 There will be problem of double count. 

 Aggregates will be visible to the user. 

 But if aggregates are stored as new fact table, then 

there are following benefits of this over previous 

method: 

 Double count problem conquered. 

 Aggregates will be invisible to the user. 

 Can be easily updated in future without 

any problem to tables. 

 Size of the field for aggregates does not 

affect the size of the field for the basic 

data. 

 Metadata will be simpler. 

 

Aggregates are required when we have predictable queries 

with high load. In such a case, aggregates will help to get 

faster response, as we‟ll be having results already stored in 

aggregates. Summary data must to be used only when 

critically needed. 

 

3) When to Choose to Aggregate 
     There are two basic pieces of information which are 

required to select the appropriate aggregates: 

 Usage and Analysis Pattern 

The most significant point is the expected usage 

patterns of the data. Depending upon this, one can 

easily choose best suited aggregate and this can be 

found after requirement phase. 

 Base Table Row Reduction 

Secondly, one also needs to consider is number of 

rows in fact table and there distribution, wherever 

possible decrease the data load in fact table. One 

can check this, after loading the data in data 

warehouse and running some queries. 

 

4) How much to Aggregate 

     There are 2 approaches to aggregation: 

 No aggregation 

     Sometimes, the size of data in the fact table is little 

that performance is adequate without aggregates. So, 

no need to create aggregates in such cases, it‟ll 

increase the load.  But in real time scenario, this is 

obviously not the case. It can be possible for new data 

warehouses or small scale companies. 

 selective aggregation  

In this case, depending upon the requirement and 

the generally asked queries, required aggregates 

are created.  

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

4www.ijert.org



4.  CONCLUSION 

     The proposed methodology for query optimization is a 

three step procedure and is a combination of various small 

techniques for query optimization.  This technique is very 

unique in nature and will help in making query 

performance more effective and efficient. Query 

performance will become more effective in the way, that 

one need not to wait long for getting the results of the 

queries. This approach will help in decreasing the query 

run time and in the present scenario, time is very much 

important, even a microsecond matters during execution. 

The approach followed is generic and simplified in nature. 

This approach has been examined using the case study of 

bank management system. Further work going on in this 

field and will surly result in more efficiency and ease in 

query processing.  

 

5. REFERENCES 

[1] Elmasri, R., Navathe, S.B.:  Fundamentals of Database 

Systems. Addison Weasely Pub Co. ISBN 0201542633 

(2000). 

[2] Paulraj Ponniah, Data Warehousing Fundamentals, 

Wiley India Pvt. Ltd., Reprint 2008. 

[3] Sukheja D. & Singh K. U. , “Query Optimizer Model 

for Performance Enhancement of Data Mining Based 

Query” , International Journal of Computer Science & 

Communication (IJCSC) Vol. 1, No. 1, January-June 

2010, pp. 235-237. 

[4] Chaudhuri S. “An Overview of Query Optimization in 

Relational Systems”, Microsoft Research, One 

Microsoft Way, Redmond, WA 98052. 

[5] Balke W. , Güntzer U.,”  Multi-objective Query 

Processing for Database Systems” ,Proceedings of the 

30th VLDB Conference, Toronto, Canada, 2004. 

[6] Pahwa, P., Chaudhary, G., Jain, K., Sharma, N. and 

Gupta, R., „Hierarchical Approach to Data Extraction 

using UML 2.0‟, Proc. of the International Conference 

on Advanced Computing and Communication 

Technologies (ACCT 2011), Copyright © 2011 RG 

Education Society, ISBN: 978-981-08-7932-7. 

[7] Pahwa, P., Chaudhary, G., Jain, K., Sharma, N. and 

Gupta, R., “A User-Friendly Approach to Design a Data 

Warehouse from Operational Systems” International 

conference on Advanced Computing, Communication 

and Networks‟11. 

[8] Wikipedia, http://en.wikipedia.org. 

[9] Kimball, Ralph (2008). The Data Warehouse Lifecycle 

Toolkit, 2. edition. Wiley. ISBN 978-0-470-14977-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

5www.ijert.org


