Radio D-Distance Number of Some Basic Graph

K. John Bosco
Assistant Professor,
Department of Mathematics,
St. Judes college Thoothoor, Tamil Nadu
Affiliated to Manonmaniam Sundaranar University,
Abishekapatti, Tirunelveli

Abstract – A Radio d-distance labeling of a connected graph G is an injective map f from the vertex set V(G) to $\mathbb N$ such that for two distinct vertices u and v of G, $d^d(u,v)+|f(u)-f(v)|\geq 1+diam^d(G)$, where $d^d(u,v)$ denotes the d-distance between u and v and $diam^d(G)$ denotes the d-diameter of G. The Radio d-distance number of f, $rn^d(f)$ is the maximum label assigned to any vertex of G. The Radio d-distance number of G, $rn^d(G)$ is the minimum value f of G. In this paper we find the radio d-distance number of some basic graphs.

Keywords-d-distance, Radio d-distance, Radio d-distance number.

I. INTRODUCTION

By a graph G = (V(G), E(G)) we mean a finite undirected graph without loops or multiple edges. Let (G) and (G) denotes the vertex set and edge set of G. The order and size of G are denoted by P and Q respectively. T. Jackuline, J. Golden Ebenezer Jebamani and D. Premalatha introduced the concept of d^d -distance by considering the degrees of various vertices presented in the path, in addition to the length of the path.

Let u, v be two vertices of a connected graph G. Then the d-length of a u-v path defined as $d^d(u,v) = d(u,v) + deg(u) + deg(v) + deg(u) deg(v)$, where d(u,v) is the shortest distance between the vertices u and v

In this paper, we introduced the concept of radio d-distance labeling of a graph G. Radio d-distance labeling is a function f from V(G) to \mathbb{N} satisfying the condition $d^{d}(u, v) + |f(u) - f(v)| \ge 1 + diam^{d}(G),$ where $diam^d(G)$ is the d-distance diameter of G. A d-distance radio labeling number of G is the maximum label assigned to any vertex of G. It is denoted by $rn^{Gd}(G)$. Let G be a connected graph of diameter d and let k an integer such that $1 \le k \le d$. A radio k-coloring of G is an assignment f of colors (positive integers) to the vertices of G such that $d(u,v) + |f(u) - f(v)| \ge 1 + k$ for every two distinct vertices u, v of G. The radio k-coloring number $rc_k(f)$ of a radio k-coloring f of G is the maximum color assigned to any vertex of G. The radio k-chromatic number $rc_k(G)$ $\min\{rc_k(f)\}$ over all radio k-colorings f of G. A radio k-coloring f of G is a minimal radio k-coloring if $rc_k(f) = rc_k(G)$. When k = Diam(G), the resulting radio k-coloring is called radio coloring of G. The radio number of

R. Adlin Queen
Research Scholar (Reg. no:23113232092004),
Department of Mathematics,
St. Judes college Thoothoor, Tamil Nadu
Affiliated to Manonmaniam Sundaranar University,
Abishekapatti, Tirunelveli

G is defined as the minimum span of a radio coloring of G and is denoted as rn(G).

Radio labeling can be regarded as an extension of distance-two labeling which is motivated by the channel assignment problem introduced by W. K. Hale [6]. G. Chartrand et al.[2] introduced the concept of radio labeling of graph. Also G. Chartrand et al.[3] gave the upper bound for the radio number of path. The exact value for the radio number of path and cycle was given by Liu and Zhu [10]. However G. Chartrand et al.[2] obtained different values for them. They found the lower and upper bound for the radio number of cycle. Liu [9] gave the lower bound for the radio number of Tree. The exact value for the radio number of Hypercube was given by R. Khennoufa and O. Togni [8]. In [4] C. Fernandez et al. found the radio number for complete graph, Star graph, Complete Bipartite graph, Wheel graph and Gear graph. In this paper, we fined the radio d-distance labeling of some basic graphs.

II. MAIN RESULTS

Theorem 2.1

The radio d-distance number of the complete graph, $rn^d(K_n) = n \forall n$

Proof

Let,
$$V(K_n) = \{v_1, v_2, \dots, v_n\}$$
 be the vertex set

then,
$$d^d(v_i, v_j) = n^2$$
 for $1 \le i, j \le n$

It is obvious that the $diam^d(K_n) = n^2$

The radio d-distance condition is $d^d(u,v) + |f(u) - f(v)| \ge 1 + diam^d(G) = n^2 + 1$

Now, fix
$$f(v_1) = 1$$

$$d^d(v_1, v_2) + |f(v_1) - f(v_2)| \ge n^2 + |1 - f(v_2)|$$

$$> n^2 + 1$$

 $|1 - f(v_2)| \ge 1$, which implies $f(v_2) = 2$

ISSN: 2278-0181

$$f(v_i) = i, 1 \le i \le n$$

Hence,
$$rn^d(K_n) = n, \forall n$$

Theorem 2.2

The radio d-distance number of a path $rn^d(P_n) \le n^2 - 4n + 10$, $n \ge 4$

Proof

Let $V(P_n)=\{v_1,v_2,\dots,v_n\}$ be the vertex set and $E(P_n)=\{v_iv_{i+1}:1\leq i\leq n-1\}$ be the edge set

Then,
$$d^d(v_1, v_n) = d^d(v_2, v_n) = n + 2$$
,
 $d^d(v_1, v_2) = d^d(v_{n-1}, v_n) = 6$, $d^d(v_i, v_{i+1}) = 9$;
 $2 \le i \le n - 2$, $d^d(v_2, v_{n-1}) = n + 5$

It is clear that
$$diam^d(P_n) = n + 5$$

Without loss of generality $f(v_1) < f(v_2) < \cdots < f(v_n)$

We shall check the radio d-distance condition
$$d^d(u, v) + |f(u) - f(v)| \ge 1 + diam^d(G) = n + 6$$

Fix
$$f(v_1) = 1$$
 for (v_1, v_2)
 $d^d(v_1, v_2) + |f(v_1) - f(v_2)| \ge 6 + |1 - f(v_2)| \ge n + 6$
 $|1 - f(v_2)| \ge n$, which implies $f(v_2) = n + 1$

For
$$(v_2, v_3)$$

 $d^d(v_2, v_3) + |f(v_2) - f(v_3)| \ge 9 + |n+1-f(v_3)| \ge n+6$
 $|n+1-f(v_3)| \ge n-3$, which implies $f(v_3) = 2n-2$

$$\therefore f(v_i) = n(i-1) - 3i + 7, \ 2 \le i \le n-1$$

Hence,
$$rn^d(P_n) \le n^2 - 4n + 10$$
, $n \ge 4$

Note.
$$rn^d(P_n) = n$$
 if $n = 2,3$

Theorem 2.3

The radio d-distance number of a star graph, $rn^d(K_{1,n}) = 2n^2 - 4n + 3$, $n \ge 3$

Proof.

Let $V(K_{1,n}) = \{v_0, v_1, v_2, ..., v_n\}$ be the vertex set, where v_0 be the central vertex and

$$E(K_{1,n}) = \{v_0 v_i ; 1 \le i \le n\}$$
 be the edge set

Then,
$$d^d(v_0, v_i) = 2n + 2$$
; $1 \le i \le n$, $d^d(v_i, v_j) = 5$; $1 \le i, j \le n$; $i \ne j$

So,
$$diam^d(K_{1,n}) = 2n + 2$$

Without loss of generality,

$$f(v_1) < f(v_0) < f(v_2) < \dots < f(v_n)$$

We shall check the radio Gd-distance condition

$$d^{d}(u, v) + |f(u) - f(v)| \ge 1 + diam^{d}(G) = 2n + 3$$

Fix
$$f(v_1) = 1$$
, for (v_1, v_0)

$$d^d(v_1, v_0) + |f(v_1) - f(v_2)| \ge 2n + 2 + |1 - f(v_0)|$$

$$\ge 2n + 3$$

$$|1 - f(v_0)| \ge 1$$
, which implies $f(v_0) = 2$

For
$$(v_1, v_2)$$

 $d^d(v_1, v_2) + |f(v_1) - f(v_2)| \ge 5 + |1 - f(v_2)| \ge 2n + 3$
 $|1 - f(v_2)| \ge 2n - 2$, which implies $f(v_2) = 2n - 1$

For
$$(v_2, v_3)$$

$$d^d(v_2, v_3) + |f(v_2) - f(v_3)| \ge 5 + |2n - 1 - f(v_3)|$$

$$\ge 2n + 3$$

$$|2n - 1 - f(v_3)| \ge 2n - 2$$
, which implies $f(v_3) = 4n - 3$

$$f(v_i) = (2i - 2)n - 2i + 3, \ 1 \le i \le n$$

Hence,
$$rn^d(K_{1n}) = 2n^2 - 4n + 3, n \ge 3$$

Theore. 2.4

The radio d-distance number of bistar graph, $rn^d(B_{n,n}) = 2n^3 + 8n^2 - 4n + 2, \ n \ge 2$

Proof

Let
$$V(B_{n,n}) = \{v_1, v_2, \dots, v_n, x_1, x_2, u_1, u_2, \dots, u_n\}$$

be the vertex set

and
$$E(B_{n,n}) = \{x_1v_i, x_2u_i, x_1x_2, 1 \le i \le n\}$$
 be the edge set

Then,
$$d^d(x_1, v_i) = d^d(x_2, u_i) = 2n + 4$$
; $1 \le i \le n$, $d^d(x_1, x_2) = (n + 2)^2$, $d^d(u_i, v_j) = 6$; $1 \le i, j \le n$, $i \ne j$, $d^d(v_i, v_j) = d^d(u_i, u_j) = 5$; $1 \le i, j \le n$

It is clear that
$$diam^d(B_{nn}) = (n+2)^2 = n^2 + 4n + 4$$

Without loss of generality,
$$f(u_1) < \cdots < f(u_n) < f(x_2) < f(x_1) < f(v_1) < \dots < f(v_n)$$

We shall check the radio d-distance condition $d^d(u, v) + |f(u) - f(v)| \ge 1 + diam^d(G) = n^2 + 4n + 5$

Fix,
$$f(u_1) = 1$$
, For (u_1, u_2)

$$d^d(u_1, u_2) + |f(u_1) - f(u_2)| \ge 5 + |1 - f(u_2)|$$

$$\ge n^2 + 4n + 5$$

$$|1 - f(u_2)| \ge n^2 + 4n$$
, which implies $f(u_2) = n^2 + 4n + 1$

For
$$(u_{2}, u_{3})$$

$$d^{d}(u_{2}, u_{3}) + |f(u_{2}) - f(u_{3})|$$

$$\geq 5 + |n^{2} + 4n + 1 - f(u_{3})|$$

$$\geq n^{2} + 4n + 5$$

$$|n^2 + 4n + 1 - f(u_3)| \ge n^2 + 4n$$
 which implies

$$f(u_3) = 2n^2 + 8n + 1$$

$$f(u_i) = n^2(i-1) + n(4i-4) + 1, \ 1 \le i \le n$$

Therefore,
$$f(u_n) = n^3 + 3n^2 - 4n + 1$$

For
$$(u_n, x_2)$$

$$d^{d}(u_{n}, x_{2}) + |f(u_{n}) - f(x_{2})|$$

$$\geq 2n + 4 + |n^3 + 3n^2 - 4n + 1 - f(x_2)|$$

ISSN: 2278-0181

$$\geq n^2 + 4n + 5$$

$$|n^3 + 3n^2 - 4n + 1 - f(x_2)| \ge n^2 + 2n + 1$$
, which implies $f(x_2) = n^3 + 4n^2 - 2n + 2$

For
$$(x_2, x_1)$$

$$d^{d}(x_{2},x_{1}) + |f(x_{2}) - f(x_{1})|$$

$$\geq n^{2} + 4n + 4 + |n^{3} + 4n^{2} - 2n + 2 - f(x_{1})|$$

$$\geq n^{2} + 4n + 5$$

$$|n^3 + 4n^2 - 2n + 2 - f(x_1)| \ge 1$$
, which implies $f(x_1) = n^3 + 4n^2 - 2n + 1$

For
$$(x_1, v_1)$$

$$d^{d}(x_{1},v_{1}) + |f(x_{1}) - f(v_{1})|$$

$$\geq 2n + 4 + |n^{3} + 4n^{2} - 2n + 1 - f(v_{1})| \geq n^{2} + 4n + 5$$

$$|n^{3} + 4n^{2} - 2n + 1 - f(v_{1})| \geq n^{2} + 2n + 1, \text{ which implies } f(v_{1}) = n^{3} + 5n^{2} + 2$$

For
$$(v_1, v_2)$$

$$d^{d}(v_{1}, v_{2}) + |f(v_{1}) - f(v_{2})|$$

$$\geq 5 + |n^{3} + 5n^{2} + 2 - f(v_{2})| \geq n^{2} + 4n + 5$$

$$|n^{3} + 5n^{2} + 2 - f(v_{2})| \geq n^{2} + 4n, \text{ which implies}$$

$$f(v_{2}) = n^{3} + 6n^{2} + 4n + 2$$

For
$$(v_2, v_3)$$

$$d^{d}(v_{2}, v_{3}) + |f(v_{2}) - f(v_{3})|$$

$$\geq 5 + |n^{3} + 6n^{2} + 4n + 2 - f(v_{3})| \geq n^{2} + 4n + 5$$

$$|n^{3} + 6n^{2} + 4n + 2 - f(v_{2})| \geq n^{2} + 4n$$
, which implies
$$f(v_{2}) = n^{3} + 7n^{2} + 8n + 2$$

$$f(v_i) = n^3 + (i+4)n^2 + (4i-4)n + 2, \ 1 \le i \le n$$
Hence, $rn^d(B_{n,n}) = 2n^3 + 8n^2 - 4n + 2, \ n \ge 2$

Theorem 2.5

The radio d-distance number of a subdivision of a star, $rn^dS(K_{1,n}) = 6n^2 - 12n + 6$, $n \ge 3$

Proof

Let $V(S(K_{1,n})) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$ be the vertex set, where v_0 is the central vertex and $E(S(K_{1,n})) = \{v_0u_i, v_iu_i; 1 \le i \le n\}$ be the edge set

Then,
$$d^{Gd}(v_0, u_i) = 3n + 3; 1 \le i \le n$$
, $d^{Gd}(v_i, v_j) = 7, d^{Gd}(u_i, u_j) = 10; 1 \le i, j \le n$ $d^{Gd}(v_i, u_i) = 6; 1 \le i \le n$

It is clear that
$$diam^d \left(S(K_{1,n}) \right) = 3n + 3$$

Without loss of generality $f(u_1) < f(v_0) < f(u_2) < \cdots < f(u_n) < f(v_1) < \cdots < f(v_n)$

We shall check the radio d-distance condition $d^d(u, v) + |f(u) - f(v)| \ge 1 + diam^d(G) = 3n + 4$

Fix
$$f(u_1) = 1$$
, for (u_1, u_0) $1 \le i \le n$

$$d^d(u_1, v_0) + |f(u_1) - f(v_0)| \ge 3n + 3 + |1 - f(v_0)|$$

$$> 3n + 4$$

 $|1 - f(v_0)| \ge 1$ which implies $f(v_0) = 2$

For
$$(u_i, u_{i+1})$$
, $1 \le i \le n-1$
 $d^d(u_1, u_2) + |f(u_1) - f(u_2)| \ge 10 + |1 - f(u_2)|$
 $\ge 3n + 4$
 $|2 - f(u_2)| \ge 3n - 6$, which implies $f(u_2) = 3n - 5$

For
$$(u_2, u_3)$$
, $1 \le i \le n$
 $d^d(u_2, u_3) + |f(u_2) - f(u_3)| \ge 10 + |3n - 5 - f(u_3)|$
 $> 3n + 4$

$$|3n - 5 - f(u_3)| \ge 3n - 6$$
, which implies $f(u_3) = 6n - 11$

$$f(u_i) = n(3i-3) - 6i + 7, 1 \le i \le n$$

Therefore,
$$f(u_n) = 3n^2 - 9n + 7$$

For
$$(u_n, v_i)$$
, $1 \le i \le n$

$$d^d(u_n, v_1) + |f(u_n) - f(v_1)|$$

$$\ge 8 + |3n^2 - 9n + 7 - f(v_1)| \ge 3n + 4$$

$$|3n^2 - 9n + 7 - f(v_1)| \ge 3n - 4$$
 which implies $f(v_1) = 3n^2 - 6n + 3$

For
$$(v_i, v_{i+1})$$
, $1 \le i \le n-1$
 $d^d(v_1, v_2) + |f(v_1) - f(v_2)|$
 $\ge 7 + |3n^2 - 6n + 3 - f(v_2)| \ge 3n + 4$
 $|3n^2 - 6n + 3 - f(v_2)| \ge 3n - 3$, which implies
 $f(v_2) = 3n^2 - 3n$

For
$$(v_2, v_3)$$

 $d^d(v_2, v_3) + |f(v_2) - f(v_3)| \ge 7 + |3n^2 - 3n - f(v_3)|$
 $\ge 3n + 4$
 $|3n^2 - 3n - f(v_3)| \ge 3n - 3$, which implies
 $f(v_3) = 3n^2 - 3$

$$f(v_i) = 3n^2 + n(3i - 9) - 3i + 6, \ 1 \le i \le n$$

Hence,
$$rn^d S(K_{1n}) \le 6n^2 - 12n + 6, n \ge 3$$

REFERENCES

- [1] F. Buckley and F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
- [2] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," Bulletin of the Institute of Combinatories and Its Applications, vol. 33,pp. 77-85, 2001.
- [3] G. Chartrand, D. Erwinn, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., 43, 43-57(2005).
- [4] C. Fernandaz, A.Flores, M.Tomova, and C.Wyels, "The Radio Number of Gear graphs," arXiv:0809. 2623, September 15, (2008).
- [5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J.Combin. 19(2012)"£Ds6.
- [6] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497-1514.
- [7] F.Harary, Graph Theory, Addition Wesley, New Delhi(1969).
- [8] T. Jackuline, J. Golden Ebenezer Jebamani and D. Premalatha, "d-Distance in Graphs", Vol 18, Issue 8, August 2022 ISSN 1673-064X
- [9] R. Khennoufa and O. Togni, "The Radio Antipodal and Radio Numbers of the Hypercube", accepted in 2008 publication in ArsCombinatoria.
- [10] D. Liu, X. Zhu, "Radio number for trees", Discrete Math.308(7)(2008) 1153-1164.

Published by:

http://www.ijert.org

ISSN: 2278-0181

Vol. 12 Issue 07, July-2023

- D. Liu, X.Zhu, Multilevel distance labeling for paths and cycles, SIAM J. Discrete Math. 19(3)(2005) 610-621.
 T. Nicholas, K. John Bosco, Radio D-distance Number of some [11]
- [12]
- graphs, IJESR, vol.5 Issue 2, Feb.2017.

 T. Nicholas, K. John Bosco, M. Antony, V. Viola, Radio mean D-distance Number of Banana Tree, Thorn Star and Cone Graph, IJARIIT, Vol.5 Issue 6, Feb.2017, ISSN:2456 132X

 T. Nicholas, V. Viola, "On Radio D-distance Number of some basic graphs" IJIRCT Vol 4 Issue 3 ISSN 2454-5988 [13]
- [14]