
RDB2OWL2: Schema and Data Conversion

from RDB into OWL2

Larbi Alaoui

International University of Rabat

11100 Sala Al Jadida, Morocco

Oussama El Hajjamy, Mohamed Bahaj
Department of Mathematics and Informatics

University Hassan I, FSTS

Settat, Morocco

Abstract— In this paper we propose a process of automatic

mapping of relational database (RDB) schema and data to

OWL2. This process is an extension of our previous work on

converting RDB to OWL by considering construction elements

of OWL2 and other important RDB aspects such as those

related to self relation relations, cyclic relations, check

constraints and binary relations with attributes. Our process

retrieves the metadata of the relational schema, extracts the

semantics of its data and provides a model of ontology while

covering the semantic of the source database, and then

populates the ontology by individuals using the existing records

in the various tables. In order to apply our approach in real

environments, we have developed a tool RDB2OWL2 that

implements our mapping algorithm for our conversion model

and demonstrates the effectiveness and power of our strategy.

Keywords— Ontologies; semantic web; relational database RDB;

OWL 2

I. INTRODUCTION

Applications based on ontologies are more and more

numerous and evolving very fast particularly due to the

development of semantic web technologies ([1]-[27]).

However the large masses of data are always stored in

relational databases (RDB). Therefore the need to find a

migration solution which extracts the semantics of the data

stored in RDB and uses them to construct views of dynamic

data (ontologies) is a very active research area. As a result,

this problem has been the subject of a large body of research

work in recent years and various methods have been

proposed to come up with solutions to it [1-6], [8-10] , [13-

14] and [17-18].

In our previous work [3] we presented an investigation into

approaches and techniques used for converting RDB into

OWL. We analyzed existing conversion works and identified

different gaps and problems within them. We developed a

model that extracts all implicit and explicit information

contained in RDB such those related to dependencies

between relations (e.g., transitivity, binary relations) and

different constraints (e.g., integrity constraints, unique, not

Null).

In the present work we aim to extend our approach given

in [3] to address other very important aspects that have not

been touched yet in the world of conversion from RDB to

OWL. These aspects are mainly related to circular

relationships, self-referenced relationships, binary relations

with additional attributes including many-to-many relations,

and check constraints (Check values, Check in). We also use

OWL2 as a target ontology language to achieve a significant

improvement of our previous conversion model by adding the

aforementioned aspects while keeping the semantics of the

RDB data and respecting their consistency and integrity.

It is to be noticed that the use of OWL2 to build the

resulting ontology allows us to benefit from a system of

inference that is more powerful as well as from the possibility

of a further check of consistency. OWL2 was adopted as a

W3C recommendation in December 2009 [25]. It extends

OWL 1 with new features based on real use in applications. It

is indeed possible with OWL2 to define more constructions

to express additional restrictions and get new characteristics

on the properties of object modeled. Also the functional-style

syntax of OWL2 (also called abstract syntax) which is a

compact syntax makes it possible to easy understand the

structure of ontologies expressed in OWL2 [16].

The remainder of this paper is organized as follows.

Section2 discusses the methods for extracting semantics

using ontology engineering from relational databases and

gives the proposed mapping rules. To illustrate how to

combine the rules together, Section 3 outlines the automatic

mapping algorithm. The implementation based on the

conversion approach is presented in section 4. Finally Section

5 summarizes our work with a conclusion.

II. RDB TO OWL2 MAPPING MODEL

In this section we detail our migration solution from a

relational database into a web format OWL2 and give a

complete list of rules for building the ontology from the RDB

source. This solution covers both the migration of the

relational schema and of the relational data instances.

 Our approach begins with the extraction of the structure of

the source database using the metadata. Then, by applying the

rules of transformation from RDB to OWL2 we create the

classes and the properties of the objects and types of data that

make up the model of the ontology.

In the next two sections we give an algorithm for our

mapping model and an implementation of it. The algorithm

creates the complete structure and data of the resulting

ontology obtained by the conversion model.

A. RDB schema

Relational databases are a well established technology

that allows storing data into tables according to a predefined

schema. The schema of a database reflects the way how data

are structured in form of tables.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

962

The definition of Relational database result in a table of

metadata or formal descriptions of the relations (tables),

attributes (columns) and constraints (Integrity constraints,

unique constraint, Not null constraint …).

The notations we adopt in this paper related to the

information stored in the metadata of a relational database are

the following ones.

- For relationships

 BinRel(R, A, B): R is a binary relation between two

relations A and B.

 PKAndFKRelation(R): the primary key of R also acts as a

foreign key.

- For Primary Keys

 PK(x, R): x is the single or composite primary key of the

relation R.

 IsPK(x, R): return true if x is a single or composite

primary key in relation R.

 NonPK(x, R): x is an attribute in relation R that does not a

primary key.

- For foreign keys

 FK(x, R, y, S): x is a single or composite foreign key in

relation R that references y in relation S.

 IsFK(x, R) : return true if x is a single or composite

foreign key in relation R

 NonFK(x, R): x is an attribute in relation R that is not a

foreign key.

 FKAttributeReferencedSameTable: A foreign key that

references another attribute in the same table.

 RefTable: Referenced table.

- For attributes

 Attr(x, R): x is an attribute in relation R.

 twoAttr(x, y, R): R contains exactly two attributes x and

y

B. Ontology preparation

Classes, data types, object properties and data properties

are entities, and they are all are uniquely identified by a URI.

So, to avoid any ambiguity in interpretation of the different

identifiers of our ontology, we create a model parameterized

by a namespace as follows:

 For classes, the namespace receives

OntologyURI/DatabaseName#tableName.

 For properties, the namespaces receives

OntologyURI/DatabaseName#TableName-fieldName.

C. Mapping Relations

Before introducing our relationships mapping rules, we

briefly give a new categorization for all types of relations.

The relations are divided into the four following distinct

types.

Binary relation

A relation R is called a binary relation BinRel(R, A, B)

between two relations A and B if there exist a, b, c, d such

that

 A≠R and B≠R

 twoAttr(a, b, R)

 PK(a, R) and PK(b, R)

 FK(a, R, c, A) and FK(b, R, d, B)

PK and FK relation

A relation R is called a primary and foreign key relation

PKAndFKRelation(R) if there exist x, y such that

 PK(x, R)

 FK(x, R, y, S)

Many-to-many relation with additional attributes
 It is any binary relation BinRel(R, A, B) with additional

attributes for the relation itself.

Normal relation

Every relation R which is not a binary relation, a PK and FK

relation and a many-to-many relation is called a normal

relation.

The different mapping rules for relations are summarized

in Table 1.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

963

TABLE I. RULES FOR MAPPING RELATIONS
Rule Rule Definition Equivalent into OWL 2

R1 Every normal relation is converted into simple

class

Declaration(Class(:TableName))

R2 Every binary relation is transformed into two

object properties (ObjectProperty) that are

mutually inverse

Declaration(ObjectProperty(:RefeTable1_RefTable2))

ObjectPropertyDomain(:ReTable1_RefTable2 :RefTable1)

ObjectPropertyRange(:ReTable1_RefTable2 :RefTable2)

Declaration(ObjectProperty(:RefTable2_RefTable1))

ObjectPropertyDomain(:RefTable2_RefTable1 :RefTable2)
ObjectPropertyRange(:RefTable2_RefTable1 :RefTable1)

InverseObjectProperty(:RefTable1_RefTable2 :RefTable2_RefTable1)

R3 If the primary key of a table T1 is at the same

time a foreign key that is referencing a field in

another table T2, then the generated class from

T1 must be a subclass of the generated class

from T2

Declaration(Class(:T1))

SubClassOf(:T2 :T1)

R4 For each Many-to-many relation R with

additional attributes we create a new class with
two pairs of inverse object properties, and we

add a data property for every additional

attribute.

Declaration (Class(:R))

Declaration (ObjectProperty(: R_A))

ObjectPropertyDomain(: R_A : R)

ObjectPropertyRange(: R_A : A)
Declaration (ObjectProperty(: A_R))

ObjectPropertyDomain(: A_R : A)

ObjectPropertyRange(: A_R : R)
InverseObjectProperty(: R_A : A_R)

ObjectPropertyDomain(: R_B : R)
ObjectPropertyRange(: R_B : B)

Declaration (ObjectProperty(: B_R))

ObjectPropertyDomain(: B_R : B)
ObjectPropertyRange(: B_R : R)

InverseObjectProperty(: R_B : B_R)

Declaration(DataProperty(:AdditionalAttribute))

DataPropertyDomain(: AdditionalAttribute : R)
DataPropertyRange(: AdditionalAttribute xsd: AdditionalAttributeType)

D. Mapping Attributes

In relational data base, an attribute x in relation R can be

one of the following

 Primary Key: PK(x, R)

 Foreign Key: FK(x, R, y, S)

 Normal attribute: NonFK(x, R) and NonPK(x , R).

Table II gives all associated conversion rules for such

attributes.

TABLE II. RULES FOR MAPPING ATTRIBUTES

Rule Rule Definition Equivalent into OWL 2

R5 For each normal attribute we create a data type property by respectively
associating with its domain and range the URI of the class corresponding

to the attribute and the XSD type corresponding to the type of the

attribute in the RDB

Declaration(DataProperty(:AttributeName))
DataPropertyDomain(:AttributeName :TableName)

DataPropertyRange(:AttributeName xsd:AttributeType)

R6 A primary key attribute uniquely identifies the records in relational

database. This implies that the values of the data type property that

represent this attribute must be unique. Therefore, these properties must
be declared with HasKey properties.

Declaring a predicate as a HasKey property is similar to saying that it is

InverseFunctionalObjectProperty. The difference between both is that:

 HasKey is applicable only to individuals that are explicitly named by

an IRI in ontology.

 InverseFunctionalObjectProperty is applicable to any kind of
individual (named individual, anonymous individual, and any

individual whose existence is implied by existential quantification).

Declaration(Data Property(:hasAttributeName))

DataPropertyDomain(:hasAttributeName :TableName)

DataPropertyRange(:hasAttributeName xsd:AttributeType)
HasKey(:TableName :hasAttributeName)

R7 For relations R and S, if an attribute x in R references another attribute y

in S, then an object property is generated, and with its domain and range

we respectively associate the URI of the class corresponding to R and
the URI of the class that represents S. To ensure atomicity of the

attribute we declare the object property as a "FunctionalObjectProperty".

Declaration(ObjectProperty(: R_ S))

ObjectPropertyDomain(: R_ S : R)

ObjectPropertyRange(: R_ S : S)
FunctionalObjectProperty(R_ S)

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

964

E. Mapping Constraints:

In our transformation rules, other constraints, such as

UNIQUE, NOT NULL and CHECK are also taken into

account to make the mapping complete. We aim to preserve

as many constraints as possible. The associated conversion

rules are given in table III.

TABLE III. RULES FOR MAPPING CONSTRAINTS

Rule Rule Definition Equivalent into OWL 2

R8 For each attribute A in a relation R with a UNIQUE constraint we set

maxCardinality restriction to 1 in order to prevent the creation of
individuals having the same value

SubClassOf(:R DataMaxCardinality(1 :A xsd:TypeOfA

 [Optional])

R9 For each attribute A in a relation R with a NOT NULL constraint we
set DataMinCardinality restriction to 1

SubClassOf(:R DataMinCardinality(1 :A xsd:TypeOfA
 [Optional])

R10 If the attribute A is declared as UNIQUE and NOT NULL at the

same time then we set DataExactCardinality to 1
(DataExactCardinality is equivalent to DataMinCardinality=1 and

DataMaxCardinality=1)

SubClassOf(:R DataExactCardinality(1 :A xsd:TypeOfA

 [Optional])

R11 For attributes with the special constraints CHECK VALUES or

CHECK IN Key, we treat them as follows:

 CHECK number x: denotes all values that x can take. In this case
we use the facets xsd:minInclusive, xsd:maxInclusive,

xsd:minExclusive or xsd:maxExclusive.

 CHECK IN constraint on a column allows only certain values for

this column: In this case we use data range DataOneOf which is

property defines a datatype with a fixed predefined value space.

The following expression contains all individuals that are connected

by a data property hasX to an integer that is strictly less than 100:

DataSomeValuesFrom(a:hasX DatatypeRestriction(

xsd:integer xsd:maxExclusive "100"^^xsd:integer))

The following expression shows that the weekend data property can

take one of values “Sunday” or “Saturday”

DatatypeDefinition(

 :Weekend
 DataOneOf(" Sunday "^^xsd:String " Saturday "^^xsd:String))

F. Mapping Transitive Chain

Let R1, R2 and R3 be three different relations. If there is a

relationship between R1 and R2, and if there is another

relation between R2 and R3, then there is a transitivity chain

between R1 and R3. The associated transformation rule is

given in table IV.

TABLE IV. RULES FOR MAPPING TRANSITIVE RELATIONS

Rule Rule Definition Equivalent into OWL 2

R12 For relations T1, T2 and T3, if there is a foreign key relationship

between T1 and T2 and if there is also a foreign key relationship
between T2 and T3, then there is a transitive chain between T1

and T3. We use TransitiveObjectProperty axiom to express it.

Declaration(ObjectProperty(: T1_T3))

ObjectPropertyDomain(: T1_T3 : T1)
ObjectPropertyRange(: T1_T3 : T3)

TransitiveObjectProperty(:T1_T3)

G. Mapping Cyclic Relations

For a set of relations R1…Rn (n ≥ 1) such that Ri is

referenced by R(i+1) (1 ≤ i ≤ n) and Rn is referenced by R1,

we say that a cyclic relationship exists between these

relations. Note that if n= 1 then we get a self-referenced

relation, and if n ≥ 2 then we get a circular relationship

between the relations. In this case we have the following two

definitions.

Definition1. A self-referenced relation is defined as a

relation which has a foreign key column referencing its own

primary key (∃ x, y ∈ R / FK(x, R, y, R) and PK(y, R)).

Definition2. A circular relation is defined as a set of

relations R1 ... Rn (n ≥ 2), where Ri is referenced by Ri+1

(1 ≤ i ≤ n) and Rn is referenced by R1.

The mapping rules for self-referenced relations and circular

relations are given in table V.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

965

TABLE V. RULES FOR MAPPING CYCLIC RELATIONS

Rule Rule Definition Equivalent into OWL 2

R13 Each self-referenced relation is transformed to:

 Object property by associating with both its domain and its

range the name of the generated Class.

 To ensure that the Object Property relates only 2 instances of

the same class we add the self restriction objectHasSelf

Declaration(ObjectProperty(:hasFKAttributeReferencedSameTale))
ObjectPropertyDomain(:hasFKAttributeReferencedSameTale

 :TableName)

ObjectPropertyRange(:hasFKAttributeReferencedSameTale
 :TableName)

ObjectHasSelf(: hasFKAttributeReferencedSameTale)

R14 A circular relation composed of a set of different relations can
be transformed using a chain axiom property and self restriction

objectHasSelf.

SubObjectPropertyOf(ObjectPropertyChain(:R1_R2
 :R2_R3

 :Rn_R1) :Z)
SubClassOf(ObjectHasSelf(:Z) : R1_R1)

H. Mapping Records

The step of mapping records focuses on the conversion of

records of the different RDB tables to OWL instances.

Each record is a set of pairs (attribute, value) indicating the

value for an attribute of the record.

Table VI gives the conversion rule we adopt for such a

conversion.

TABLE VI. RULES FOR MAPPING RECORDS

Rule Rule Definition Equivalent into OWL 2

R15 Each record of relational database (isNotBinRel) is converted

to an individual of ontology (or assertion) whose type is the
class that represents the record table. And to guarantee the

uniqueness of these individuals, we propose to give for each of
them a name obtained by concatenating the name of the table

and the primary key value corresponding to the converted

record.
Each record of a relation with a foreign key value which

connects it to another record in another relation is converted

into an individual containing an object property linking the
classes corresponding to the two relations.

For binary relations, we parse records from the table, and for

each record we use SQL Queries to locate individuals that
represent referenced records in order to link them to each other.

ClassAssertion (:TableName :TableName_idTuple)

DataPropertyAssertion(:Attribute1 TableName_idTuple
 “Value” ^^xsd:TypeAttribute1)

DataPropertyAssertion(:Attribute2 TableName_idTuple
 “Value” ^^xsd:TypeAttribute2)

--

ObjectPropertyAssertion(:TableName_RefTable

 :TableName_idTuple :RefTable_FK)

 (if there is a relationship with other tables)

III. MAPPING ALGORITHM

In this section, we present our algorithm for the automatic

construction of OWL Ontology from a relational database.

This algorithm takes into consideration all the

aforementioned conversion rules.

A. Algorithm for mapping the RDB schema

The schema mapping procedure is divided into three steps.

The first step converts every relation in our database schema

and creates the equivalent ontology in owl2.

The second step finds all transitive relations in the

relational database and translates them to object property by

adding the TransitiveProperty axiom. The last step detects

and extracts all circular relations in the database schema and

converts them into OWL2 applying the mapping circular

relations rule.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

966

Procedure MappingShema(S)

Input: Schema S
Begin

 MappingRelations(S)

 MappingTransitiveChain(S)
 MappingCircularRelation(S)

End

Applying the mapping relation rules, the procedure

MappingRelations() distinguishes between four types of

relationships.

Procedure MappingRelations(S)

Input: Schema S, Table T
Begin

 For each Ti in S loop

 If (isBinaryRelation(Ti)=true) then
 MappingBinaryRelation(Ti)

 Else if (isPKandFKRelation(Ti)=true) then

 MappingPKandFKRelation(Ti)
 MappingAttributes(Ti)

 Else if (isManyToManyRelation(Ti)=true) then

 MappingManyToManyRelation(Ti)
 MappingAttributes(Ti)

 Else

 MappingNormalRelation(Ti)
 MappingAttributes(Ti)

 End if

 End loop
End

 MappingAttributes() procedure uses the metadata from

the data dictionary to define the field types.

We get a referenced table T’ and for each foreign key

attribute x in T, if:

 T= T’ (FK(x, T, y, T), then we apply the self-

referenced mapping rule

 If T≠ T’, we apply the foreign key mapping rule.

Procedure MappingAttributes(T)
Input: Table T, Attribute A

Begin
 For each Ai in T loop

 If (isPK(Ai)=true) then

 MappingPK(Ai)

 Else if (isFK(Ai)=true) then

 T’=getReferencedTable(Ai, T)

 If (T=T’) then
 MappingSelfReferencedRelation(Ai, Ti)

 Else

 MappingFK(Ai)
 End if

 Else

 MappingNormalAttribute(Ai)
 MappingConstraints(Ai)

 End if

 End loop
End

MappingConstraints() procedure is applied to each

normal attribute, and cardinalities are learned from the

metadata in data dictionary:

 if an attribute is NOT NULL, then the minimum

cardinality is 1.

 if an attribute is UNIQUE, then the maximum

cardinality is 1.

 if an attribute is UNIQUE and NOT NULL at the

same time, then the exact cardinality is 1.

Procedure MappingConstraints(A)

Input: Attribute A

Begin
 If ((isUniqueAttribute(A)=true)

 and (isNotNullAttribute(A)=true)) then

 MappingUniqueAndNotNullAttribute(A)
 Else if (isUniqueAttribute(A)=true) then

 MappingUniqueAttribute(A)

 Else if (isNotNullAttribute(A)=true) then
 MappingNotNullAttribute(A)=true)

End

The following MappingTransitiveChain() procedure finds

all transitive relations in the relational database and convert

them to object property by adding the TransitiveProperty

axiom.

Procedure MappingTransitiveChain(S)
Input: Schema S, Table T, Attribute A

Begin

 For each Ti in S loop
 For each Aj in Ti loop

 If (isFK(Aj)=true) then

 T’ = getReferencedTable(Aj, Ti)
 If ((Ti != T’) and (isBinaryRelation(Ti)=false) then

 CheckTransitiveChain(Ti, T)

 End if
 End if

 End loop

 End loop
End

The procedure CheckTransiveChain() used by

MappingTransitiveChain() is given as follows.

Procedure CheckTransiveChain(T, T’)

Input: Table T, Table T’, Attribute A

Begin
 For each Ai in T loop

 If (isFK(Ai)=true) then

 T” = getReferencedTable(Aj, T’)
 If ((T’ != T”) and (T != T”)) then

 CreateTranstiveChain(T, T”)

 End if
 End if

 End loop

End

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

967

MappingCircularRelation() procedure uses a recursive

function (FindCircularRelation()) to detect if there are any

circular relations in relational schema.

Procedure MappingCircularRelation(S)

Input: Schema S, List ListOfTable, List ReultList

Begin
 ListOfTable=getAllListTable(S)

 While (ListOfTable != null) do

 tbl= ListOfTable.nextElement
 ResultList = FindCircularRelation(tbl, tbl, ResultList)

 If (ResultList != null) then

 ResultList.LastElement = tbl
 End if

 CreateCircularRelation(ResultList)

 Empty(ResultList)
 End while

End

The used FindCircularRelation() finds all circular relations in

the considered relational database schema.

List FindCircularRelation(MainTable, Table, ResultList)

Input: String MainTable, String RelatedTable, List RefTableList
Output: List ResultList

Begin

 RefTableList=getReferencedTables(Table)
 While (RefTableList != null) do

 RelatedTable= RefTableList.nextElement

 If (MainTable=RelatedTable) then
 ResultList.FirstElement=RelatedTable

 Else if (FinInRefTableList(RelatedTable) = false) then

 ResultList=FindCircularRelation(MainTable,
 RelatedTable, ResultList)

 If (ResultLis t!=null) then

 ResultList.nextElement=RelatedTable
 End if

 End if

 End while
End

B. Algorithm for mapping records

The migration process of data stored as tuples in RDB

takes place in three stages. First, the relationships are divided

into two types: normal relations and binary relations.

Secondly, the RDB tuples are extracted using SQL queries.

Finally, these extracted tuples are transformed into OWL2

format.

Procedure MappingRecords(S)

Input: Schema S
Begin

 MappingData(S)

 MappingDataOfBinaryRelations(S)
End

The MappingData() procedure is the following one.

Procedure MappingData(S)
Input: Schema S, Table T

Begin

 For each Ti in S loop
 If (isBinaryRelation(Ti)=false) then

 For each RS in T loop

 individualName = Cocatenate(Ti, “_”, getPk(Ti))
 individualType = Ti

 For each P in RS loop

 PName = P.AttributeName
 PName = P.Value

 PType = P.AttributeType

 If (isFK(PName) = true) then
 Ref = getReferencedTable(PName, Ti)

 If(PValue != null) then

 OPAName = Cocatenate(Ti, “_”, Ref)
 OPADestination = Cocatenate(Ref, “_”, PValue)

 CreateObjectAssertion(OPAName, individualName,

 OPADestination)

 End if

 Else
 CreateDataAssertion(PName, idividualName, PValue,

 individualType)

 End if
 End loop

 End loop

 Else
 For each RS in Ti loop

 P1 = RS. FirstElement

 P2 = RS.LastElement
 Ref1 = getReferencedTable(P1.AttributeName, Ti)

 Ref2 = getReferencedTable(P2.AttributeName, Ti)

 OPSource = Concatenate(Ref1, “_”, P1.Value)
 OpDestination = Concatenate(Ref2, “_”, P2.Value)

 CreateObjectAssertion(Ti, OPSource, OPDestination)

 End if
 End loop

End

IV. IMPLEMENTATION AND VALIDATION

The tool RDB2OWL2 we developed to implement our

mapping algorithm from RDB to OWL2

 extracts schema and data of the to be converted

relational database,

 extracts all circularly relations,

 maps the database schema to an OWL 2 model

 and maps the database data and generates a

populated OWL2 ontology.

This tool demonstrates the effectiveness and validity of our

method. For portability and interoperability purposes, we

made it based on the Java programming language. This

eliminates the need to rebuild (recompile and relink) the code

when running the prototype in different platforms. The user

interface of RDB2OWL2 was designed using Java Swing.

RDB2OWL2. It is therefore to be considered as a MVC

(model-view-controller) application.

To extract the data and schema information, we used

MySQL. It is a multi user, multithreaded database

management system and available on most important OS

platforms. However any other relational database system can

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

968

be used (Oracle, PostgreSQL, …). It is sufficient in this case

to the appropriate JDBC driver for the database connectivity.

To illustrate the functioning of our tool RDB2OWL2 we

consider the database below (Figure 1) which includes

various characteristics and types of relationships between

tables namely, primary keys, foreign keys, binary relations,

and circular relations.

Figure 1 shows the records in the example tables and

figure 2 shows an extraction of the associated schema.

Fig. 1. Example of a RDB with different types of relationships

between tables

Fig. 2. RDB Schema Overview

The mapping results obtained by the RDB2OWL2 tool for

this sample database (Figure 2) are shown by the sample

screenshots of Figure 3.

Fig. 3. Resulting mapping of RDB schema

Fig. 4. RDB Data Overview

RDB2OWL2 also gives the possibility to extract and

display the data (Figure 4) from the relational tables. The

conversion of the data into OWL instances is done by

applying the mappingRecords() algorithm as a screenshot of

the associated display is shown in Figure 5.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

969

Fig. 5. Resulting mapping of RDB Data

The sample screenshot in Figure 6 shows both the

extracted circular relationships and their converted OWL

parts.

Fig. 6. Mapping result for circular relations

V. CONCLUSION

The increasing use of ontologies in applications and the

domination of relational databases with their over many

decades developed technologies and tools have made the

problem of migration of RDB to the web ontology a fertile

area for researchers. In [3] we analyzed different existing

works related to this topic and gave a model that generalizes

existing works with a conversion approach that automatically

extracts all the relevant structural and semantic information of

the relations stored in databases.

In this paper, we have established a global solution that

extends our previous mapping approach for a complete

automatic transformation a relational data base into OWL2.

Besides the structural constructs, our new model detects all

restrictions and hierarchies between relations out from the

tables of the database. As in our previous mapping solution,

our new one provides necessary mapping rules for various

multiplicities of relationships, different constraints, relation

transitivity using OWL2 functional syntax. Besides all these

considerations it also add mapping of circular relationship,

self-referenced relationship, binary relations with additional

attributes including many-to-many relations, and check

constraints. To our knowledge the conversion related to these

points has not been touched before.

 Compared to our previous work, our new solution

optimizes constraints extraction, and thanks to OWL 2 the

rules are also refined to be more expressive and less

complicated using more expressive constructs (e.g., hasKey,

ObjectHasSelf, exactcardinality) and its powerful and easy to

understand functional syntax. Indeed, OWL2 language

provides a large variety of powerful constructs for building

and reasoning over ontologies. OWL2 also simplifies many

programmatic tasks associated with ontologies, including

ontology querying and processing. In addition OWL2 can be

used to construct full applications that have dependencies on

complex ontologies.

REFERENCES

[1] H. Agus Santoso, S. C. Haw, Z. T. Abdul-Mehdi, "Ontology extraction

from relational database: Concept hierarchy as background
knowledge", Knowledge-Based Systems, vol.24, no.3, pp.457-464,

2011.

[2] N. Alalwan, H. Zedan, and F. Siewe, “Generating OWL Ontology for
Database Integration,” Third International Conference on Advances in

Semantic Processing, Volume 76– No.17, August 2013.

[3] L. Alaoui, O. EL Hajjamy, and M. Bahaj, “Automatic Mapping of
Relational Databases to OWL Ontology,” International Journal of

Engineering Research & Technology (IJERT), vol. 3, Issue. 4, April

2014.
[4] J. Bakkas, M. Bahaj, “Direct Migration Method of RDB to Ontology

while Keeping Semantics,” International Journal of Computer Science

and Information Security, vol. 65, No. 3, March 2013.
[5] J. Bakkas, M. Bahaj, “Generating of RDF graph from a relational

database using Jena API,” International Journal of Engineering and

Technology, vol. 5, No. 2, Apr-May 2013.
[6] J. Barrasa, Ó. Corcho, A. Gómez-Pérez, "R2O: an Extensible and

Semantically based Database-to-Ontology Mapping Language", In

Proceedings of Second Workshop on Semantic Web and Database
(SWDB2004), pp.1-17, 2004.

[7] C. Bizer, "D2R MAP - A Database to RDF Mapping Language", In

Proceedings of the 12th International World Wide Web Conference
(WWW2003), 2003.

[8] K. Čerāns, G. Būmans, "RDB2OWL: A RDB-to-RDF/OWL Mapping

Specification Language", In Proceedings of the 2011 conference on
Databases and Information Systems VI: Selected Papers from the Ninth

International Baltic Conference (DB&IS 2010), pp.139-152, IOS Press,

2011.
[9] N. Cullot, R. Ghawi, K. Yétongnon, "DB2OWL: A Tool for Automatic

Database-to-Ontology Mapping", In Proceedings of

15th Italian Symposium on Advanced Database System (SEBD 2007),
pp.491-494, 2007.

[10] N. Gherabi, K. Addakiri, and M. Bahaj, “Mapping relational database

into OWL Structure with data semantic preservation,” International
Journal of Computer Science and Information Security, vol. 10, No. 1,

January 2012.

[11] M. Hert, G. Reif, H. C. Gall, "A Comparison of RDB-to-RDF Mapping
Languages", In Proceedings of 7th International Conference on

Semantic System (I-Semantics 2011), ACM, 2011.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

970

[12] M. Li, X. Du, S. Wang, A Semi-automatic Ontology Acquisition

Method for the Semantic Web. Advances in Web-Age Information
Management, vol. 3739, pp.209-220. Springer Berlin Heidelberg 2005.

[13] M. Li, X. Du and S. Wang, “Learning ontology from Relational

Database”, in Proceedings of the Fourth International Conference on
Machine Learning and Cybernetics, Guangzhou, August 2005,18-21.

[14] H. Ling, S. Zhou “Mapping Relational Databases into OWL

Ontology,” International Journal of Engineering and Technology, Vol.
5, No. 6, Dec 2013-Jan.

[15] M. R. Louhdi, H. Behja and S. O. EL Alaoui, “A novel Method for

Generating an e-learning ontology,” International Journal of Data
Mining & Knowledge Management Process (IJDKP), Vol.3, No.6,

November 2013.

[16] W. Y. Mallede, F. Marir, and V. T. Vassilev, “Algorithms for Mapping
RDB Schema to RDF for Facilitating Access to Deep Web,” WEB

2013: The First International Conference on Building and Exploring

Web Based Environments, IARIA, 2013.
[17] K. Munir, M. Odeh, R. McClatchey, "Ontology-driven relational query

formulation using the semantic and assertional capabilities of OWL-

DL", Knowledge-Based Systems, vol.35, no.0, pp.144-159, 2012.
[18] C.Ramathilagam, M. L. Valarmathi, “A Framework for OWL DL

based Ontology construction from Relational Database using Mapping

and Semantic Rules,” International Journal of Computer Applications
(0975– 8887), Volume 76– No.17, August 2013.X

[19] M. Schneider, S. Rudolph2, G. Rudolph, “Modeling in OWL 2 without

RestrictionsarXiv: 1212.2902 v3 [cs.AI] 28 Apr 2013.

[20] J. F. Sequeda, M. Arenas, D. P. Miranker “On Directly Mapping

Relational Databases to RDF and OWL,” International World Wide
Web Conference committee (IW3C2), WWW 2012, April 16–20, 2012,

Lyon, France.

[21] M. K. Smith, C. Welty, D. L. McGuinness, OWL Web Ontology
Language Guide (W3C Recommendation 10 February 2004) [EB/OL].

http://www.w3.org/TR/owl-features/, (last modified on 10 February

2004).
[22] L. Stojanovic, N. Stojanovic, R. Volz, "Migrating data-intensive web

sites into the Semantic Web", In Proceedings of the 2002 ACM

symposium on Applied computing (SAC '02), pp.1100-1107, ACM,
2002

[23] K. N. Vavliakis, T. K. Grollios, P. A. Mitkas, "RDOTE - Publishing

Relational Databases into the Semantic Web", Journal of Systems and
Software, vol.86, no.1, pp.89-99, 2013.

[24] W3C, OWL Working Group,, “Web Ontology Language (OWL),”

http://www.w3.org/2004/OWL, 2004.
[25] W3C, OWL Working Group, “OWL 2 Web ontology language

document overview. W3C Recommendation 27 October 2009,”

http://www.w3.org/TR/owl2-overview/.
[26] W3C, OWL Working Group, “OWL 2 Web Ontology Language

Structural Specification and Functional-Style Syntax. W3C

Recommendation 11 December 2012,” http://www.w3.org/TR/owl2-
syntax/

[27] R. Zhou, C. Liu, and J. Li “On Holistic Constraint-Preserving

Transformation from Relational Schema into XML Schema,” 13th
International Conference, DASFAA 2008, New Delhi, India, Volume

4947, March 2008

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110913

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

971

