
Real-time Application in Linux using PRUSS

Anjitha M. Anand
M.Tech – Embedded Systems

NIELIT

Calicut, India

Balu Raveendran
Asst. Professor: AEI

RSET

Cochin, India

Shoukath Cherukat
Scientist/Engineer 'D': Embedded Systems

NIELIT

Calicut, India

Abstract—This paper proposes the use of Linux OS for

real-time applications with the aid of Sitara ARM

processor, AM335x. The Sitara AM335x SoC is equipped

with two 32-bit low-latency microcontrollers called

Programmable Real-time Units (PRUs), forming

Programmable Real-time Unit Subsystem (PRUSS). PRUs

can be individually programmed to do a specific task

independent of the arm processor. This provides many

advantages like fast operation with near to real-time

processing speed and offload of deterministic and time-

critical tasks from the ARM core.

Keywords—Sitara ARM Processor; PRUSS; PRU; Beaglebone

Black; AM335x

I. INTRODUCTION

 In this paper, we have proposed the use of

Beaglebone Black Rev C [1], based on Sitara Processor

AM3358 SoC, for real-time application through the example

of measuring ambient temperature of a room in real-time

using the on-board PRU which runs independent of the ARM

Cortex-A8 processor.
 The AM335x SoC can run various operating systems
optimized for ARM processors like Linux, Android, RTOS,
and Windows Embedded or even without OS using TI's
StarterWare. Also, for specific applications, customized kernel
can be compiled and used according to requirement. But such
a High Level Operating System (HLOS) running on the ARM
core cannot guarantee fast response time for real time
applications even though the OS itself performs very
efficiently on the SoC. This is mainly because a typical HLOS
architecture involves several layers of memory or
interconnects, which prevents it from providing fast response
time even for a simple operation like toggling the status of a
GPIO pin configured as digital output. However, the PRU has
direct access to GPIO pins which ensures that such
applications are completed in the least time possible [2].

II. PROGRAMMABLE REAL-TIME UNIT SUB SYSTEM

(PRUSS)

The PRUSS consists of two real-time cores which are

independently programmable and are capable of running at

200MHz. Each core can control 16 GPIO pins. The AM335x

SoC can be considered to have three independent cores. The

PRUSS can operate in various modes - each PRU can operate

independently, either PRUs together or PRUs along with the

ARM core. Offloading tasks to PRU ensures guaranteed real-

time execution with reduced load on primary CPU, the ARM

Cortex-A8 processor. The PRUs use shared memory and

interrupts for communication between the PRUs and between

PRU and ARM core.

 PRU helps in building programmable solutions with less

external components, at low cost, with higher reliability, and

real-time programmability. The Switched Central Resource

(SCR) is used by the PRU for low-latency interaction with

other resources inside the PRUSS. Open Core Protocol

(OCP) is used for accessing resources within the SoC [3].

 The versatile nature of PRUSS makes it the most

appropriate choice for developing various applications

consisting of real-time tasks or subsystems. PRU has been

used for various simple to very complex applications like

stepper motor control units, sensor interfaces, camera and

LCD display interfaces and industrial communication

protocols [2].

 PRU is very useful for high-speed applications

because it can service the hardware with no interruptions due

to Linux context switching, and no overhead is experienced

by the main ARM processor.

A. Programming the PRU

For utilizing the PRU, the following are required.

1. Linux Kernel Driver

 Initially PRUs were using Userspace IO (UIO)

driver uio_pruss. Now the implementation is being shifted

to remoteproc framework along with rpmsg (remote

processor messaging) virtio (virtual IO) devices with

pru_rproc [4].

2. Application and Kernel Loaders

 They load the PRU firmware to PRU’s memory area

and control the PRU execution from the user space. The

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050971

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

930

userspace-PRU control is done by application loader and

kernelspace-PRU control is done by the kernel loader [5].

3. Device Tree Entry

 The Device Tree is a data structure for describing

hardware [6]. The information is passed to the OS at boot

time. It gives information about pin multiplexing

according to the mode required, which capes and drivers

to use etc. Device tree overlays enable the user to make

runtime modifications to disable unwanted pins and to use

new hardware peripherals dynamically.

4. Firmware

 The firmware is the program executing on the PRU

which can be written either in assembly or C. The PRU

has small, RISC ISA with approximately 45 instructions

which completes in a single cycle allowing 100%

predictable timing. PASM is a command line driven

assembler for the PRU cores which converts assembly

source files to loadable binary data. Currently TI has

developed its own PRU assembler which is more flexible

than PASM but requires more command line options and

a linker command file [7].

B. Setting up PRU

 This paper discusses the steps involved in loading

uio_pruss module on a Beaglebone Black Rev C. Before

using the PRU it must be ensured that the uio_pruss kernel

module is loaded.

Fig. 1. Checking with modprobe

 The status of uio_pruss kernel module can be known

by using the command modprobe uio_pruss. If module not

found error is obtained, then kernel must be recompiled with

the uio_pruss module selected.

Fig. 2. Enabling the PRU through device overlays

 The device tree must be configured using device tree

compiler to enable the PRUSS and to configure the pins as

per requirement. The PASM assembler and drivers for PRU

can be cloned from github [8]. After cross-compiling and

copying PASM binary and libraries to respective locations,

the Beaglebone Black is ready to execute PRUSS programs.

C. Programming the PRU

 This has two components - assembly/C code for

PRU i.e. firmware and C/Python code for the ARM processor

i.e. host program.

 Fig. 3. PRU programming components

 The C/Python host program performs the PRU

initialization, setting up the interrupts for PRU to notify the

host that PRU execution is done, loading the compiled binary

to PRU instruction memory and start PRU execution, etc. The

PRU assembly/C code performs the desired functionality by

manipulating IO pins, sharing the accessed values with host

etc. In the same host program, more than one program can be

executed on the PRU after each program's execution is

completed.

Fig. 4. Console output showing execution time of program from ARM core

Fig. 5. Console output showing execution time of program using PRU

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050971

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

931

Fig. 6. Experimental Setup

III. EVALUATING THE PRU

 The PRU is analysed by means of real-time

acquisition of the ambient temperature of a room using a

temperature sensor, LM35.

A. First Example Program

For the first example, a BeagleBone Black, running
Ubuntu 12.04 armhf, is connected with an LM35 to monitor
the room temperature.

 A program, running on ARM core, is executed to

capture 10 readings from LM35. Using the same setup,

another program utilizing ARM core and PRU is executed.

From the following plot the difference of speed of operation

for collecting 10 temperature readings with and without PRU

is easily visible.

Fig. 7. Plotting the temperature values of both experiments

B. Second Example Program

 In the next example, a BeagleBone Black running

Debian with Xenomai [9], a real-time kernel which runs

along with the Linux kernel and can be used for real-time

applications, is used. A Xenomai application is used to fetch

10 readings from an LM35 temperature sensor. The same

setup is used to execute a program using PRU and without

the help of Xenomai.

Fig. 8. Console output showing time taken for each reading using Xenomai

Fig. 9. Console output showing time taken for each reading using PRU

Fig. 10. Plotting the temperature values of both experiments

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050971

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

932

CONCLUSION

 The main purpose of this paper is to evaluate the

usability of PRUSS for real-time applications. The PRU helps

to extend the capability of the AM335x SoC for performing

high-speed data access.

 The first example program compares the time

difference between successive temperature readings by using

ARM core alone and with PRU. The average time difference

between successive temperature readings is on an average

1300 microseconds in the case of ARM core and

approximately 10 microseconds while using PRU.

 The second example program shows the time

difference between successive temperature readings using

Xenomai alone and using PRU alone. Here also the average

time difference between successive temperature readings is

on an average 1000 microseconds in the former case and

approximately 10 microseconds in the latter.

 From both the examples it is evident that PRU

performs much faster than ARM core or Xenomai making it

more suitable for real-time applications with fast response

time.

ACKNOWLEDGMENT

 We sincerely acknowledge the immense

contribution of Er. Shoukath Cherukat for his guidance,

encouragement and supervision during the period of this

work.

REFERENCES

[1] Matt Richardson, Getting Started with BeagleBone : Linux-Powered

Electronic Projects With Python and JavaScript, 1st ed. O’Reilly,
October 2013.

[2] Melissa Watkins, Carlos Betancourt, Ensuring real-time predictability

: Leveraging TI’s Sitara Processors Programmable Real-Time Unit, TI
Whitepaper, July 2014.

[3] http://mythopoeic.org/BBB-PRU/am335xPruReferenceGuide.pdf

AM335x PRU-ICSS Reference Guide.
[4] Ron Birkett, Enhancing Real-time Capabilities with the PRU Sitara

Boot Camp, Sitara ARM Processors, Oct 2014.

[5] http://processors.wiki.ti.com/index.php/PRU_Linux_Loader PRU
Linux Loader.

[6] http://devicetree.org/

[7] Derek Molloy, Exploring BeagleBone: Tools and Techniques for
Building with Embedded Linux, 1st ed. Wiley, 2014.

[8] https://github.com/beagleboard/am335x pru package
[9] https://xenomai.org/embedded-hardware/

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050971

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

933

