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Abstract—This paper proposes the use of Linux OS for 

real-time applications with the aid of Sitara ARM 

processor, AM335x. The Sitara AM335x SoC is equipped 

with two 32-bit low-latency microcontrollers called 

Programmable Real-time Units (PRUs), forming 

Programmable Real-time Unit Subsystem (PRUSS). PRUs 

can be individually programmed to do a specific task 

independent of the arm processor. This provides many 

advantages like fast operation with near to real-time 

processing speed and offload of deterministic and time-

critical tasks from the ARM core. 

Keywords—Sitara ARM Processor; PRUSS; PRU; Beaglebone 
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I.  INTRODUCTION  

 In this paper, we have proposed the use of 

Beaglebone Black Rev C [1], based on Sitara Processor 

AM3358 SoC, for real-time application through the example 

of measuring ambient temperature of a room in real-time 

using the on-board PRU which runs independent of the ARM 

Cortex-A8 processor.  
 The AM335x SoC can run various operating systems 
optimized for ARM processors like Linux, Android, RTOS, 
and Windows Embedded or even without OS using TI's 
StarterWare. Also, for specific applications, customized kernel 
can be compiled and used according to requirement. But such 
a High Level Operating System (HLOS) running on the ARM 
core cannot guarantee fast response time for real time 
applications even though the OS itself performs very 
efficiently on the SoC. This is mainly because a typical HLOS 
architecture involves several layers of memory or 
interconnects, which prevents it from providing fast response 
time even for a simple operation like toggling the status of a 
GPIO pin configured as digital output. However, the PRU has 
direct access to GPIO pins which ensures that such 
applications are completed in the least time possible [2]. 

II. PROGRAMMABLE REAL-TIME UNIT SUB SYSTEM 

(PRUSS) 

The PRUSS consists of two real-time cores which are 

independently programmable and are capable of running at 

200MHz. Each core can control 16 GPIO pins. The AM335x 

SoC can be considered to have three independent cores. The 

PRUSS can operate in various modes - each PRU can operate 

independently, either PRUs together or PRUs along with the 

ARM core. Offloading tasks to PRU ensures guaranteed real-

time execution with reduced load on primary CPU, the ARM 

Cortex-A8 processor. The PRUs use shared memory and 

interrupts for communication between the PRUs and between 

PRU and ARM core.  

      PRU helps in building programmable solutions with less 

external components, at low cost, with higher reliability, and 

real-time programmability. The Switched Central Resource 

(SCR) is used by the PRU for low-latency interaction with 

other resources inside the PRUSS. Open Core Protocol 

(OCP) is used for accessing resources within the SoC [3].  

 The versatile nature of PRUSS makes it the most 

appropriate choice for developing various applications 

consisting of real-time tasks or subsystems. PRU has been 

used for various simple to very complex applications like 

stepper motor control units, sensor interfaces, camera and 

LCD display interfaces and industrial communication 

protocols [2]. 

 PRU is very useful for high-speed applications 

because it can service the hardware with no interruptions due 

to Linux context switching, and no overhead is experienced 

by the main ARM processor. 

 

A. Programming the PRU 

For utilizing the PRU, the following are required. 

1. Linux Kernel Driver  

  Initially PRUs were using Userspace IO (UIO) 

driver uio_pruss. Now the implementation is being shifted 

to remoteproc framework along with rpmsg (remote 

processor messaging) virtio (virtual IO) devices with 

pru_rproc [4]. 

2. Application and Kernel Loaders  

       They load the PRU firmware to PRU’s memory area 

and control the PRU execution from the user space. The 
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userspace-PRU control is done by application loader and 

kernelspace-PRU control is done by the kernel loader [5]. 

3. Device Tree Entry    

      The Device Tree is a data structure for describing 

hardware [6]. The information is passed to the OS at boot 

time. It gives information about pin multiplexing 

according to the mode required, which capes and drivers 

to use etc. Device tree overlays enable the user to make 

runtime modifications to disable unwanted pins and to use 

new hardware peripherals dynamically. 

4. Firmware    

  The firmware is the program executing on the PRU 

which can be written either in assembly or C. The PRU 

has small, RISC ISA with approximately 45 instructions 

which completes in a single cycle allowing 100% 

predictable timing. PASM is a command line driven 

assembler for the PRU cores which converts assembly 

source files to loadable binary data. Currently TI has 

developed its own PRU assembler which is more flexible 

than PASM but requires more command line options and 

a linker command file [7]. 

B. Setting up PRU 

 This paper discusses the steps involved in loading 

uio_pruss module on a Beaglebone Black Rev C. Before 

using the PRU it must be ensured that the uio_pruss kernel 

module is loaded.  

Fig. 1.  Checking with modprobe 
 

 The status of uio_pruss kernel module can be known 

by using the command modprobe uio_pruss. If module not 

found error is obtained, then kernel must be recompiled with 

the uio_pruss module selected. 

 

Fig. 2.  Enabling the PRU through device overlays 
 

 The device tree must be configured using device tree 

compiler to enable the PRUSS and to configure the pins as 

per requirement. The PASM assembler and drivers for PRU 

can be cloned from github [8]. After cross-compiling and 

copying PASM binary and libraries to respective locations, 

the Beaglebone Black is ready to execute PRUSS programs. 

C. Programming the PRU 

 This has two components - assembly/C code for 

PRU i.e. firmware and C/Python code for the ARM processor 

i.e. host program. 

 

  Fig. 3.  PRU programming components 
 

 The C/Python host program performs the PRU 

initialization, setting up the interrupts for PRU to notify the 

host that PRU execution is done, loading the compiled binary 

to PRU instruction memory and start PRU execution, etc. The 

PRU assembly/C code performs the desired functionality by 

manipulating IO pins, sharing the accessed values with host 

etc. In the same host program, more than one program can be 

executed on the PRU after each program's execution is 

completed. 

 

Fig. 4.  Console output showing execution time of program from ARM core 
 

Fig. 5.  Console output showing execution time of program using PRU 
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Fig. 6.  Experimental Setup  

III. EVALUATING THE PRU 

 The PRU is analysed by means of real-time 

acquisition of the ambient temperature of a room using a 

temperature sensor, LM35. 

A. First Example Program    

For the first example, a BeagleBone Black, running 
Ubuntu 12.04 armhf, is connected with an LM35 to monitor 
the room temperature.  

 A program, running on ARM core, is executed to 

capture 10 readings from LM35. Using the same setup, 

another program utilizing ARM core and PRU is executed. 

From the following plot the difference of speed of operation 

for collecting 10 temperature readings with and without PRU 

is easily visible. 

 
Fig. 7.  Plotting the temperature values of both experiments 

B. Second Example Program 

 In the next example, a BeagleBone Black running 

Debian with Xenomai [9], a real-time kernel which runs 

along with the Linux kernel and can be used for real-time 

applications, is used. A Xenomai application is used to fetch 

10 readings from an LM35 temperature sensor. The same 

setup is used to execute a program using PRU and without 

the help of Xenomai. 

 

 

 
Fig. 8.  Console output showing time taken for each reading using Xenomai 
 

 
Fig. 9.  Console output showing time taken for each reading using PRU 
 

 

Fig. 10.  Plotting the temperature values of both experiments  
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CONCLUSION 

 The main purpose of this paper is to evaluate the 

usability of PRUSS for real-time applications. The PRU helps 

to extend the capability of the AM335x SoC for performing 

high-speed data access.  

 The first example program compares the time 

difference between successive temperature readings by using 

ARM core alone and with PRU. The average time difference 

between successive temperature readings is on an average 

1300 microseconds in the case of ARM core and 

approximately 10 microseconds while using PRU.  

 The second example program shows the time 

difference between successive temperature readings using 

Xenomai alone and using PRU alone. Here also the average 

time difference between successive temperature readings is 

on an average 1000 microseconds in the former case and 

approximately 10 microseconds in the latter.  

 From both the examples it is evident that PRU 

performs much faster than ARM core or Xenomai making it 

more suitable for real-time applications with fast response 

time.   
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