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Abstract—Prony analysis has become powerful tool in the 
modal contentes timation of power oscillations from measured 

transientdata. The accuracy of the modalestimation is limited by 
inherent noise present in the measured signals.  Transients in 
the system cause oscillations in the system.The seoscillations, 

when estimated for the different signals in the system, having 
identical modal characteristic give the conflicting mode 
estimates. Instead of individual modal estimate for such signals, 

all these signals are analyzed simultaneously using multi-signal 
Prony analysis (MPA), resulting in one set of mode estimates. 
Ithasbecomepossibleto analyzeelectromechanical modeson-line 

by using phasor measurement unit (PMU)and globalpositioning 
system(GPS).Window -sizecontrolled (WSC) MPA is used to 
achieve the balance betweentherequirementsofquantity ofdata 

andtime forestimation. Same test system ifanalyzed either for 
fordifferent faultclearing times,behavesdifferently. The proposed 
methodsaresimulated forthe22-bus,6machinestest systemand 

6machine, IEEE 30-bustestsystem. 

 

Keywords—controlled window-size analysis; multi-Prony 

analysis; power system oscillations; PMU; wide area measurement 

system (WAMS) 

I.  INTRODUCTION  

Power system capacity is ever increasing. [1]has stated that 
modern power systems have stretched out hundreds and 
thousands of kilometers, it has resulted into system of very 
large size. In addition, [1]has proposed that, with growing 
generation capacity, different areas in a power system having 
large inertias are added. Furthermore, the power system has 
unbundledinto generation, transmission and supply system. It is 
less oriented towards the physical nature of the synchronously 
interconnected power systems,but it span a large area with 
interaction among the different sub networks and the power 
plants. However, with possible higher loading of the 
transmission system the network operators may be forced to 
operate the system closer to its stability limits. 

 Issue of small signal stability, especially inter-area 
oscillations,becomeimportant in large interconnected power 
systems[1].Large power systems all over the world are facing 
the common problem of inter-area oscillations.As explained in 
[1], many electric systems in the world are experiencing 
increased loading on portions of their transmission systems, 
which cansometimes lead to poorly damped low frequency 
(0.2-0.8 Hz) inter-area oscillations. According to [2], in 
practical system, various modes of oscillations can be classified 
into three broad categories. First, intra-plant modes, in which 
generators in a power plant participate. The oscillation 

frequencies are generally high in the range of 1.5 to 3 Hz. 
Second, local modes, in this case, several generators within a 
particular area participate. The frequencies of oscillations are in 
the range of 0.8 to 1.8 Hz. Third, inter-area modes, in which 
generators over an extensive area participate. The oscillation 
frequencies are low and in the range 0.2 to 0.8 Hz. Inter-area 
oscillations can sometimes, severely restrict system 
operations.It may require curtailment of electric power transfer 
as an operational measure in such consequence. These 
oscillations can also lead to widespread system blackoutsdue to 
oscillatory power swings[1]. 

 In order to damp these oscillations it is needed to detect 
them, and control them so that, the power system is controlled. 
Electromechanical oscillations can be investigated by 
[1]simulation method in time domain. In addition to that, a 
more powerful approach in the frequency domain is available 
to enable systematic analysis of the small signal stability 
problem. The latter approach is known as Eigenvalue analysis 
or modal analysis utilized in [3] – [6]. Eigenvalue analysis 
investigates the dynamic behavior of a power system under 
different characteristic frequencies (i.e. modes). Inherent 
patterns behind complicated phenomena of system dynamics 
are indicated. Different modes, which are mixed with each 
other in curves of time domain simulation, are identified 
separately. [7] had discussed, the operation of power system by 
analysing the signals expressing the generator coherent 
groups.It explains, which one of generator coherent groups 
swing against each other and which generators play a 
significant role in maintaining the stability of the power 
system. 

In a power system, all modes, i.e. eigenvalues, are need to 
be stable. Moreover, [1] has stated that, it is important, that,  all 
electromechanical oscillations are damped out as quickly as 
possible.Eigenvalue analysis is given as frequency and relative 
damping for each oscillatory mode and results are analysed. 
Given an oscillatory mode, 𝑠 = 𝜎 + 𝑗𝜔, the damping ratio (or 

relative damping) is defined by 𝜁 = −𝜎/ 𝜎2 + 𝜔2. 

In order to analyze the modes of interest, WAMS and 
PMUs data is analyzed using different computation techniques. 
Fourier analysis can be used for the analysis of such signals. 
Fourier series computes amplitude, phase and frequency of the 
signal components. [8]has given some facts that, Fourier 
transforms distributes time-domain noise uniformly throughout 
the frequency domain.It can limit the certainty with which peak 
frequencies, widths, magnitudes and phases could be 
computed.Prony analysis (PA)has been discussed by [8] and 
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[9] in detail.If PA is used for analysis of the measured data, has 
the advantage of estimating damping coefficients apart from 
frequency, phase and amplitude. It is computationally less 
expensive and can accurately extract poles and residues. In 
addition, [8] has addressed that, due to its sensitivity to 
measurement noise PA yields parameter estimates with a large 
bias. In addition to poor fit when signal to noise ratio is small, 
PA is also known to be inconsistent. In this case damping and 
frequency terms are typically significantly miss estimated and 
they found to be usually much greater than the actual values. 

 The inherent noise in measured data can appreciably 
eliminated if least square Prony(LSM) analysis technique is 
used for the analysis. Most of the previous Prony analysis 
extensions assume the model to be single output [10] – [13]. 
This is limiting because many systems, including power 
systems, are multi-output. Prony analysis has been applied to 
several power system problems. It has proven to be a very 
valuable tool for transient analysis and advanced monitoring. 
In this paper OPA has extended to achieve multi-signal fit. A 
multi-signal fit, leads to quality mode estimates for the overall 
system because, in this case essentially richer information to 
the analysis has been provided. 

MPA uses multiple signals for the analysis and hence, the 
system of equations to be solved becomes over-determined. To 
solve this over-determined system [14] and [15] has used well 
known least square method (LSM). However, an important 
balance between requirement of quantity of data and time for 
estimation must be achieved for this important task. Using 
current single-output analysis, individual signals are analyzed 
independently often resulting in conflicting mode estimates. 
The user is then left with the problem of determining which 
modal estimates are more accurate. The parameter estimation 
using PA is off-line process and oscillation parameters are time 
varying. OPA have been proven to be conditionally efficient in 
estimating parameters of exponentially damped sinusoids from 
a batch of measurement data. It suffer from a common 
disadvantage, i.e., these techniques are all processed off-line 
and therefore, are not suitable for detecting and tracking the 
time-varying parameters such as damping factors and 
frequencies. These shortcomings motivate the application of 
on-line estimation algorithms such as the Kalman filter (KF) as 
explained by [16], which has the ability to separate signals 
from noises, and to estimate latent states and cope with any 
variations in states. In the present analysis, identification of 
electromechanical modes using MPAwith window-size control 
(WSC) has been carried out for IEEE 30 bus test system as 
well as 22 bus test system. Section II is discussed the solution 
strategies, section III is discussed about Algorithm for on-line 
electromechanical mode estimation in power systems, brief 
discussions over the results are given in section IV; lastly, 
paper ends with conclusions in section V. 

II. EXTENSION OF ORIGINAL SINGLE-SIGNAL PRONY 

ANALYSIS TO MULTI-SIGNAL PRONY ANALYSIS 

A. Original Prony Analysis (OPA) 

To derive the mathematical formulation for the OPA, let us 

consider a linear time-invariant (LTI) dynamic system as 

shown in Fig. 1. 

 

 
 

Fig. 1.  LTIsystem 

The signals are referred to as:  𝑦 t : system response, 𝑥 t : 
state of the system, and 𝑢 t : input of the system. The 

evolution of the state of the system is expressed by (1) 

 
𝑑𝑥 𝑡 

𝑑𝑡
= 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡                                                                (1) 

 

where A and B are constant matrices. If the input is removed 

(𝑢 𝑡 = 0) and there are no subsequent inputs to the system, 

then (1) can be rewritten as 

 

 
𝑑𝑥 𝑡 

𝑑𝑡
= 𝐴𝑥 𝑡                                                                                 (2) 

 

where A is a matrix of size 𝑛 𝑥 𝑛 whose eigenvalues are λ𝑖 , 

right eigenvectors are 𝑝𝑖  and left eigenvectors are 𝑞𝑖 . In (2) 

system order is represented by „𝑛‟. The solution to (2) is 

expressed as the sum of 𝑛 components as:  

 

𝑥 𝑡 =  (𝑞𝑖
𝑇𝑥)𝑝𝑖𝑒

𝜆𝑖𝑡

𝑛

𝑖=1

                                                              (3) 

 

As the system is a LTI system, we express y(t) in the form  

 

𝑦(𝑡) = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡                                                                   (4) 

 

where, 𝐶 and 𝐷 are constant matrices. If the input is removed 

(𝑢 𝑡 = 0) then (4) simplifies to (5) 

 

𝑦 𝑡 = 𝐶𝑥 𝑡                                                                                    (5) 

 

The PA directly estimates the parameters of the eigen structure 

described in (3) by fitting a sum of complex damped sinusoids 

to evenly spaced samples (in time) values of the output as:  

 

𝑦  𝑡 =  𝐴𝑖𝑒
(𝜎𝑖𝑡)𝑐𝑜𝑠⁡(2𝜋𝑓𝑖𝑡

𝑛

𝑖=1

+ 𝜑𝑖)                                         (6) 

 

In (6) further notations are used, 𝐴𝑖 : amplitude of component 

𝑖, 𝜎𝑖 : damping coefficient of component 𝑖, φ𝑖 : phase of 

component 𝑖, 𝑓𝑖 : frequency of component 𝑖, 𝑛: total number of 

damped exponential components, 𝑦  𝑡 : estimate of observed 

data for 𝑦(𝑡) consisting of 𝑁 samples 𝑦 𝑡𝑘 = 𝑦 𝑘 , 𝑘 =
0,1,2, … , (𝑁 − 1) that are evenly spaced. Using Euler's 

theorem 𝑐𝑜𝑠⁡(2𝜋𝑓𝑖𝑡 + 𝜑𝑖)  can be represented as a sum of 

exponentials: 

 

𝑐𝑜𝑠 2𝜋𝑓𝑖𝑡 + 𝜑𝑖 

=
𝑒𝑗 (2𝜋𝑓𝑖𝑡+𝜑𝑖) + 𝑒−𝑗 (2𝜋𝑓𝑖𝑡+𝜑𝑖)

2
                            (7) 
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Inserting (7) in (6) and letting 𝑡 = 𝑘𝑇, sampling period (𝑇) 

less than the Nyquist period, the samples of 𝑦 (𝑡) in (6) are 

rewritten as 

 

𝑦 𝑘𝑇 =  𝐵𝑖

𝑛

𝑖=1

𝑧𝑖
𝑘                                                                          (8) 

𝐵𝑖 =
𝐴𝑖

2
𝑒𝑗𝜑𝑖  𝑎𝑛𝑑 𝑧𝑖 = 𝑒 𝜎𝑖+𝑗2𝜋𝑓𝑖 𝑇                                             (9) 

 

𝐵𝑖 ∈ 𝑪is the output residue for the continuous-time pole 

𝜆𝑖 ∈ 𝑪 (𝜆𝑖 = 𝜎𝑖 + 𝑗2𝜋𝑓𝑖), 𝑪 indicates complex vector space. 

𝜆𝑖 ≠ 𝜆𝑗 for 𝑖 ≠ 𝑗, there must not be repeated eigen-values. The 

objective is to identify the residues, poles, and 𝑛 that force (8) 

to be the least-squares fit to 𝑦 𝑡 . The OPA computes 𝐵𝑖  and 

𝑧𝑖  in three basic steps. First, solve linear prediction (LP) 

model, which is constructed by the observed data set. First 

write (8) as a linear prediction model as:   

 

𝑦 𝑘 = 𝑎1𝑦 𝑘 − 1 + 𝑎2𝑦 𝑘 − 2 + ⋯ + 𝑎𝑛𝑦 𝑘 − 𝑛         (10) 

 

In (10), 𝑦 𝑘  is computed for 𝑘 = 𝑛, 𝑛 + 1, . . , (𝑁 − 1), 𝑘𝑡ℎ  

sample is expressed in terms of previous data samples. For 

example, 𝑦 𝑛  is computed at 𝑘 = 𝑛 

 

𝑦 𝑛 = 𝑎1𝑦 𝑛 − 1 + 𝑎2𝑦 𝑛 − 2 + ⋯ + 𝑎𝑛𝑦 0                 (11) 
 

Expressing 𝑦 𝑘  in matrix form for various values of 𝑘 as 

 

 

𝑦 𝑛 

𝑦 𝑛 + 1 
:

𝑦 𝑁 − 1 

 =  

𝑦 𝑛 − 1 

𝑦 𝑛 

… …
… …

𝑦 0 

𝑦 1 
: : : :

𝑦 𝑁 − 2 … … 𝑦 𝑁 − 𝑛 − 1 

  

𝑎1

𝑎2
:
𝑎𝑛

  (12) 

 

Assuming 𝑁 > 2𝑛 the linear prediction coefficients vector 𝒂 

is estimated by solving over-determined least square problem. 

Second, find roots of characteristic polynomial (13) formed 

from the linear prediction coefficients.   

 

𝑧𝑛 − 𝑎1𝑧
𝑛−1 − 𝑎2𝑧

𝑛−2 − ⋯− 𝑎𝑛 = 0                             (13) 

s vector 𝒂 is known from (12), the roots 𝑧 𝑖  of polynomial (13) 

can be computed. Third, solve the original set of linear 

equations to yield the estimates of the exponential amplitude 

and sinusoidal phase.  Solving the (14) the residue vector𝑩 is 

calculated, 

 

 

𝑦 0 

𝑦 1 
:

𝑦 𝑁 − 1 

 =  

1
𝑧 1

1        …
𝑧 2      …

1
𝑧 𝑛

: :          ∶ :
𝑧 1

𝑁−1
𝑧 2

𝑁−1 … 𝑧 𝑛
𝑁−1

  

𝐵1

𝐵2
:

𝐵𝑛

               (14) 

 
Compiling (8) into matrix form results in a Vandermonde 

matrix, this is termed the Vandermonde problem. 

In most cases first and third steps involve the solution of 
over-determined sets of equations. Numerical procedure has 
been assumed that 𝑛 (order of system) is known and is the 
order used in the LP and Vandermonde problems.  Methods for 
choosing the model order are described in [15]. These methods 
involve over estimating the initial order and then selecting the 

minimal subset of pole-residue pairs that best models the 
signal. PS is MIMO system and performing a multi-signal fit 
essentially improves quality of the analysis. The extension of 
OPA to multi-signal fit is proposed in next subsection. 

B. Multi-Prony Analysis (MPA) 

The equations are an exception to the prescribed 
specifications of this template. You will need to determine 
whether or not your equation should be typed using either the 
Times New Roman or the Symbol font (please no other font). 
To create multileveled equations, it may be necessary to treat 
the equation as a graphic and insert it into the text after your 
paper is styled. 

MPA is used to estimate the modes of oscillation of group 

of signals that are supposed to be governed by the same modes 

and how effectively, overall system behaviour can be 

analysed, has been explained here. Now consider a set of 𝑀 

signals 𝑦𝑚  𝑡 , 𝑚 = 1,2, … , 𝑀 that share a common set of 

eigenvalues. An example would be the transient response 

measured at 𝑀 locations. Linear analysis shows that the 𝑚𝑡ℎ  

signal is modelled as 

 

𝑦 𝑚 𝑘𝑇 =  𝐵𝑚 𝑖

𝑛

𝑖=1

𝑧𝑖
𝑘  , 𝑘 = 0,1, (𝑁𝑚 − 1)                   (15) 

 

𝐵𝑚𝑖 ∈ 𝑪is the output residue for the continuous-time pole 

𝜆𝑖 ∈ 𝑪, 𝜆𝑖 ≠ 𝜆𝑗  for 𝑖 ≠ 𝑗, and 𝐵𝑚𝑖 =
𝐴𝑚𝑖

2
𝑒𝑗 𝜑𝑚𝑖 and 𝑧𝑖 =

𝑒 𝜎𝑖+2𝜋𝑓𝑖 𝑇 . As in the single signal case, each sampled version 

of  𝑦 𝑚  satisfies (3). In the multi-output case, the LP problem is 

addressed by solving (16) 

 

𝑦 𝑚  𝑘𝑇 = 𝑎1𝑦 𝑚   𝑘 − 1 𝑇 + ⋯ + 𝑎𝑛𝑦 𝑚  (𝑘 − 𝑛)𝑇           (16) 

 
for each 𝑚 = 1,2, … , 𝑀 simultaneously for the unknown 

coefficients 𝑎𝑖𝑠. 

As discussed in [22], experiments on high-order oscillatory 

signals using a covariance formulation and a singular-value 

decomposition solution method have shown that accurate 

solutions are often obtained if the constraint (17) is satisfied. 

 

2𝑛 <  𝑁𝑚

𝑀

𝑚=1

< 5𝑛                                                                     (17) 

 

For 𝑚 signals referring (12), (18) can be written as, 

 

 
 
 
 
 
 
 
 
 

𝑦1 𝑛 

𝑦1 𝑛 + 1 
:

𝑦1 𝑁 − 1 
:

𝑦𝑚  𝑛 

𝑦𝑚  𝑛 + 1 
:

𝑦𝑚  𝑁 − 1  
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
𝑦1 𝑛 − 1 

𝑦1 𝑛 
:

𝑦1 𝑁 − 2 

…
…
:
…

𝑦1 0 

𝑦1 1 
:

𝑦1 𝑁 − 𝑛 − 1 
: : :

𝑦𝑚  𝑛 − 1 

𝑦𝑚  𝑛 
:

𝑦𝑚  𝑁 − 2 

…
…
:
…

𝑦𝑚  0 

𝑦𝑚  1 
:

𝑦𝑚  𝑁 − 𝑛 − 1  
 
 
 
 
 
 
 
 

 

𝑎1

𝑎2
:
𝑎𝑛

    (18) 

 

where there are 𝑚 groups of rows with (𝑁 − 𝑛) rows in each 

one, therefore, total number of rows is 𝑚, and the number of 

unknown variables remains 𝑛 (from 𝑎1 to 𝑎𝑛 ). This system of 

1629

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041597

International Journal of Engineering Research & Technology (IJERT)



equations is over-determined (more equations than 

unknowns); therefore, a least square method (LSM) of 

optimization must be used. The residues 𝑅𝑖
(𝑚) are the weight 

of 𝑖𝑡ℎ  mode (out of calculated 𝑛 modes) on 𝑚𝑡ℎ  signal. For 

finding them (19) needs to be solved by LSM (the super 

scripts 𝑚 in brackets for 𝑅𝑖
(𝑚 ) indicate the number of signals 

from 1 to m).  

 

 

𝑦1 0 

𝑦1 1 
:

𝑦1 𝑁 − 1 

𝑦2 0 

𝑦2 1 
:

𝑦2 𝑁 − 1 

…
…
:
…

𝑦𝑛  0 

𝑦𝑛  1 
:

𝑦𝑛  𝑁 − 1 

 

=  

1
𝑧 1

1        …
𝑧 2      …

1
𝑧 𝑛

: :          ∶ :
𝑧 1

𝑁−1
𝑧 2

𝑁−1 … 𝑧 𝑛
𝑁−1

 

 
 
 
 𝑅1

(1)

𝑅2
(1)

:

𝑅𝑛
(1)

𝑅1
(2)

𝑅2
(2)

:

𝑅𝑛
(2)

…
…
:
…

𝑅1
(𝑚)

𝑅2
(𝑚)

:

𝑅𝑛
(𝑚 ) 

 
 
 

 (19) 

 

The methodology of MPA can be summarized in three 

steps: first, solve (18) to get the coefficients 𝑎𝑖𝑠. Second, 

obtain the roots of the polynomial (13); finally, modes 

𝜆𝑖 = 𝜎𝑖 + 𝑗𝜔𝑖 = 𝐿𝑛(𝑧𝑖)/𝑇 can be computed. The third step is 

to compute complex residues 𝑅𝑖  by solving (19) by using 

solutions of (13). 

III. WSC ALGORITHM FOR ON-LINE MODES IDENTIFICATION 

IN POWER SYSTEMS 

The on-line MPA can be applied to detect the modes that 

for a set of signals measured from PMUs. Fig. 2 shows the 

flowchart for the proposed methodology. In order to determine 

an appropriate first data window, a small-signal-stability 

analysis (SSSA) is first performed to identify the off-line 

dominant mode frequency. The size of the first window is 

reciprocal of the dominant mode frequency; that is, 

 

𝑇𝑓𝑤 =
1

𝑓𝑑𝑚
                                                                                     (20) 

 

where𝑇𝑓𝑤  is the time of the first (fixed) data window, and 

𝑓𝑑𝑚  is the minimum frequency found in the SSSA. When 
perturbation is detected in the power system the 
electromechanical modes identification is activated using 𝑇𝑓𝑤  

as the first size of the passing data window. Data window to be 
analysed can be of fixed-size window (FSW) or controlled 
window-size (WSC). FSW algorithm uses fixed size of 
window in each successive step of analysis while WSC 
algorithm changes the size of window to be analysed as 
response to damping ratio and frequency in the previous step. 

Once the number of samples of the first window is 
completed in the control centers, the detection of modes is 
computed with the M-PA during the post disturbance state. The 
analysis of window detects a group of oscillatory modes; the 
frequencyand damping of the on-line dominant mode 
isidentified 𝜆𝑑𝑚 . 

 The dominant mode is one for which the sum of the norm 

of associate residues is the greatest for the groups of signals 

that have been analysed: 

 

𝜆𝑑𝑚 =  𝜆 𝜖 𝑪, 𝑚𝑎𝑥  𝑅𝑖 

𝑚

𝑖=1

                                                    (21) 

 
𝜆𝑑𝑚 (𝑡)is then a time-variable characteristic of the system, 

and it is not the same electromechanical mode every instant 𝑡. 
Therefore, as function of the frequency and damping ratio of 
the variable 𝜆𝑑𝑚 , a new size of successive data window size is 
computed. Consequently, the number of samples required to 
wait for the formation of the new window is recalculated as the 
reciprocal of the dominant mode frequency multiplied by a 
factor K, the scale parameter. 

𝑇𝑤𝑖𝑛𝑑𝑜𝑤 =
1

𝑓𝑑𝑚
×  𝐾                                                                   (22) 

 

where𝑓𝑑𝑚  is the frequency in Hz of the dominant mode, and 

 

𝐾 =  

𝜁𝑑𝑚 + 1

𝜁𝑐𝑟 + 1
 𝑖𝑓 𝜁𝑑𝑚 < 𝜁𝑐𝑟

1             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                      (23) 

 
where0 < ζdm < 1, is the damping ratio of the dominant 
mode, which has been detected on-line in the previous window, 
and 0 < ζcr < 1 is constant that defines as the critical damping 
ratio, defined by the system operator, depending on experience 
and knowledge of the behaviour of the power system that is 
being monitored. In this analysis the value of 𝜁𝑐𝑟  is used. If 
𝐾 = 1, the size of the data window remains constant, and this 
must be the default for any non-disturbed state of the system. 

 
 

Fig. 2. Flow Chart for MPA using WSC and FSW analysis 

 

The factor 0 < 𝐾 < 1 is scale parameter that allows the 
reduction of the next window size if the damping ratio of the 
dominant mode is less than the defined 𝜁𝑐𝑟 . The reduction is 
made to obtain a new estimation of the actual modes in less 
time. When the size of the new window is recalculated, new 
data from the PMUs are collected until completing the new 
size, and the procedure is repeated. 
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The identification process needs sliding data window, and, 
as previously stated, the window size is controlled. This 
analysis proposes that the identification method used is a 
window-size controlled (WSC) sliding window. Therefore, its 
length depends on the expected frequency of the critical 
electromechanical mode for the instant 𝑡 in the next samples 
that are being received from the PMUs. The recalculated 
window size can either be greater or shorter than the previous 
window size, depending on dominant frequency that is being 
detected. 

An important feature of this type of window is that the 
needed size of the window is measured in the number of 
samples from the most recently sampled one (past 
information). For instance, if there has been 1 sec of data, and 
calculated new window size is 1.01 sec, such that sampling 
period is 0.01 sec, just one new sample is needed from the 
PMU to complete the window required for making new 
identification of modes. This implies two aspects, the 
information from last 5 sec (which is the maximum window 
size allowed) must be stored and in size-controlled sliding 
window, there is no reboot of data storage each time when new 
window size is calculated. 

IV. APPLICATION OF PROPOSED ALGORITHM 

A. IEEE 30 bus test system case: 

The analysis of generator angles was made for 50 Hz, 6-
machine, IEEE 30-bus test system shown in Fig. 3 using OP 
and MPA, WSC analysis. Data for the analysis is generated 
from the power world simulator package. Single-phase solid 
fault was simulated at the transmission line that joins buses 12 
and 15 at 𝑡 = 1 sec. Fault is cleared by opening the line after 
0.3 sec. Analysis of 5 sec data (500 data samples), after the 
fault is cleared have been carried out. Fig. 4 shows the time 
series plot for p.u. relative rotor angles of generators G2 to G6 
for IEEE 30-bus test system. Generators G2 to G6 are located 
at bus 2, bus 5, bus 8, bus 11, and bus 13 respectively. 
Sampling time is taken as 10 ms (i.e. 0.01 sec), to full fill the 
condition for the Nyquist-sampling rate for 50 Hz system 
frequency. Here, minimum sampling frequency is 100 Hz. 
SSSA for the test system determines the dominant modes as 
shown in TABLE I. The SSSA has done considering system as 
single machine infinite bus (SMIB) system. 

 

 
 

Fig. 3. Modal damping ratio estimation using OPA and M-PA (30 bus test 

system case) 

 

As the generator bus 1 is taken as slack bus, modes for the 
buses excluding slack bus are present in TABLE I, 
corresponding mode frequencies are also shown. As discussed 
in the WSC algorithm the initial data window has to be 
selected for the analysis. For this case initial window size taken 
was of size of 66 data samples. This is corresponding to the 
dominant mode −0.0167 + 𝑗9.5001. In this case fault is 

cleared at 1.3 sec, therefore, 131𝑡ℎ  to 196𝑡ℎ  data samples is 
taken as first window for analysis. Hereafter, the window is 
allowed to slide-over successively, so that on-line mode 
estimates has done for each of the next successive data 
window. If the size-controlled window algorithm is applied, the 
size of the data window may vary for each successive next 
window. 

 

 
 

Fig. 4. PU relative rotor angle for generator (30 bus test system case) 

 

TABLE I.  OPA, MPA MEAN MODAL FREQUENCIES COMPARITIVE 

ESTIMATION AND SSSA RESULTS FOR 30 BUS TEST SYSTEM 

Gene-

rator 

Modes by 

SSSA 

Dominant 

frequency 

𝒇𝒅𝒎 (Hz) 

Initial 

window 

samples 

Mean 

𝒇𝒅𝒎 

(Hz) 

from 

OPA 

Mean 

𝒇𝒅𝒎 

(Hz) for 

system 

from 

M-PA 

2 −0.0333
+ 𝑗14.9979 

2.3882 42 2.3534  

3 −0.0375
+ 𝑗12.8597 

2.0477 49 2.0593  

4 −0.0292
+ 𝑗13.6227 

2.1692 46 2.1182 1.4562 

5 −0.0167
+ 𝑗9.5001 

1.5127 66 1.3646  

6 −0.0292
+ 𝑗12.7431 

2.0291 49 1.9008  

 

Fig. 5 shows the on-line electromechanical modal 
frequency estimates, independently for the generators G2 to G6 
respectively using OPA along with modal frequency estimates 
using multi-signal Prony analysis for overall test system. The 
corresponding relative rotor angle data is used for the modal 
estimation. These all estimates for the individual signals have 
done with OPA, shown by thin curves. It is radially observed 
that, single Prony (OPA) gives error in mode estimates. At 
some of the instants, modal values estimated may be near about 
10 Hz, which is not expected. Estimation of modal frequencies 
has also done using multi-signal Prony analysis and result is 
shown by thick curve. In this curve it is observed that the 
estimated values for modal frequencies remain below 1.8 Hz, 
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which is expected value for the intra-area modes. Hence, MPA 
has edge over OPA, and the reason is that, system become 
over-determined for multi-signal fit. LSM algorithm has 
inherent property, that it eliminates error if present in the 
measured data. Due to multiple-signals are used for analysis, 
data analyzed is rich in system information content and also 
gives improved modal estimation. The result obtained with M-
PA is single set of modes and it is close to the expected values. 
Fig. 6 shows on-line damping ratio (i.e. relative damping) 
estimation both using OPA and MPA. Thin curves show the 
analyses using OPA with WSC analysis for individual relative 
rotor angle signals while thick curve shows the analysis using 
MPA with WSC analysis for overall system. 

 

 
 
Fig. 5. Modal frequency estimation using OPA and MPA (30 bus test system 

case) 

 

 
 

Fig. 6. Modal damping ratio estimation using OPA and MPA (30 bus test 
system case) 

 

B. HeadingAnalysis of 22 bus system case: 

The analysis of relative rotor angles was made for 50 Hz, 6-
machine, 22-bus test system shown in Fig. 7 using OPA and 
MPA, WSC analysis. In this case, generators G2 to G6 are 
located at buses 2 to 6 respectively. Data for the analysis is 
generated from the MATLAB simulation. Generator model in 

this case is 10𝑡ℎ  order model; it helps in achieving better 
dynamic performance than that of second order classical 
model. Modelling the system with higher order model always 
incorporates more number of dynamics, which improves the 
quality of analysis. Therefore, data analysed is much closer to 
the actual or real system values. Here, system is analysed for 
both stable and unstable cases. 

1) Case-1, fault in the system has been cleared and 

stability of the system has been maintained: 
Three-phase solid fault was simulated at bus number 19 at 

𝑡 = 0.5 sec. Fault is cleared after 0.3 sec. 333 data windows, 

after the fault is cleared have been analysed. Fig. 8 shows time 
series plot for the relative rotor angles of generators G2 to G6 
for 22 bus test system case-1. Again, sampling frequency of 
100 Hz is taken. Initial dominant frequency in this case is 1.12 
Hz; therefore initial data window was of 89 data samples. The 
analysis of electromechanical modes identification is carried 

out during post-fault time that is 0.8 sec 80𝑡ℎ  data sample) 
onwards. 

 
 

Fig. 7. 22-Bus, 6 machine test system 

 

 
 

Fig. 8. Relative rotor angles (22 bus test system case-1) 
 

Fig. 9 shows the on-line electromechanical modal 
frequency estimates, independently for the generators G2 to G6 
respectively using OPA and modal frequency estimates using 
multi-signal Prony analysis for overall test system. The 
corresponding relative rotor angle data is used for the modal 
estimation. These all estimates for the individual signals have 
done with OPA, shown by thin curves. It is radially observed 
that, single Prony gives error in mode estimates. At some of the 
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instants, modal values estimated may be near about 50 Hz, 
which is not expected. Estimation of modal frequencies has 
also done using multi-signal Prony analysis and result is shown 
by thick curve. In this curve it observed that the estimated 
values for modal frequencies remain below 1.8 Hz, which is 
maximum expected value for the intra-area modes. 

 

 
 

Fig. 9. Modal frequency estimation using OPA and MPA (22 bus test system 

 

2) Case-2, fault in the system has been cleared but 

stability of the system has not been maintained: 
Further, three-phase solid fault was simulated at bus 

number 19 at 𝑡 = 0.5 sec. Fault is cleared after 1 sec. It is 
clearly observed from the Fig. 10 that generators G2 and G3 
forming the one coherent group while rest of the generators 
form anther coherent group. Though the curves for G2 and G3 
showing the oscillations are damping out after the fault is 
cleared but the angle values are greater than transient stability 
limit of 180 degree. It means the system is no more stable and 
the G2 and G3 have lost synchronism. Here, in this case, 261 
data windows, after the fault was cleared were analysed. The 
analysis of electromechanical modes identification was done 

during post-fault time that is 1.5 sec (150𝑡ℎ  data sample) 
onwards. 

 
 

Fig. 10. Relative rotor angles (22 bus test system case-2) 

 

Fig. 11 shows the on-line electromechanical modal 
frequency estimates, independently for the generators G2 to G6 
respectively using OPA along with modal frequency estimates 
using multi-signal Prony analysis for overall test system. The 
corresponding relative rotor angle data is used for the modal 
estimation. These all estimates for the individual signals have 
been carried out with OPA, shown by thin curves. Estimation 
of modal frequencies has also done using M-PA and result is 
shown by thick curve. 

It is clear that system dynamics are very much sensitive not 
only to different fault types but also various fault clearing 

times. The two cases analyzed for the same test system give 
different electromechanical modal estimates. The results for 
estimation of mean modal frequencies of the individual 
machines using OPA and overall system using MPA are 
summarized in TABLE II. It clearly observed that range of 
mean modal frequencies obtained by using MPA remains in the 
range below 1.8 Hz that is specified for intra-area oscillations. 

 

 
 
Fig. 11. Modal frequency estimation OPA and MPA (22 bus test system case-

2) 

 

TABLE II.  OPA AND MPA MEAN MODAL FREQUENCIES COMPARITIVE 

RESULTS 

Gene

rator 
Mean 𝒇𝒅𝒎 

(Hz) from 

OPA 

(case1) 

Mean 𝒇𝒅𝒎 

(Hz) for 

system 

from MPA 

(case-1) 

Mean 𝒇𝒅𝒎 (Hz) 

from OPA 

(case-2) 

Mean 𝒇𝒅𝒎 

(Hz) for 

system from 

MPA (case-2) 

2 1.1908  0.9616  

3 1.4600  0.9605  

4 1.1144 0.8237 0.9338 0.9573 

5 1.0346  0.9608  

 

V. CONCLUSIONS 

Comparison between the OPA with multi-signal Prony 
analysis has been done. The multi-signal fit eliminates the 
inherent noise in the measured data, and improved 
electromechanical mode estimation has been carried out. Also 
the multi-signal fit gives overall system behaviour because the 
data analysed is rich in overall system information. 

In addition, this analysis has shown that the utilisation of 
sliding window in modes identification method using a multi-
Prony approach allows the observation of the evolution of the 
dynamics of electromechanical modes of the power system as 
response to disturbances. It allows the detection of critical 
damping ratios in short time associated to the period of the 
dominant modes obtained by off-line SSSA. In order to achieve 
the balance between the requirements of quantity of data and 
time for estimation, optimised-size window multi-signal Prony 
analysis is used for estimation of electromechanical modes. 

The calculation of modes is performed once the on-line 
window recalculated size is reached. Factor 𝐾 is proposed to 
reduce the size of the window depending on the damping level 
of the on-line dominant mode determined in previous window. 
With this proposed method, the number of calculations is 
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reduced. This technique ensures that a suitable window size 
will be formed to execute estimation modes. Using a fixed 
window method may cause inability to detect low-frequency 
responses. 

It is clear that system dynamics are very much sensitive not 
only to different fault types but also various fault clearing 
times. The two cases analysed for the same test system give 
different electromechanical modal estimates. It is always 
preferable to use transient data for Prony analysis to have 
higher degree of accuracy and accurate fitting of data. 

Further work must be oriented to the establishment of 
control actions using the damping behaviour of 
electromechanical modes and, the situational awareness 
assessment of the power system using phasorial information. 
Moreover, as an initial step after measuring signals, the 
application of noise/ambient on-line filters, such as Kalman, 
extended Kalman, and unscented Kalman must be developed to 
ensure that the signal is properly analysing the power signal. 
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