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Moreover, although there are specialized datasets for low-light 
conditions, such as ExDark, they are still limited in scope. 
ExDark, for example, provides images taken under various 
low-light conditions but only includes 12 object categories. 
The diversity of object types and environmental conditions is 
limited, making it difficult to train robust models for diverse 
real-world applications. Additionally, the images in ExDark, 
while useful, do not fully replicate the specific challenges 
encountered in night-time surveillance, where objects may be 
small, partially occluded, or have low reflectivity in infrared 
light. Our custom dataset stands out by addressing these 
limitations in several ways. First, it focuses specifically on 
real-time object detection in low-light environments, offering 
a diverse range of objects that are typically encountered in 
outdoor night-time scenes, such as pedestrians, bicycles, cars, 
and other common items. These objects are captured in 
various conditions, including different levels of ambient 
lighting, shadow, and occlusion, which better simulate real-
world night-time surveillance scenarios. Furthermore, unlike 
many existing datasets that are primarily static images, our 
dataset includes video sequences, which are crucial for 
evaluating real-time object detection models. This allows for 
the capture of dynamic scenes, where objects are not only 
detected but also tracked across frames. The inclusion of video 
data in our custom dataset enables us to assess the temporal 
consistency and tracking performance of models like YOLOv8, 
which are essential for applications such as security 
surveillance, traffic monitoring, and autonomous driving in 
low-light environments.
In addition, our dataset incorporates various lighting 
conditions, from twilight to near-complete darkness, captured 
using infrared (IR) cameras to simulate real-world night-time 
conditions. This adds another layer of complexity that many 
other datasets fail to address, as IR reflections, noise, and low 
signal-to-noise ratios can significantly affect object detection 
performance. By including a range of IR lighting intensities 
and camera angles, our dataset ensures that models trained on 
it are more robust to changes in illumination, making them 
more effective in challenging real-world applications. The 
unique combination of object variety, dynamic video 
sequences, diverse lighting conditions, and IR imagery makes 
our custom dataset an invaluable resource for training and 
evaluating object detection models specifically designed for

Abstract—Object detection in low-light conditions presents 
significant challenges due to the reduced visibility and poor 
illumination, particularly in real-time applications. This paper 
proposes a novel approach using the YOLOv8 model for real-
time object detection in night-time conditions. A custom dataset 
comprising various objects captured in low-light environments 
was utilized to train and evaluate the model. The results 
demonstrate superior performance in terms of speed and 
accuracy compared to previous models, particularly YOLOv3. 
We also include an analysis of the model's real-time performance 
using a custom video feed. Our findings show that YOLOv8 
outperforms earlier YOLO versions in detecting objects 
accurately and quickly in low-light, real-time scenarios, making it 
a promising solution for night-time surveillance and other 
security-related applications.
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I. INTRODUCTION
Object detection has become a central task in the field 
of computer vision, especially with the rise of deep 
learning models capable of identifying and localizing 
multiple objects in images and video streams. Over the 
past decade, several datasets and models have been 
developed to benchmark and advance object detection 
capabilities, such as PASCAL VOC, MS COCO, and 
ImageNet. These datasets have played a significant role 
in improving the accuracy and efficiency of object 
detection algorithms, particularly in well-lit, structured 
environments. However, when it comes to real-time 
object detection in low-light conditions, existing datasets fall 
short in capturing the complexities of night-time scenes. 
Traditional datasets like PASCAL VOC and MS COCO 
are rich in object variety and annotation depth, but they 
are primarily focused on daytime imagery or well-
illuminated indoor environments. The objects in these 
datasets are typically visible under natural or artificial light 
sources, and the annotations are based on high-resolution, 
clear images. While these datasets have been instrumental in 
advancing the field, they are not designed to address the 
unique challenges of low-light environments, where object 
detection becomes significantly more complex due to 
factors like noise, poor contrast, shadows, and low visibility.
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low-light, real-time applications. By using this dataset, we aim 
to push the boundaries of what is possible in night-time object 
detection, particularly in the context of real-time detection and 
tracking.
In this paper, we explore the potential of the YOLOv8 model, 
the latest in the YOLO family, for real-time object detection 
using our custom dataset. YOLOv8 introduces several 
architectural improvements over its predecessors, including 
enhanced feature extraction and better spatial understanding 
through transformer layers. These improvements make 
YOLOv8 particularly well-suited for the challenges posed by 
low-light environments, where traditional models struggle 
with accuracy and speed. Through extensive experimentation, 
we demonstrate that YOLOv8 significantly outperforms 
previous versions like YOLOv3 and other traditional models 
in both detection accuracy and real-time performance. Our 
results show that the YOLOv8 model can detect and track 
multiple objects in real-time, even in poor lighting conditions, 
making it a promising tool for night-time surveillance and 
other applications that require robust, real-time object 
detection in challenging environments.
In the following sections, we will detail the methodology used 
to train and evaluate YOLOv8 on our custom dataset, discuss 
the experimental setup for real-time object detection, and 
present a comprehensive analysis of the results. We will also 
compare YOLOv8's performance with previous models, 
highlight the advantages of using this advanced architecture 
for low-light detection, and propose future improvements for 
further enhancing performance in real-time, low-light object 
detection.

Figure 1: Night-time CCTV infrared (IR) footage with
varying illumination captured in the custom dataset

II. RELATED WORK

Numerous object detection algorithms have been developed 
over the years, with the YOLO family being one of the most 
widely recognized for real-time applications. Earlier versions, 
such as YOLOv3, introduced significant improvements in 
accuracy and speed. However, the challenge of low-light 
detection remains largely unaddressed by these models. 
Research into object detection in low-light conditions has 
focused on image enhancement techniques and handcrafted 
feature extraction methods. While these approaches have 
improved detection rates to some extent, their reliance on 
artificial lighting and preprocessed images limits their real-
time applicability. YOLOv8 represents a significant leap 
forward by integrating advanced techniques such as 
transformer layers and improved backbone networks, making 
it suitable for handling real-time object detection even in 
adverse conditions like low light.

III. METHODOLOGY

Our approach involves training the YOLOv8 model using a 
custom dataset specifically created for object detection in low-
light conditions. The dataset comprises images and video 
frames captured at night, under varying degrees of illumination 
and containing objects such as cars, pedestrians, and bicycles. 
Each object class has been carefully annotated with bounding 
boxes, ensuring that the model can learn accurate spatial 
information.

Yolov8 Architecture
YOLOv8 (You Only Look Once version 8) represents a 
significant advancement in real-time object detection, designed 
to tackle the challenges of both speed and accuracy, especially 
in low-light environments. The architecture builds upon the 
foundations of earlier YOLO models, incorporating new 
features and optimizations that make it particularly effective 
for night-time surveillance and other real-time applications in 
challenging conditions. YOLOv8 consists of several key 
components: the Backbone (CSPDarknet), the Neck (PANet), 
Transformer Layers, and the YOLO Head, each playing a 
crucial role in enhancing the model’s ability to detect and 
classify objects. At the heart of the YOLOv8 architecture lies 
the CSPDarknet backbone, which is responsible for extracting 
essential features from the input image. CSPDarknet, or Cross-
Stage Partial Darknet, improves upon the traditional Darknet 
by introducing cross-stage partial connections that enhance 
gradient flow while reducing the computational complexity of 
the network. By splitting the feature map into two parts—one 
undergoing transformations while the other bypasses these 
operations—CSPDarknet can balance feature extraction and 
computation efficiency. This allows YOLOv8 to capture fine-
grained details such as edges, textures, and shapes, which are 
critical in low-light conditions where object visibility may be 
impaired. Additionally, residual connections within 
CSPDarknet help prevent the vanishing gradient problem, 
making the model more capable of detecting small or dimly lit 
objects.
Once the backbone has processed the input image, the features 
are passed to the Neck, which is powered by the Path 
Aggregation Network (PANet). PANet is crucial for multi-
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scale feature fusion, enabling the model to effectively detect 
objects of various sizes. By connecting lower-level, high-
resolution features with higher-level, abstract representations, 
PANet ensures that the model retains fine spatial details while 
also benefiting from global context. This is particularly 
important for detecting small objects, such as pedestrians, 
alongside larger objects like vehicles, in night-time 
surveillance scenarios. The ability to handle multi-scale 
detection makes YOLOv8 versatile and robust, ensuring 
accurate detection across a wide range of object sizes and 
environmental conditions. A significant innovation in 
YOLOv8 is the incorporation of Transformer Layers, which 
bring an attention mechanism into the architecture. 
Transformers, originally developed for natural language 
processing, have proven to be highly effective in computer 
vision tasks for capturing long-range dependencies and global 
context. In YOLOv8, the transformer layers help the model 
focus on the most relevant parts of the image, improving its 
ability to detect objects even in complex scenes with poor 
illumination. The self-attention mechanism within the 
transformer allows YOLOv8 to understand spatial 
relationships between different regions of the image, which is 
especially useful in night-time environments where objects 
may overlap or be obscured by shadows. This enhanced 
spatial understanding leads to more accurate detection of 
objects in challenging lighting conditions.
The final component of YOLOv8 is the YOLO Head, which 
generates the model’s predictions. The YOLO head is 
responsible for producing bounding boxes, object class labels, 
and confidence scores, all of which are crucial for object 
detection. YOLOv8 outputs predictions at three different 
scales, allowing it to detect small, medium, and large objects 
within the same scene. For each grid cell in the input image, 
the YOLO head predicts several bounding boxes, along with 
confidence scores that indicate how likely it is that an object is 
present. To ensure accuracy, the model employs non-max 
suppression (NMS) to eliminate overlapping bounding boxes 
and refine the final predictions. This approach is particularly 
important in low-light environments where reflections or noise 
might cause multiple bounding boxes to appear around the 
same object.
Overall, YOLOv8 offers significant improvements in both 
speed and accuracy, making it well-suited for real-time 
applications such as night-time surveillance and traffic 
monitoring. Its ability to process images quickly and 
efficiently, even in challenging low-light conditions, makes it 
an ideal choice for systems that require immediate detection 
and response. The combination of CSPDarknet’s efficient 
feature extraction, PANet’s multi-scale fusion, transformer 
layers’ global context understanding, and the YOLO head’s 
precise predictions enables YOLOv8 to deliver state-of-the-art 
performance in object detection.
By leveraging these architectural advancements, YOLOv8 can 
handle a wide range of real-time object detection tasks, 
ensuring robust performance in environments where speed and 
accuracy are critical, such as in security surveillance or 
autonomous vehicles operating at night.

IV. TRAINING AND MODEL SETUP

In our project, we worked with a custom dataset consisting of
10 videos for each object class. The videos were captured at
night using an infrared (IR) camera under various lighting
conditions. We processed the videos by splitting them into
frames at a rate of 10 frames per second, resulting in a total of
3,000 images. Out of these, 2,485 images were used to train
the YOLOv8 model, while the remaining images were set
aside for testing the model's performance. The annotation
process for the dataset was carried out using Roboflow
software, which helped streamline the labeling of objects such
as pedestrians (male and female), cars, vans, bikes, and cycles.
Each object was accurately annotated with bounding boxes,
ensuring that the YOLOv8 model received high-quality
labeled data during training. Roboflow’s augmentation
features were also leveraged to enhance the dataset with
techniques like random cropping, scaling, and rotation.

We followed these steps to train the YOLOv8 model:

1) We pretrained the first 24 convolutional layers of
YOLOv8 using the ImageNet 1000-class competition
dataset. The initial input size was set to 1080x720 to ensure
that the model could extract meaningful features from high-
resolution images. This pretraining helped the model to
learn general visual features before fine-tuning it on our
custom dataset.

2) After pretraining, the input resolution was reduced to
448x448 pixels to speed up training without significantly
compromising accuracy. The reduction in input size
allowed the model to process the dataset more efficiently
while maintaining performance.

3) The full YOLOv8 model was trained for 20 epochs
using a batch size of 64. During training, we applied a
learning rate schedule, where the learning rate was
gradually reduced over time. For the first few epochs, the
average loss started at 78 and progressively dropped to 6.8.
After 15 epochs, the learning rate was further decreased to
fine-tune the model, allowing it to achieve better
convergence.

4) To make the model more robust, we employed various
data augmentation techniques, including random scaling,
translation, and adjustments to brightness and saturation.
These augmentations helped simulate different lighting
conditions, ensuring the model performed well under
various real-world scenarios.

5) The YOLOv8 model was trained for up to 20 epochs,
achieving an average loss of 2.3 by the end of training. This
relatively low loss function indicated that the model had
learned to detect objects accurately and consistently.

During the annotation process, care was taken to ensure proper
labeling when multiple classes overlapped in the frames. This
was crucial for training the YOLOv8 model to handle complex
scenes where objects such as pedestrians and vehicles might
be closely positioned or partially occluded. In YOLOv8,
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bounding box predictions were penalized based on the square 
root of the box's width and height. This approach was 
particularly useful for improving the model’s ability to detect 
both small and large objects, reducing the prediction error for 
objects of varying sizes.
After training, the YOLOv8 model was tested on the 
remaining images from our custom dataset. The model 
successfully detected objects in the test videos, leveraging the 
IR camera's wavelength to enhance visibility in low-light 
conditions. The real-time performance of the model was 
remarkable, with fast and accurate detection of various objects 
like pedestrians (male and female), cars, vans, bikes, and 
cycles. One of the key advantages of YOLOv8 is its ability to 
perform live detection with minimal loss, making it well-
suited for applications like night-time surveillance and 
security.

V. RESULTS AND DISCUSSION

While this research has made substantial progress in 
enhancing the features for object detection in low-light 
conditions, it is by no means the final chapter. The future of 
night-time computer vision holds considerable promise, with 
many challenges yet to be addressed. Further research and 
development should focus on refining and expanding the 
capabilities of night vision models, particularly under the 
specific conditions encountered in various night-time 
environments. Our custom dataset is expected to serve as a 
crucial resource for future endeavors in this domain. 
Researchers and innovators are encouraged to leverage this 
dataset as a foundation for their work, using it to develop more 
advanced models and techniques that can tackle the 
complexities of real-time object detection in low-light 
scenarios.

Table 1: A comparative chart showcasing the reduction in 
average loss as the number of epochs increases.

Epochs Average
loss

Time-taken
(min)

1 78.5 2.1

2 70.1 1.9

3 65.9 1.7

4 52.6 2.3

5 48.5 1.8

6 43.9 2.2

7 36.8 2.5

8 30.7 2.2

9 22.8 2

10 18.8 1.5

11 15.6 1.3

12 11.7 1.5

13 9.6 1.2

14 7.8 1.2

15 6.9 1.3

Figure 2: Epochs vs Average loss

Figure 3: Epochs vs Time taken

16 4.6 1.4

17 2.7 1.1

18 2.3 1.1

19 1.2 1.5

0.9 1.1

Table 2: Comparison of our algorithm with various yolo
versions

S.No Algorithm
No. of
frames

Threshold
Efficiency

(%)

1 yolo v1 606 0.7 72.5

2 yolo v2 606 0.68 80.5

3 yolo v3 606 0.75 86

4 yolov8 606 0.71 94.10
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Figure 4: Sample Output 1

Figure 5: Sample Output 2

Figure 6: Cummulative sample Outputs

VI. CONCLUSION

This research highlights the successful application of the 
YOLOv8 model for real-time object detection in low-light 
conditions using a custom dataset. The model effectively 
learned to detect a diverse range of objects, demonstrating its 
high accuracy and speed in challenging night-time scenarios. 
The custom dataset, meticulously annotated with Roboflow, 
was instrumental in training the model. During testing, 
YOLOv8 was evaluated on both images and input video 
footage. It successfully identified and classified all objects in 
real-time, including pedestrians, cars, vans, bikes, and cycles, 
showcasing its potential for practical applications in night-
time surveillance and traffic monitoring[4,6]. While the results 
are promising, future work can focus on further enhancing 
detection speed, improving robustness in extreme low-light 
conditions, and expanding the dataset for more diverse 
applications[7,9]. Overall, this study emphasizes YOLOv8’s 
capability as an effective tool for night-time object detection, 
paving the way for continued advancements in the field [1,2,5].
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