

Real Time Operating System based on AVR Microcontroller

 Srishti Dubey
Electronics and Communication

Medi-Caps Institute of Engineering & Technology

Indore, India

Devendra Singh Bais
Assistant Professor

Electronics and Communication

Medi-Caps Institute of Engineering & Technology

Indore, India

 Ankit Chouhan
Electronics and Communication

Medi-Caps Institute of Engineering & Technology

Indore, India

Abstract

This paper describes about a compact and efficient

Real Time Operating System (RTOS) based on AVR

microcontrollers. By using RTOS, it can result to

eliminate processor waiting time, without doing any

applicable work. Lots of tasks can be run independently

and simultaneously and due to this CPU’s efficiency

will be more than conventional systems. RTOS is pre-

emptive and multitasking. The design has a small code

size, good performance and low memory usage, as the

design was implemented for AVR devices. Finally,

practical algorithm with suitable circuit and ATmega32

is presented to test this information about the designed

RTOS.

Keywords- RTOS, ATmega32, Pre-emptive.

1. Introduction
An operating system (OS) is software that uses all

the hardware such as RAM, ROM, CPU, and so on for

better management and controlling them. Generally,

based on the running programs, there are two operating

systems: single-task operating system and multi-task

operating systems. In multi-task OS there are too many

tasks in the system simultaneously; the OS divides

processor among all of them. That kind of processor

that divides times among them is called scheduler.

There are two kinds of scheduling algorithms: pre-

emptive algorithm and non pre-emptive algorithm.

 Later, each task can be run after finishing

another one, but in the former, scheduler can transform

programming control from a running program to

another one. Real time operating system (RTOS) is a

kind of OS that each task must run in a certain times

and if not, OS fails. So, based on the above mentioned

points RTOS should be multi-task and pre-emptive for

performing the scheduling mechanism. The main

purpose in these kinds of OS is to be performing in a

time limitation. There are many kinds of RTOS such

as; μCOS, ECOS, QNX, Vxworks, Free RTOS, and so

on. In this paper, RTOS for AVR microcontrollers has

been designed by Atmel Company. It has been

designed by C language and also it has been performed

on ATmega32 microcontroller. For compiling its code,

Code vision AVR has been used.

2. Introducing AVRs
Before First time, AVR technology has been

introduced in 1997. Its design is based on RISC

technology. It is having 32 general purpose registers:

R0 to R31.

There are many kinds of AVR including LCD AVR,

Mega AVR, Xmega AVR, Tiny AVR, and AT90S

AVR. Like other microcontrollers, there are different

2464

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10873

languages for programming such as C and Assembly.

There is a favourite compiler and language for

programming is C and Code vision. For more

information about AVRs, refer to [8].

2.1. [Real Time] Operating Systems Basics
An operating system is a system program which

provides an interface between application programs and

the computer hardware. There are two primary

functions:

 Making the computer system convenient to

use.

 To organize correct and efficient use of the

computer Resources.

There are four main tasks of operating system:

Process management, inter-process communication and

synchronization, memory management, and input/

output management. The process management

component is also responsible for process loading,

process creation and execution control, the interaction

of the process with signal events, process monitoring,

CPU allocation and process termination. Inter-process

communication covers issues such as synchronization

and coordination, process protection, deadlock and

live-lock detection and handling and data exchange

mechanisms. Memory management includes services

for file creation, deletion, reposition, and protection.

I/O management handles request and release the

subroutines for a variety of peripherals, write, read, and

reposition programs.

Real-time systems are those systems where the proper

functionality assumes both the correctness of the output

as well as the correct timing behaviour of the system.

3. Proposed plan for RTOS
Most of the designed system will perform the

determined tasks after turning their power on. Those

systems will use too much memory space and are

somehow complex. Regarding low space memory in

AVR and determined tasks without any need to change

them in most cases, optimum plan will be presented as

follow.

 First all tasks with their requirement time to

perform should be determined. A plan to compile tasks

and OS has been designed. In fact, each task in the

designed RTOS should use all hardware independently

from other tasks. Tasks should be able to run

simultaneously without any need to reprogramming for

new codes. Users can change scheduling algorithm

according to their systems. A timer can be used to

generate the least timer tick according to the least time

slice and based on it; scheduler can manage and control

tasks according to their priority.

4. Flowchart

Start

Waiting some time for
new program from SD
(secure digital) card

If new
program
found?

Loading the
program in

ROM

Jump to ROM
location where new

program get
installed

Yes

No

Jump to
previous
program

 “Figure 1. Flowchart”

5. Real Time Operating System

An operating system is said to be real time, when it

schedules the execution of programs in time, it handles

system resources and gives a reliable basis for the

development of software code.

5.1. Components of RTOS
Most RTOS kernels consist of following components

such as:-

Scheduler

ServicesObjects

“Figure 2. Normal Component of RTOS”

2465

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10873

 Scheduler

 Objects

 Services

5.1.1. Scheduler. Scheduler is at center of each kernel.

A scheduler allows the algorithms that are needed to

determine what role do when.

5.1.2 Objects. The most common RTOS kernel objects

are as follows:

• Information --- it is simultaneous and independent

threads of execution that can compete for CPU

execution time.

• Semaphores ---it is a token-like object that can be

raised or charged by information for synchronization or

mutual exclusion.

• Message Queues ---they are buffers that data structures

that can be used, mutual exclusion, synchronization and

communication by sending messages between tasks. [3]

.

Objects of
RTOS

Device
Driver

Semaphores Events

Tasks

TimersMailBoxes

“Figure 3. Objects of RTOS”

 5.1.3 Services. Most of the kernels provide services to

assist developers for creation of real-time embedded

applications. These services comprise of API calls that

are used to perform operations on kernel objects and

can be used in general to facilitate the following

services:

 Timer Management

 Interrupt Handling

 Device I / O

 Memory Management

Embedded systems are used for many different

applications. These applications can be proactive or

reactive, depends on interface requirements,

connectivity, scalability, etc. Selecting of OS for an

embedded system is based on an analysis of operating

system itself and the requirements of the application.

[4]

6. How one RTOS differs from the other?
(i) RTOS differ in main architecture.

(ii) Types of scheduling algorithm used in it. (Pre-

emptive or co-operative scheduling).

(iii) Number of instructions of kernel without any task

written to it formed after compilation of complete code.

It ultimately occupies space in ROM and RAM, so

memory and execution speed get affected.

(iv) It can run no. of tasks without degrading the

performance like response time. [9]

(v) Performance metrics that we have chosen i.e.

Context switching Time, Pre-emption time and

Interrupt Latency.

7. Hardware Design
ATmega32 is used for testing the designed RTOS. The

circuit is as fig. 4. ATmega32 microcontroller is used

in 16 MHz clock, Max232 i.e.) for serial peripheral

interface with PC, capacitors and Led’s.

“Figure 4. Circuit to test RTOS (STK500)”

8. Discussing Results
This paper has a proposed algorithm to design RTOS

and it is also a RTOS for AVR devices which has been

designed. Customary programs for microcontrollers use

infinite loop and each task for running, needs to be run

after finishing another one. So in case of such systems,

the processor cannot do some tasks simultaneously.

Using interrupts may seem like an option, but it also

reduces the interrupt latency as the computation has to

take place inside the ISR. Thus using RTOS is an

applicable engineering solution. The main and

important features of such RTOS rather than available

2466

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10873

RTOS such as ECOS are its low memory usage and its

small size. The results of proposed algorithm on

practical circuit show that RTOS works in a proper

manner. This RTOS may be used with all kinds of

AVR controllers.

10. References
[1] Tran Nguyen,Bao Anh, “REAL-TIME OPERATING

SYSTEMS FOR SMALL MICROCONTROLLERS”,

Published by the IEEE Computer Society, pp.30-46,

September 2009.

[2] Baynes, K.; Collins, C.; Fiterman, E.; Brinda Ganesh;

Kohout, P.; Smit, C.; Zhang, T.; Jacob, B.; , "The

performance and energy consumption of embedded real-time

operating systems," Computers, IEEE Transactions on ,

vol.52, no.11, pp. 1454- 1469, Nov. 2003 doi:

10.1109/TC.2003.1244943.

[3] Hessel, F.; da Rosa, V.M.; Reis, I.M.; Planner, R.;

Marcon, C.A.M.; Susin, A.A.; , "Abstract RTOS modeling

for embedded systems," Rapid System Prototyping, 2004.

Proceedings. 15th IEEE International Workshop, pp. 210-

216, 28-30 June 2004 doi:10.1109/IWRSP.2004.1311119

[4] M. L. So_a and M. J. Irwin, “Organizing principle for

operating systems,"Proceedings of the 14th International

Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 49-60, March 2009.

[5] Tanenbaum, Andrew S.,Operating Systems: Design and

Implementation

[6] G. Lipari and S. K. Baruah, “Efficient scheduling of real-

time Multi-task applications in dynamic systems,” 6th IEEE

Real-Time Technology and Applications Symposium, 2000

[7] Atmel, http://www.atmel.com.

[8] ATmega32 datasheet, www.datasheetcatalog.com

[9] Edwards, Stephen A.; “Real-Time Embedded Software”;

John Wiley & Sons, Inc.; Wiley Encyclopaedia of Electrical

and Electronics Engineering;

SN:9780471346081;2001;doi:10.1002/047134608X.W8113

2467

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10873

