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Abstract
  

-
 

Elliptic Curve Cryptography
 

makes a good choice for 

implementing security services in constrained devices, like the mobile 

ones. However, the diversity of ECC implementation parameters 

recommended by international standards has led to interoperability 

problems among ECC implementations. This work presents the design 

and implementation results of a novel FPGA coprocessor for ECC 

than can be reconfigured at run time to support different 

implementation parameters and hence, different security levels.
 
FPGA 

based architecture of elliptic curve cryptography coprocessor is 

proposed in this paper.
 

Experiment results show that coprocessor 

designed in this paper can achieve high performance.
 
In GF(2163), we 

achieve a point multiplication in 13.38 ns in Xilinx Virtex-E. Using the 

modern Xilinx Virtex-5, the point multiplication
 
GF(2163 )

 
is achieved 

in 3.480ns, and it consumes less number of LUTs compared to other 

devices.
 

1.INTRODUCTION
 

 

 
The rapid advances in information technology in the past few 

decades have led to intensive research on information security. Many 
technologies and crypto

 
graphical

 
systems have been

 
developed, all to 

secure information and protect
 
it from un authorized persons.

 
Cryptography 

is the science of writing in secret code and is an ancient art and
 
not only 

protects the data, but can also be used for user authentication.
 
There are 

several ways of classifying cryptographic algorithms. They will be 

categorized based on the number of keys that are employed for encryption 
and decryption, and further defined by their application and use. The 

 
three 

types of algorithms are:
 
Public key cryptography: Use a   single key for 

both encryption and decryption.
 
Symmetric key cryptography: Uses one 

key for encryption and another key for decryption.
 
Hash functions: Uses a 

mathematical transformation to irreversibly “encrypt” information.
 

  
Public-key cryptography has been widely studied

 
and used since 

1975 when Rivest, Shamir, and Adleman invented RSA
 

public key 

cryptography. This system heavily depends on integer factorization
 

problem
 
(IFP). In 1985, Koblitz and Miller used

 
EC in cryptography

 
using 

elliptic curves discrete logarithm problem (ECDLP)
 

in [3] and [1]. In 

recent years, researchers have given more attention to
 
develop the proposed 

ECC algorithms and improve their efficiency.
 
Elliptic Curve Cryptography

 

is a kind of cryptography that provides the security information services 

using shorter keys than other known public-key crypto-algorithms without 
decreasing the security level.

 
Improving

 
the efficiency of scalar 

multiplication in EC is one of the main interests
 
of many researchers in the 

field of cryptology. The techniques proposed so far use different methods 
for representing the scalar k, which clearly shows different levels of 

computation speed and security. 
 

 
ECC-based cryptographic schemes need to define a tuple 𝑇. 

Several tuples 𝑇 
have been recommended for standards, like the National 

Institute of Standards and Technology NIST [5] or the Standards for 

Efficient Cryptography Group SECG [4].
 

The diversity of choices to 

implement ECC and the several tuples 𝑇 
recommended by international 

standards has led to interoperability problems.
 

 
ECC implementations can be categorized into

 
reconfigurable 

and non-reconfigurable classes. In
 
a reconfigurable implementation, the 

Galois field,
 

over which the elliptic curve is
 

defined, can be
 

changed 

without the need to change the design. In
 
a non-reconfigurable design, the 

FPGA must be reprogrammed
 
in order to change the field.

 
 

In this context, interoperability is understood as the ability of 

two ECC implementations (either in software or hardware) to work 

together and communicate, for example one ciphering and the other 
deciphering. However, most of the ECC hardware implementations of 

elliptic
 
curve cryptography are focused on implementing efficiently the 

scalar multiplication operation 𝑑𝑃 
[6, 7, 8, 9, 10, 11].This

 
work aims to 

provide a flexible solution that can dynamically switch to different 
 

 

implementation parameters, instead of custom high performance solutions 

for a specific tuple 𝑇.
 

 
The rest of this paper is organized as follows. In

 
section2 we 

describe
 

the mathematical background of elliptic curve cryptography. 

Section 3 describes the architecture and point operation
 
such as addition, 

doubling, scalar multiplication on EC.
 
The results are discussed in section 4

 

and finally, concluding remarks and further directions are presented in 

section 5.
 

 

2. MATHEMATICAL BACKGROUND 

 
2.1 Galios Field 

 

 Galois field arithmetic plays a critical role in elliptic curve 
cryptography implementation because it’s the core of ECC scalar 

multiplication. Galois field or Finite field (F) defines as GF(pm) which is a 

field with finite number of elements (pm elements with p is a prime number 
called characteristic of field) and two binary operation addition and 

multiplication. Furthermore, Order of Galois field is the number of 

elements on the Galois field [12, 13].  
 Galois fields suitable for ECC implementation divides into two 

categories: prime field where m = 1 and binary field where p = 2 and m > 
1. Binary Galois field preferred in hardware because of free carry 

propagation property in hardware. 

 
2.2  Binary Field 

 

 Finite field of order 2m is called binary field. Suppose Binary 

field (F2m) and we have two elements A, B ∈ F2m. Addition does not have 

any carry propagation and can be done by one n bit XOR operation, 
multiplication done by ordinary multiplication (a•b) modulo irreducible 

polynomial P(x) in F2m, square operation done with no hardware resource 

rather than in (Fp) is cost as a general multiplication and faster Inversion 
operation in GF(2m). 

 Instead of the dual field approaches, ECC over binary field 

GF(2m) can achieve a high throughput inherently because there is no carry 
propagation in the arithmetic operations, resulting in fast and compact 

implementations proposed recently. 

 
2.3  Point Addition And Doubling 

 

 Any point multiplication will be done with a sequence of point 
additions, so to minimize the total cost one should consider both the point 

addition algorithm and the sequence in which the operations will be 

performed. 

 Point Addition-ADD to sum two distinct points P,Q ∈ 𝐸(𝐾).   

 Point doubling - ECC-Dbl to sum a point   ∈ (𝐾) to itself. 

 

2.4  Projective coordinate system 
 

 Several projective coordinate systems for elliptic curve equation 
have been proposed in order to avoid the time-consuming inversion 

operation [14]. Projective coordinate system proposed by Lopez and Dahab 

is suitable for hardware implementation, and it is called L-D projective 
coordinates in this paper.  

 Projective coordinates involve representing a curve point as a 

triplet   x, y, z ∈  GF(q), i.e., P(x, y, z). In the L-D projective coordinates, 
point (X:Y:Z)(Z≠0) is corresponding to point (X/Z, Y/Z2) in the affine 

coordinates, and the elliptic curve equation is simplified as below. 
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       Y2+XYZ = X3Z+aX2Z2+bZ4          (1)   
3.Point Operation on Elliptic Curve 

  

 Both point addition and subtraction operations are foundation of 
scalar multiplication. Point addition operation includes addition of  two 

different points and two same point doubling. In this section, we will 

discuss the implementation of point operations inside FPGA in detail based 
coprocessor in L-D projective coordinates. 

 Since the modular inversion operation over field is a time 

consuming operation, points on elliptic curve should be represented in 
projective coordinates to avoid it. In the L-D projective coordinates, elliptic 

curve equation is the same as formula (1). The points addition formula that 

do not involve modular inversion operation can be derived by converting 
the point to affine projective as x=X/Z, y=Y/Z2 at first, then adding the 

affine points with the formula, and finally clearing the denominators. With 

the method mentioned above, the distinct points adding and the same point 

doubling formula can be derived. 

 As for two distinct points adding, suppose the first point 

P(X1,Y1,Z1 ) and the second point Q(X2,Y2,Z2) are on elliptic curve, the 
adding result of the two different point is R(X3,Y3,Z3) as following. 

   ( X1,Y1,Z1 )+(X2,Y2,Z2 )=(X3,Y3,Z3 )         (2) 

 
 The two distinct points adding formula is shown as in detail 

[17], and it requires 13 field multiplications. 

  1. A0 = Y2 ·Z1
2             9. Z3 = F2 

  2. A1 = Y1·Z2
2              10. G = D2·(F+aE2) 

  3. B0 = X2·Z1    11. H = C·F 
  4. B1 = X1·Z2    12. X3 = C2 + H + G 

  5. C = A0+A1              13. I = D2·B0·E + X3 

  6. D = B0+B1              14. J = D2·A0 + X3 
  7. E = Z1·Z2     15. Y3 = H·I + Z3·J 

  8. F = D·E 

 It is necessary to note that when using the double and add 

method for scalar multiplication k·P the point P is never modified in all 

distinct point adding. In mixed coordinates (one is projective point and the 

other is affine point) the point P maintaining in affine coordinates will 
simplify the computing. The point adding in mixed coordinates 

   ( X0, Y0, Z0 )+( X1, Y1, 1 ) = ( X2, Y2, Z2 ) 

is computed by 
  1. A = Y1·Z0

2 + Y0             6. E = A·C 

  2. B = X1·Z0 + X0          7. X2 = A2 + D + E 

  3. C = Z0·B                   8. F = X2 + X1·Z2 
  4. D = B2·(C + aZ0)     9. G = X2 + Y1·Z2

2 

  5. Z2 = C2                   10. Y2 = E·F + Z2·G 

 
 The point doubling operation is to add a point on the elliptic 

curve with itself. Suppose point P( X1,Y1,Z1) and the projective coordinate 

form of doubling formula is 
 2P(X1,Y1,Z1) = Q(X2,Y2,Z2)        (3) 

 Implementation of the operation requires 4 field multiplications. 

The point doubling is computed by 
 

 Z2 =Z1
2.X1

2    

 X2=X1
4+b.Z1

4      
 Y2=bZ1

4+X2.(aZ2+Y1
2+bZ1

4) 
  

 The following algorithm implements a full point addition in the 
projective coordinates. 

1. If Z1=0, then output 

            (X3,Y3,Z3)=(X2,Y2,Z2) and stop. 
2. If Z2=0, then output 

            (X3,Y3,Z3)=(X1,Y1,Z1) and stop. 

3. Set (X3,Y3,Z3)=Add[(X1,Y1,Z1) (X2,Y2,Z2)]. 
4. If (X3,Y3,Z3)=(0,0,0), then 

            set (X3,Y3,Z3)＝Double[(X1,Y1,Z1)]. 

5. Output(X3, Y3, Z3). 

 

 
 

 

 
 

 

 

 

4.  ARCHITECTURE AND ALGORITHM 
 

 There are several different algorithms for performing elliptic 

curve scalar point multiplication. A survey of such algorithms can be found 
in [15] and [16]. The most used algorithms are the following: 1) double and 

add; 2) nonadjacent form (NAF) addition–subtraction chain; and  

3) Montgomery ladder product. 
 Among these algorithms, the NAF method, without pre 

computing, is more suitable for hardware implementation for its concision 

and efficiency. The following NAF algorithm is adopted in our design of 
coprocessor.  

 

1. set hlhl–1...h1h0 is binary representation  
    of  3k. 

2. set klkl–1...k1k0 is binary representation  

    Of  k. 

3. set S=Q. 

4.For i from l–1 Downto 1 Do 

 4.1 set S = 2S. 
 4.2 if (hi=1 && ki=0) S=S+Q; 

 4.3 if (hi=0 && ki=1) S=S-Q; 

5.output S. 
 

 

 

 
 

Fig.1 Architecture of scalar multiplier 

 

 The architecture of scalar multiplier module in FPGA device is 
depicted as Figure 1. The Point doubling and point addition operations are 

done by using  their modules presented in the above  architecture and 

control logic controls the all operations. Reg x, y ,z used for temperorary 
storage. A very small amount of clock cycles is required to read and write 

the data in the internal memory. 

 For example, two different elliptic curve points addition 
requires 9 field multiplications in mixed coordinate system, one is affine 

coordinate system and the other is LD projective coordinate system. A 

point doubling require 4 field multiplications. 
 

4.  EXPERIMENT AND RESULTS 

 
 The FPGA based architecture of EC Scalar Multiplier 

introduced above is described with VHDL. The VHDL description is 

correctly simulated in ModelSim Altera ana the simulation result is shown 
in Fig.2. The synthesis of the description is finished in Xilinx’s integrated 

software environment. The placing and routing process are finished in 

Xilinx’s Virtex-5 device. 
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Fig.2 Scalar multiplication  for Binary field 163 using VHDL code 

 The time to perform the scalar multiplication is given in table 1. 

This paper summarizes several coprocessor published in recent years and 

list them in Table 1 with our own design in it. The data in the table mainly 
shows time  for scalar multiplication for 163 bit is 3.480ns. 

 

Table 1. Comparison of Scalar Point Multiplication in various devices 
 

Devices Spartan3E Virtex E Virtex 4 Virtex 5 

 

No.of Slices 4223 4274 4208 5968 

No.of LUTs 7523 7590 7523 6611 

No.of 
Bonded 

IOBs 

334 334 334 334 

Time(ns) 6.504 13.831 5.734 3.480 

 

5.CONCLUSION 

 
 A new design of trade of scalar multiplier is proposed in this 

paper. This is scalable and programmable architecture that exploits 
the reconfigurabality to deliver optimized solutions for different 

elliptic curves and finite fields. The architecture of our design is 

described in VHDL  simulated using Modelsim Altera and 
synthesized using Xilinx. This scalar multiplier  achieves a better 

performance shown in above comparison. The architecture is 

presented using the modern Xilinx Virtex-5 FPGA device results 
5560 occupied bit slices, 6611 LUTs with time delay 3.480ns for 2163 

point multiplication.  
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