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Abstract–The objective of this project is to 

reconstruct 3D sparse images using Non-linear 

Filtering Compressed Sensing (NFCS) 3D 

Anisotropic and 3D Isotropic techniques. 

Compressed Sensing is a new paradigm for signal 

recovery and sampling. Using proposed NFCS 

techniques, a random mask is generated for the 

selected input 3D image using a sampling matrix. 

Now, a sparse image is generated for the selected 

3D image. Applying Normalization, the original 

image will be reconstructed from the sparse 3D 

image in iterations. The obtained reconstructed 3D 

image will be filtered using an appropriate 

adaptive non-linear filter in proposed NFCS 3D 

techniques. The output parameters like Normalized 

Factor, PSNR, and CPU elapsed time will be 

calculated and compared along with simulation 

results. The results obtained using proposed 

techniques will confirm that these possess 

properties of efficiency, stability, low 

computational cost, fast recovery of 3D images in 

few seconds and its performance is competitive 

with those of state of art algorithms. 

Keywords - NFCS, Anisotropic, Isotropic, 

Compressed Sensing, Normalized Factor 

 

 

I.INTROCUCTION 
 

      Compressed Sensing is a new process of 

acquiring and reconstructing a signal that is 

supposed to be sparse or compressible. It states that 

a relatively small number of linear measurements 

of a sparse signal can contain most of its salient 

information. In transform domain, the signals that 

that have a sparse representation can be exactly 

recovered from these measurements by solving an 

optimization problem of the form 

    minimize ||𝑎1 || subject to 𝜑𝑀𝑇 𝛼 = 𝜑𝑥         (1) 

where  𝜑 is an mxn measurement matrix, (m<<n) 

which possess restricted isometry property [1], [3], 

𝑥 ∈ 𝑅𝑁  is an unknown signal which is K-sparse in 

the transform domain. This is described by 

orthogonal matrix 𝑀 ∈ 𝑅𝑁𝑥𝑁  and 𝑎 = 𝑀𝑢 is the 

coefficients vector of reconstruction 𝑢  in that 

domain.   

       The perfect recovery obtained from the number 

of given measurements depends upon length N and 

sparsity level K of original signal and on the 

acquisition matrix𝜑 [1], [3]. 

        If the unknown signal has sparse gradient, it 

has been shown in [2], [3] that it can be recovered 

by casting problem (1) as  

                  

        
𝑚𝑖𝑛
𝑢

||∇𝑢||1, subject to 𝜑𝑢 =  𝜑𝑥 .           (2) 

 

       The above formulation is particularly suited to 

the image recovery problem, since many images 

can be modelled as piece-wise smooth functions 

containing a number of jump discontinuities. 

        Exact measurements are often not possible in 

real problems, so if the measurements are corrupted 

with random noise, namely we have 

 
𝑚𝑖𝑛
𝑢

||a||1, subject to ||𝜑𝑀𝑇 𝑎 −  𝜑𝑥 + 𝑒 ||2
2 ≤∈2  

(3)  

 

or 

 
𝑚𝑖𝑛
𝑢

||∇𝑢||1, subject to ||𝜑𝑢 −  𝜑𝑥 + 𝑒 ||2
2 ≤∈2      

(4)     

 

with the original signal can be reconstructed with 

an error comparable to the noise level by solving 

the above minimum problem. 

        The idealized sparse signals are rarely 

encounter in applications, but real signals are quite 

often compressible with respect to an orthogonal 

basis. This means that, if expressed in that basis, 

their coefficients exhibit exponential decay when 

sorted by magnitude. The compressible signals are 

well approximated by    K-sparse signals and the 

compressed sensing paradigm guarantees that from 

m linear measurements, we can obtain a 

reconstruction with an error comparable to that of 

the best possible K-terms approximation within the 

sparsing basis [2].   

         In data processing, the traditional practice is 

to measure data in full length and then compress 

the resulting measurements before storage or 

transmission. In such a scheme, recovery of data is 

generally straightforward. This traditional data-

acquisition process can be described as “full 

sensing plus compressing”.  

         Compressive Sensing (CS) represents a 

paradigm shift in which the number of 

measurements is reduced during acquisition so that 

no additional compression is necessary. The price 

to pay is that more sophisticated recovery 
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procedures become necessary. In this paper, NFCS 

3D Anisotropic and Isotropic techniques for image 

recovery in a fast and efficient way are described. 

These NFCS Anisotropic and NFCS Isotropic 

Adaptive non-linear filtering strategies are 

discussed in an iterative framework in comparison 

with 2D image techniques for image recovery.  

          In the NFCS 3D methods, a sparse image is 

generated by applying FFT for the input image. 

From the sparse image, original image will be 

reconstructed using NFCS strategies by 

normalization process. NFCS 3D Anisotropic and 

NFCS Isotropic methods use non-linear filters in an 

iterative approach to filter the reconstructed image. 

These methods possess the required properties of 

efficiency, stability and low computational cost and 

its performance is competitive than those of 

existing algorithms. 

II.LITERATURE REVIEW 

 

          A crucial point in the practical application of 

compressed sensing is the numerical solution of 

problems (1)–(4). A large amount of research has 

been aimed at finding fast algorithms for solving 

such problems. Previously there are many 

reconstruction algorithms which are used for 

recovery of 2 dimensional images. Following are 

few previous algorithms that will operate on 2 D 

images for image recovery. 

 

A.ITERATIVE REWEIGHTED ALGORITHM 

            

    The theory of compressive sensing has shown 

that sparse signals can be reconstructed exactly 

from many fewer measurements than traditionally 

believed necessary. In [4], it was shown 

empirically that using `p minimization with p < 1 

can do so with fewer measurements than with p = 

1. In this algorithm, the local minima of the non-

convex problem can be computed. In particular, a 

regularization strategy is found to greatly improve 

the ability of a reweighted least-squares algorithm 

to recover sparse signals, with exact recovery being 

observed for signals that are much less sparse than 

required by an unregularized version (such as 

FOCUSS, [5]). However, Improvements in terms 

of speed and multidimensional applicability are 

also observed for the reweighted-`1 approach of [6] 

  

 B.FORWARD-BACKWARD SPLITTING  

       

          Various inverse problems in signal recovery 

can be formulated as the generic problem of 

minimizing the sum of two convex functions with 

certain regularity properties. The principle of this 

algorithm is to use at every iteration the functions 

f1 and f2 separately; more specifically the core of 

iteration consists of a forward (explicit) gradient 

step on f2, followed by a backward (implicit) step 

on f1. 

           This algorithm makes it possible to derive 

existence, uniqueness, characterization, and 

stability results in a unified and standardized 

fashion for a large class of apparently disparate 

problems. But, signal must be recovered from a 

collection of measurements of lower dimensional 

signals; in phase retrieval, holography, or band-

limited extrapolation. Another disadvantage is that 

it is not efficient for multidimensional signals like 

3D signals. [7] 

 

C.BOUNDCONSTRAINED RECONSTRUCTION  

    

      When dealing with image reconstruction 

problems it is well known that image intensity 

values have to be not negative and ≤ R, with R>0.  

From this, we could insert more information in the 

compressed sensing reconstruction problem by 

adding a bound constraint to (5) and (6), and 

considering: find  𝑢 ∈ 𝐶  that solves 

 

        
𝑚𝑖𝑛
𝑢

  F (u), subject to 𝑇𝑠𝑢 = 𝑦                     (5) 

 

or 

 
𝑚𝑖𝑛
𝑢

  F (u), subject to ||𝑇𝑠𝑢 − 𝑦||2
2 < ∈2         (6)     

 

Where C is the closed convex set 

 

C= {𝑢 ∈  𝑅𝑁1𝑥𝑁2: 0 ≤𝑢𝑖 ,𝑗≤ R, i=1,………𝑁1,    

j=1…. 𝑁2} and linear operator 𝑇𝑠  𝑐orresponds to a   

sub-sampled orthogonal transform. 

_______________________________________ 

                NFCS 2D ALGORITHMS 

_________________________________________ 

      Here, an extension of non-linear filtering 

approach to the 2D case is considered. As in [9], 

we focus on a recovery problem where the optimal 

solution, in addition to satisfying the acquisition 

constraints, has minimal “bounded variation norm,” 

namely, it minimizes. The optimal reconstruction is 

evaluated by solving a sequence of total variation 

regularized unconstrained sub-problems, where 

both isotropic and anisotropic TV estimates have 

been considered. For each value of the penalization 

parameter the unconstrained sub-problems are 

approached making use of a two-step iterative 

procedure in fixed number of iterations based upon 

the forward-backward splitting method [8].  

      Interestingly, in compressed sensing where the 

acquisition matrix is obtained as randomly chosen 

rows of an orthogonal transform, the two steps of 

the iterative procedure become an enforcing of the 

current iterate to be consistent with the given 

measurements, and a total variation filtering step. 

The image recovery speed can be increased better 
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and these algorithms can only work efficiently for 2 

D signals shown in Fig. 1.  

 

𝐼. 𝑁𝐹𝐶𝑆𝐴  2𝐷 

 

               
       Original image                  Reconstructed image 

 

II. 𝑁𝐹𝐶𝑆𝐼  2𝐷 

 

                
      Original image                  Reconstructed image 

 

Fig.1.Test Images - 𝑁𝐹𝐶𝑆𝐴  2𝐷 and 𝑁𝐹𝐶𝑆𝐼  2𝐷 

Methods       

(a) Horse image (b) Reconstructed image 

   In NFCS 2D Anisotropic and Isotropic methods, 

a random mask and sparse image are generated for 

the input Horse image. A non-linear filter is used to 

recover original image from the sparse image. The 

output parameters like Error, PSNR, No. of 

iterations and CPU elapsed time are tabulated in 

Table I. 

 

    The image quality has been evaluated using the 

PSNR value, defined as 

 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10
𝑅

𝑀𝑆𝐸
                                   (7) 

 

 

 

 

MSE=
𝐸𝑟𝑟𝑜𝑟

 𝑁1𝑥𝑁2
                                                      (8)           

    
where R>0 is the maximum value of the image 

gray level range and 

 

 

Error=||𝑢 − 𝑥||2=   .𝑁1
𝑖=1  (𝑢𝑖,𝑗

𝑁2
𝑗=1 − 𝑥𝑖 ,𝑗  )

2    (9) 

 

TABLE I: Output Parameters with Horse Image 

 

  Method Error PSNR Iterations CPU Time 

 𝑁𝐹𝐶𝑆𝐴  2𝐷 1.5648e-004 119.0459 14 11.886620 s 

  𝑁𝐹𝐶𝑆𝐼  2𝐷 1.8419e-005 49.7175 14 42.789134 s 

 

III. PROPOSED METHODOLOGY 
 

       In this paper, the image reconstruction and 

non-linear filtering are extended to 3 dimensional 

images. Compressed Sensing image recovery 

problem can be overcomed using proposed NFCS 

3D Anisotropic and Isotropic methods.  

       Using NFCS 3D methods, a sparse image is 

generated by applying FFT for the input image. 

From the sparse image, original image will be 

reconstructed using NFCS strategies by applying 

normalization process. NFCS 3D Anisotropic and 

NFCS 3D Isotropic methods use non-linear filters 

in an iterative approach to filter the reconstructed 

image. These methods possess the required 

properties of efficiency, stability and low 

computational cost and its performance is 

competitive than those of existing algorithms. 

 

A. Block Diagram 
 

Figure 1 shows the block diagram for NFCS 

3D Anisotropic and NFCS 3D Isotropic 

methods. Firstly, an orthogonal transform is 

applied for the original input image and a 

random mask is generated using a sampling 

matrix for the transformed input image. Now, 

sparse image is generated after applying FFT 

for the input image. From the sparse image, 

original image will be reconstructed using 

NFCS strategies using normalization. 

 

          

 
              

 Figure 2. Block Diagram for NFCS 3D Methods 

 

 

𝐵. 𝑁𝐹𝐶𝑆𝐴  3𝐷 and 𝑁𝐹𝐶𝑆𝐼  3𝐷 Methods 
             

      Using these proposed 𝑁𝐹𝐶𝑆𝐴  3𝐷 and 

 𝑁𝐹𝐶𝑆𝐼  3𝐷 methods, non-linear filters are used in 

an iterative approach to filter the reconstructed 

image. The output parameters like Normalized 

factor, PSNR ratio and CPU elapsed time will be 

calculated and compared with the 2D results. 
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      𝑁𝐹𝐶𝑆𝐴  3𝐷 method uses a Median filter to filter 

the reconstructed image whereas 𝑁𝐹𝐶𝑆𝐼  3𝐷 

Method uses a digital TV filter for filtering. 

 

C.Reconstruction Approach 

     Let S belongs to R(N1XN2)  be a randomly 

generated binary mask, such that the point-to-point 

product with any v belongs to R(N1XN2), denoted 

by  S x v , represents a random selection of the 

elements of  v, namely, we have 

𝑣𝑆 = 𝑆. 𝑣  𝑤𝑖𝑡𝑕 𝑣𝑆𝑖𝑗 =  
𝑣𝑖𝑗 , 𝑖𝑓 𝑠𝑖𝑗 = 1

0, 𝑖𝑓 𝑠𝑖𝑗 = 0
           (10) 

denotes the sampling matrix, which is considered 

as the random generated mask for the selected input 

image. 

Let T be an orthogonal transform acting on an 

image X denoted by 

 

𝑇𝑠𝑥 = 𝑆. (𝑇𝑥)                                               (11) 

                                                           

 

The randomly sub-sampled orthogonal transform 

considered here is the Fast Fourier Transform. 

 

Then the input data can be represented as 

                                         

𝑦 = 𝑆.  𝑇𝑥 = 𝑇𝑠𝑥 

 

  To find u that belongs to R (N1xN2) can solve 

 

 

𝐹 𝑢 ,    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇𝑠 𝑢∈𝑅𝑁1𝑥𝑁2
𝑚𝑖𝑛 . 𝑢 = 𝑦 

 

                                       

In the case of input data perturbed by additive 

white Gaussian noise with standard deviation σ. 

 

                                         

𝑦 = 𝑆.  𝑇𝑥 + 𝑒 = 𝑇𝑆𝑥 + 𝑒𝑆                       (12)                          

 

 

The problem can be stated as - 

 

 

𝐹 𝑢 ,    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑢∈𝑅𝑁1𝑥𝑁2
𝑚𝑖𝑛 ||𝑇𝑠 𝑢 − 𝑦||2

2 <∈2 

 

 

 ∈2= 𝜎2(𝑀 + 2 2𝑀)                              (13) 

                                 

 

To overcome this problem, penalization approach 

that considers a sequence of unconstrained 

minimization sub problems of the form – 

 

 

 𝐹 𝑢 +
1

2 ⋋𝑘

||𝑇𝑠 𝑢 − 𝑦||2
2 

𝑢∈𝑅𝑁1𝑥𝑁2

𝑚𝑖𝑛

 

 

                                        

In the present NFCS 3D methods, there is no 

limitation, since approach for these problems is 

done implicitly, thus, avoiding the need to deal 

with ill-conditioned linear systems.  

The corresponding bound constrained two-step 

iterative algorithm is the following: 

 

 𝑣𝑛 = 𝑢𝑛
 + 𝛽𝑇𝑆

𝑇 𝑦 − 𝑇𝑆𝑢𝑛 }                     (14) 

                                                      

 𝑢𝑛+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑢∈𝐶
   𝐹 𝑢 +

1

2⋋𝑘
||𝑢 − 𝑣𝑛 ||2

2                                                                

(15) 

                       

The proposed penalized splitting approach 

corresponds to an algorithm whose structure is 

characterized by two-level iteration. There is an 

outer loop, which progressively diminishes the 

penalization parameter in order to obtain the 

convergence to the global minimum, and an inner 

loop, which iteratively, using the two-step 

approach, minimizes the penalization function for 

the given value of LAMBDA. 

 

 The generalized approach of the proposed NFCS 

3D methods is applied for 3D images considering 

three dimensions in every step is as following: 

 

Step A-0: Initialization 

Given F (.), y,𝑇𝑠 , β>0,𝛾 > 0,0 < 𝑟 < 1, 𝑇𝑜𝑙𝑙 ≥

𝑜,⋋𝑚𝑖𝑛  

And ⋋0  𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 0 <⋋𝑚𝑖𝑛 ≤⋋0 

Set k=0, 𝑢0,0 =0 and ⋋0,0=⋋0 

 

Step A-0: Start with the outer Iterations=10 

While (⋋𝑘,0>⋋𝑚𝑖𝑛  and || 𝑇𝑠 𝑢𝑘 ,0 − y||2 > Toll) 

 

Step B-0: Start with the inner Iterations=4 

i=0; 

 

Step B-1: 

Updating Step:  𝑣𝑘,𝑖 = 𝑢𝑘,𝑖 + 𝛽𝑇𝑆
𝑇 𝑦 − 𝑇𝑆𝑢𝑘,𝑖  

Constrained Non-linear filtering step: 

𝑢𝑘,𝑖+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢∈𝐶{
1

2
⋋𝑘,𝑖 𝛽 𝑢 − 𝑣𝑘,𝑖 

2
+ 𝐹 𝑢  

 

Convergence Test: 
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If 𝐹(𝑢𝑘,𝑖+1) −
𝐹(𝑢,𝑘)

𝐹(𝑢𝑘,𝑖+1)
 ≥  𝛾 ⋋𝑘,𝑖  

i=i+1 and ⋋𝑘,𝑖=⋌𝑘,𝑖−1 

go to step B-1. 

Otherwise go to Step A-2. 

 

Step A-2: Outer Iteration Updating 

K=k+1 

⋋𝑘,0= 𝑟.⋋𝑘−𝑖,𝑖  

𝑢𝑘,0 = 𝑢𝑘−𝑖,𝑖+1 

end while 

Terminate with 𝑢𝑘,0 as an approximation of 𝑥 

The automatic stopping criterion of the outer loop 

depends upon which problem that is considering.  

 

IV. RESULTS AND ANALYSIS 
 

The output parameters like Error, PSNR, No. of 

iterations and CPU elapsed time from (7), (8) and 

(9) are tabulated in Table II. 

 

 

 

𝐼. 𝑁𝐹𝐶𝑆𝐴  3𝐷 

            
    Original image                    Reconstructed image 

 

II. 𝑁𝐹𝐶𝑆𝐼  3𝐷 

 

         
       Original image               Reconstructed image 

 

Fig.3.Test Images - 𝑁𝐹𝐶𝑆𝐴  3𝐷 and 𝑁𝐹𝐶𝑆𝐼  3𝐷 

Methods       

(a) Handsome boy image (b) Reconstructed image 

 
TABLE II: Output Parameters with Handsome boy 

Image 

 

  Method Error PSNR Iterations CPU Time 

 𝑁𝐹𝐶𝑆𝐴  3𝐷 5.5434e-005 128.9371 14 16.996123 

s 

  𝑁𝐹𝐶𝑆𝐼  3𝐷 4.6344e-005 99.6398 14 67.128490 

s 

 

  Comparing the results of NFCS 2D and NFCS 3D 

methods, 𝑁𝐹𝐶𝑆𝐴  3𝐷 method provides faster 

recovery and more PSNR value than all other 

methods as tabulated in Table III. 

 

TABLE III. Comparison of Results - NFCS 

2D and NFCS 3D Methods 
Method Error PSNR Iterations CPU Time 

𝑁𝐹𝐶𝑆𝐴  2𝐷 1.5648e-

004 

119.0459 14 11.88662 s 

  𝑁𝐹𝐶𝑆𝐼  2𝐷 1.8419e-

005 

49.7175 14 42.789134

s 

  𝑁𝐹𝐶𝑆𝐴 3𝐷 5.5434e-

005 

128.9371  14 16.996123 

s 

  𝑁𝐹𝐶𝑆𝐼  3𝐷 4.6344e-

005 

99.6398  14 67.128490 

s 

    Analyzing the above results from both NFCS 2D 

and NFCS 3D methods, the NFCS 3D methods 

provide a faster and efficient way of recovery of 

3D images. In both NFCS 2D and NFCS 3D 

methods, Anisotropic methods provide more PSNR 

values, thereby less noise in comparison with the 

Isotropic methods. 

 

V. CONCLUSIONS 

 
         For the solution of the compressed sensing 

reconstruction problem we have proposed an 

efficient iterative algorithm for 3D images, based 

upon an adaptive nonlinear filtering strategy, and 

its convergence property has been established. The 

capabilities, in terms of accuracy, stability, and 

speed of NFCS-3D, are illustrated by the results 

considering 3D images and compared the results 

from NFCS 2D methods for the selected images. 

Of these proposed NFCS 3D methods, NFCS 3D 

Anisotropic methods offers faster image recovery 

and offers more PSNR value in comparison other 

NFCS 2D and existing methods.   

 

REFERENCES                                     

 
[1] E. J. Candés, “Compressive sampling,” in Proc. 

Int. Congr. Math., Madrid, Spain, 2006, vol. 3, pp. 

1433–1452. 

[2] E. J. Candés, J. Romberg, and T. Tao, “Stable 

signal recovery from incomplete and inaccurate 

measurements,” Commun. Pure Appl. Math., vol. 

59, no. 8, pp. 1207–1223, 2006. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org



[3] E. J. Candés, J. Romberg, and T. Tao, “Robust 

uncertainty principle: Exact signal reconstruction 

from highly incomplete frequency 

information,”IEEE Trans. Inf. Theory, vol. 52, no. 

2, pp. 489–509, Feb. 2006. 

[4] R. Chartrand, “Exact reconstruction of sparse 

signals via nonconvex minimization,” IEEE Signal 

Process. Lett., vol. 14, pp. 707–710, 2007. 
 
[5] B. D. Rao and K. Kreutz-Delgado, “An affine 

scaling methodology for best basis selection,” 

IEEE Trans. Signal Process., vol. 47, pp. 187–200, 

1999. 

[6] E. J. Cand`es, M. B. Wakin, and S. P. Boyd, 

“Enhancing sparsity by reweighted `1 

minimization.” Preprint. 

[7] H. C. Andrews and B. R. Hunt, Digital Image 

Restoration, Prentice-Hall, Englewood Cliffs, NJ, 

1977. 

[8] P. L. Combettes and V. R.Wajs, “Signal 

recovery by proximal forward backward splitting,” 

SIAM J. Multiscale Model. Sim., vol. 4, no. 4, pp. 

1168–1200, Nov. 2005. 

[9] T. Goldstein and S. Osher, “The split Bregman 

algorithm for L1 regularized problems,” UCLA, 

Los Angeles, CA, UCLA CAMRep. 08–29, 2008. 

 

  

   

AUTHOR DETAILS: 

 

            
 

SRINIVASAREDDY P, 
Post Graduate Student, Department of Electronics 

and Communication Engg, RRS College of 

Engineering and Technology, Muthangi, 

Patancheru, Hyderabad, Andhra Pradesh, India. 
 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

6www.ijert.org


