

Reducing Movement Cost and Performing

Fast Convergence in DFS using Cloud

M. Mangayarkarasi#1, Dr. R. Shanthi*2,
#1

P.G Student, M.E CSE, Alpha College of Engineering, Chennai, T.N, India.

*2
Dean Student Affairs, Alpha College of Engineering, Chennai, T.N, India.

Abstract- Distributed file systems (DFS) is one of the important

building blocks for cloud computing environment which

supports Map Reduce programming pattern where nodes at the

same time serve both computing as well as the storage functions.

A file is partitioned into variety of chunk units allotted in

different nodes in order that the Map Reduce tasks can be

carried out in parallel over the nodes. However, in cloud

environment, files can be dynamically performs all the operation

like creation, deletion, and modification. These consequences in

load imbalance on the storage resources; that is, the different

file modules are not distributed as consistently as possible among

the nodes. A fully distributed load balancing algorithm is offered

to manage with the load imbalance problem and thus it

increases the overall performance of the system.

Keywords- Cloud Computing, Distributed Hash Table, Chunk

Servers, Distributed File System, Load Balancing Technique

I. INTRODUCTION

Cloud Computing, uses the internetworking and central

distant servers to maintain and to provide storage for various

data and applications. Cloud computing allows users and

various organization to make use of the applications without

installation and provide access to their personal files at any

computer through internet access. This technology allows user

for much more well-organized computing by centralizing all

data storage, data processing and bandwidth. The perfect

example of cloud computing is Yahoo, Gmail, or Hotmail etc.

Cloud computing mainly works on three major sections:

"application/software" "storage" and "connectivity." Each

sections serves a different purpose and offers different

products for the organization and also the cloud users access

their information from anywhere at any time around the

world. Load balancing, is where the network of computers

distribute their workloads uniformly across multiple-resources,

such as computers, network links, CPU, etc. Load rebalancing

goal is to optimize resource usage, maximize the throughput,

minimize the response time, and avoid overload of the

resources. The key things to consider while developing such

algorithms are as follows: estimation of load, comparison of

load, stability of different system, performance of system,

interaction between the nodes, nature of work to be

transferred, selecting of nodes and many other ones.

II. RELATED WORK AND EXISTING SYSTEM

Distributed file systems (DFS) in clouds environment mainly

rely on central nodes to manage all the metadata details

about the files (i.e data about the data) in the file systems

and as well to provide a sense of balance in the load of

nodes based on that metadata details. In the Existing

methodology, which uses a master/slave architecture which

has various groups consists of a single NameNode, a master in

the master/slave architecture server that manages all the file

system namespace and controls access to files by the clients.

With single NameNode, there are many number of

DataNodes which maintain the storage that is present in the

nodes that they run on. This master/slave architecture

represents a file system namespace and allows client

information to be stored in files. The NameNode is

responsible for executing and performing various file system

namespace operations like fileopen, fileclose, and filerename

in the directories. The NameNode performs the mapping of

various blocks to DataNodes. The DataNodes also perform

block create, delete, and replicate the files upon instruction

that is provides by the NameNode. The Metadata

information performs consistently and synchronously

updating all the copies of the files which may corrupt the rate

of namespace transactions per second. When the NameNode

resumes, it selects the latest and most recent consistent to

use. If the NameNode system gets corrupted and failed

means no automatic resuming is possible and failover of the

NameNode application to another node is not carried out,

therefore manual intervention is necessary.

The centralized methodology makes the design and

implementation of a distributed file system so simple and

ease. When the large number of storage nodes, files and

the accesses to files increases very frequently;the central

nodes become a huge bottleneck, as they are not capable to

perform the large number of file accesses due to user

applications. Thus, depending on the central nodes to

attempt the load imbalance problem make worse their heavy

loads.

1651

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20859

III PROPOSED SYSTEM

In the proposed methodology, the rebalancing of load is

studied using the DFS in the cloud environment

which is scalable and dynamic in nature. (The terms

“rebalance” and “balance” is indistinguishable). Such a

large-scale cloud has hundreds or thousands of resources

and applications to be processed (and may reach tens of

thousands in the future).The main goal is that the traffic of

the network need to be reduced as much as possible, thus

also to increase the bandwidth and the access of the files or

applications from DFS more efficiently. Our proposal

heavily depends on the node arrival and departure

operations to migrate file modules among nodes. Node A

goes into the system is partitioned off into variety of fixed-

size modules, and every module contains a distinctive

module handle (or module symbol) named with a globally

performed hash perform like SHA .The hash perform

returns a novel identifier for a given files pathname string

and a module index.

Fig 1: Implementation of data distribution

A node is light if the number of modules it hosts is

smaller than the threshold as well as, a heavy node

manages the number of modules greater than threshold. A

large-scale distributed file system is in a load-balanced state

if each module server hosts no more than A modules. In our

proposed technique, each module server node I first calculate

whether it is under loaded (light) node or overloaded (heavy)

node without any information about the global knowledge.

This process repeats and continues until all the heavy

nodes in the system become light nodes. In Proposed system,

file downloading or uploading with the help of the centralized

system. Centralized system will be sharing the file (uploading

and downloading). First of all we are going to notice the

lightest node to require the set of modules from heaviest

node. Thus we will do the method while not failure. Load

equalization may be a technique to distribute employment

across several computers or network to realize most

utilization of resources economical output, reducing latency,

and take away overload. During this project we have a

tendency to use Load rebalancing formula. Then identical

method is dead to unleash the additional load on following

heaviest node within the system. Then we are going to once

more notice the heaviest and lightest nodes, such a method

repeats iteratively till there's not the heaviest.

IV SYSTEM DESCRIPTION

A. DHT Formulation

DHT (Distributed Hash Table) is a primary technique

used in Distributed File System. DHT is a hash table that

requires key, values and a hash function. The hash function

maps the key to a location where the values are stored. The

chunk server is structured as a DHT network. To find where

the file chunks are located in the chunk server, the DHT

lookup operation is performed.

B. Creation of Chunks

Through chunk server, we try to make the file into various

modules and distribute them as uniformly as possible among

all the resources or chunk servers so that, no chunk servers

handle an excess number of chunk of files or modules of

files. The file is broken into number of modules and chunks

which are placed

in various chunk servers so that the map reduce task can

be carried out simultaneously in all the chunk servers. A

hash function such as SHA1 is used for each chunk to

provide a unique ID for each and individual chunks,

example the ID for second and fifth module of

files“/user/mm/java.log” are SHA1(/user/mm/java.log,

1) and SHA1(/user/mm/java.log, 4). We can get the space

for chunks from GoogleAppEngine, which makes efficient

storage node for the real time applications.

Fig 2: Files Splitted in Chunk Server

C. Load Balancing Algorithm

Each chunk server approximately calculates whether

the server is lightly loaded or heavily loaded. Load

balancing technique distributes the workload across many

chunk server to attain maximum throughput, maximum

resource utilization. In this algorithm, each chunk server

implements the gossip- based aggregation protocol which

collects the status of the load by communicating with the

nearby chunk servers.

D. Manage Replicas

Replication is well known approach to attain high

levels of availability and minimal access times for

1652

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20859

distributed environment. In DFS, a number of replicas for

each file chunk are retained in distinct chunk servers to

improve file availability with respect to node failures. The

light weighted node will manage

the replicas. In more particular, each light-weighted node

makes sections of a number of nodes, each selected by

means 1/n probability. So that sharing the load makes more

efficient manner.

V. EXPERIMANTAL RESULT

The proposed methodology clearly performs better than

the existing load balancer. When the NameNode is loaded

heavily (i.e.,small N’s), our proposed techniques efficiently

performs much better than the existing load balancer. For

example, if N=1%, the load balancer takes about 70 mins to

balance DataNodes load. By distinguish, our proposal takes

nearly 25 mins in the case of N=1%. Specifically, in contrast

the existing load balancer, our proposal is self-sufficient of

the load of the NameNode. Our proposed techniques balance

the load more efficiently and perform successful load balancing

with fast convergence.

VI. CONCLUSION

The load-balancing algorithm to deal with the load in

large-scale, dynamic, and distributed file system in clouds

has been offered in this paper. Our proposal strives to

balance the loads of nodes and reduce the demanded

movement cost as much as possible, while taking advantage

of physical network locality and node heterogeneity. Our

load-balancing algorithm exhibits a fast convergence rate.

The fusion workloads stress test the load-balancing

algorithms by creating a few storage nodes that are heavily

loaded. The computer simulation results are encouraging,

indicating that our proposed algorithm performs very well.

REFERENCE

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Proc. Sixth Symp.

 Operating System Design and Implementation (OSDI ’04), pp. 137-
150, Dec. 2004.org/, 2012.

[2] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-

Forward,”Comm. ACM, vol. 53, no. 3, pp. 42-49,

 Jan. 2010.

[3] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger,

 M.F. Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A Scalable

Peer-to-Peer Lookup Protocol for Internet Applications,” IEEE/ACM

Trans. Networking, vol. 11, no. 1, pp. 17-21, Feb. 2003.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object

Location and Routing for Large- Scale Peer-to-Peer Systems,” Proc.

IFIP/ACM Int’l Conf. Distributed Systems Platforms Heidelberg, pp.
161-172, Nov. 2001.

[5] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,

“Load Balancing in Structured P2P Systems,” Proc. Second Int’l
Workshop Peer-to-Peer Systems (IPTPS ’02), pp. 68-79, Feb. 2003.

[6] D. Karger and M. Ruhl, “Simple Efficient Load Balancing

Algorithms for Peer-to-Peer Systems,” Proc. 16th ACM Symp.
Parallel Algorithms and Architectures (SPAA ’04), pp. 36-43, June

2004.

[7] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Systems,”

Proc. 13th Int’l Conf. Very Large Data Bases (VLDB ’04), pp. 444-

455, Sept. 2004.

[8] J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load

Balancing for Distributed Hash Tables,” Proc. First Int’l Workshop

Peer-to-Peer Systems (IPTPS ’03), pp. 80-87, Feb. 2003.

[9] G.S. Manku, “Balanced Binary Trees for ID Management and Load
Balance in Distributed Hash Tables,”Proc. 23rd ACM Symp.

Principles Distributed Computing197-205,July2009.

1653

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20859

