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Abstract—Clustering algorithms play an important role in 

chemoinformatics and especially in the drug discovery process. 

Clustering methods may be hierarchical or non-hierarchical. 

Non-hierarchical algorithms have fast processing for clustering 

large chemical data sets than hierarchical algorithms. One of the 

most popular non-hierarchical clustering algorithms that are 

used in many applications in the drug discovery process is 

Jarvis-Patrick algorithm. The applications of Jarvis-Patrick in 

the drug discovery process are compound selection, compound 

acquisition, low-throughput screening and Quantitative 

Structure-Activity Relationship (QSAR) analysis. Jarvis-Patrick 

groups compounds in a cluster based on a three neighborhood 

conditions. These three conditions groups compounds, which are 

not similar enough, in the same cluster. Adding dissimilar 

compounds in the same cluster will lead to poor compound 

selection, compound acquisition and QSAR analysis. In this 

paper, standard Jarvis-Patrick is modified by adding a fourth 

condition which computed only if the three standard conditions 

are true. This condition computes the increasing in the value of 

Square Error (SE) of the cluster by adding a compound and 

compares it with expected increasing in SE to determine 

whether to add a compound to the cluster or not. The result 

shows that our modification produces clusters with more similar 

compounds and still has fast processing. 

Keywords—Chemoinformatics; Drug Discovery; Non-

hierarchical Clustering; Jarvis-Patrick 

I.  INTRODUCTION 

 
The use of clustering for chemical applications is based on 

similar property and activity principle which states that 
compounds with similar structures are likely to exhibit similar 
properties, which known as Structure-Property Relationship 
(SPR), and similar activities which known as Structure-
Activity Relationship (SAR) [1]. Clustering algorithms, which 
are used in chemical application, must group more similar 
compounds in term of properties or activity in the same cluster 
based on their structure. Most clustering algorithms for 
chemical application cover the area of drug discovery process 
[2, 3]. The drug discovery is the process of making drugs that 
response to diseases with fewer side effects. It consists of 
seven steps: disease selection, target hypothesis, leads 
compound identification, lead optimization, pre-clinical trial, 
and clinical trial and pharmacogenomic optimization [4].  

Chemoinformatics are used in lead compound 
identification and optimization steps [5]. Chemoinformatics 
are the application of informatics methods that are used to 

solve chemical problems. It is a new discipline emerging from 
storing, manipulating, processing, design, creation, 
organization, management, retrieval, analysis, dissemination, 
visualization, and use of chemical information. The use of 
chemoinformatics becomes a critical part of the drug 
discovery process as it accelerates the drug discovery process 
and reduces the overall cost [6, 7]. There are many 
applications of chemoinformatics in the drug discovery such 
as compound selection, compound acquisition, virtual library 
generation, virtual screening, QSAR analysis and Absorption, 
Distribution, Metabolism, Elimination, and Toxicity 
(ADMET) prediction [8-11]. Central tasks of most of these 
applications are the establishment of a relationship between a 
chemical structure and its biological activity and the 
prediction of pharmacological properties in addition to lead 
finding [5, 6].  

Clustering algorithms are used in most of these 
applications as a method of selection, diversity analysis and 
data reduction. Compared to the other costs of drug discovery, 
clustering can add significant value at minimal cost [12]. 
Clustering algorithms divided into two main categories 
hierarchical and non-hierarchical.  Jarvis-Patrick is one of the 
most popular non-hierarchical clustering algorithms that has a 
wide range of applications in chemoinformatics because of it 
is fast processing for clustering large chemical data sets and 
ease implementation. Standard implementation of Jarvis-
Patrick may group compounds in one cluster that are not 
similar enough because the compounds satisfy the three 
neighborhood conditions. Adding dissimilar compounds in the 
same cluster will increase the value of SE in clusters and lead 
to increase in the SSE (the sum of SE for all clusters) of the 
produced clusters. SSE is one of the quality measures that 
used to evaluate clustering algorithm in its ability to group 
more similar compounds in the same cluster.  

Standard Jarvis-Patrick is modified by adding a condition 
that will be computed only if the standard Jarvis-Patrick 
conditions are true. This condition will determine if to add a 
compound to a cluster or not. The condition computes the 
increasing in value of Square Error (SE) of the cluster by 
adding this compound and compares it with expected 
increasing in SE. If this increasing is less than or equal to the 
expected increasing then the compound will be added to the 
cluster else the compound will not be added.  The results show 
that by adding this condition, Jarvis-Patrick will not add 
dissimilar compounds to the same cluster and still has fast 
processing. The organization of this paper is as following. In 
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section 2, standard Jarvis-Patrick and its usage in 
chemoinformatics are overviewed. In section 3, our 
modification on Jarvis-Patrick is proposed. In section 4, 
modified Jarvis-Patrick is compared with standard Jarvis-
Patrick and their implementation and experimental results are 
discussed. Finally in section 5, conclusion is given. 

II. JARVIS-PATRICK CLUSTERING USAGE IN 

CHEMOINFORMATICS 

Clustering methods are used in a number of disciplines 
such as computer science, information technology, 
information system, engineering, bioinformatics and 
chemoinformatics. The main using of clustering methods in 
chemoinformatics is to group similar compounds in a cluster 
based on the underlying distribution of input. After grouping 
these compounds, the activity of compound is predicted based 
on known compounds activity that are in the same cluster.  

Jarvis-Patrick is one of the most popular methods that 
have a wide range of applications in chemoinformatics 
because of its ability to handle large data sets in reasonable 
time, ease implementation and the availability of an efficient 
commercial implementation from Daylight for handling very 
large data sets [13]. Jarvis-Patrick is non-hierarchical non-
overlapping clustering method. Non-overlapping means that 
each compound can be only in one cluster. Non-hierarchical 
means that data set is analyzed to produce a single partition of 
the compounds resulting in a set of clusters. 

Standard Jarvis-Patrick method proceeds in two levels 
[14]. In the first level, a list of the top K nearest neighbors (K 
is usually16) is generated for each compound in the data set. 
The nearest neighbors are usually determined by the 
Euclidean distance for numerical descriptor and by the 
Tanimoto coefficient for binary descriptor [15]. In the second 
level, the nearest-neighbor lists are scanned to create clusters 
that satisfy the three following neighborhood conditions: 

1. The top K nearest-neighbor list of compound i must 
contain compound j. 

2. The top K nearest-neighbor list of compound j must 
contain compound i. 

3. The top K nearest-neighbor lists of compound i and j 
must have at least K-Min common compounds (Kmin 
is determined by user and in the range 1 to K). 

The pairs of compounds, that don't satisfy any of the above 
three conditions, are not put into the same cluster.  The value 
of top K nearest-neighbors specifies the number of 
compound's neighbors to consider when counting the number 
of mutual neighbors shared with another compound. This 
value must be at least 2. Lower values make the algorithm to 
finish faster, but the final set of clusters will have many small 
clusters. Higher values cause the algorithm to take longer time 
to finish, but may result in fewer clusters and clusters that 
form longer chains. The K-Min specifies the minimum 
number of mutual nearest neighbors that the two compounds 
must have to be in the same cluster. This value must be at 
least 1 and must not exceed the value of the K nearest-
neighbors. Lower values result in clusters that are compact. 
Higher values result in clusters that are more dispersed. 

The standard implementation of Jarvis-Patrick produces a 
large number of singletons and clusters with large SSE. 

Several modifications have been developed to overcome 
singletons problem such as: 

1. A variable-length nearest-neighbor list [16], a 
proximity threshold is used to determine a variable number of 
neighbors for each compound. All neighbors that pass the 
threshold test are considered as neighbors to this compound. 
By this modification, outliers are prevented from joining a 
cluster while preventing the arbitrary splitting of large clusters 
arising from the limitations imposed by fixed length lists.  

2. Re-clustering of singletons [17], standard Jarvis–
Patrick is applied in an iterative way to remove the singletons. 
The singletons are assigned to a cluster using less strict 
parameters than defined by user. This iterative way is repeated 
until a fewer a specified percentage of singletons remain. 

3. Fuzzy clustering [18], all compounds are assigned a 
probability that determines the distances of compounds from 
each cluster. The singletons are assigned to its nearest cluster 
based on specified threshold probability. For singletons that 
not exceed threshold, they will be regarded as outliers and 
remains as singletons. 

The applications of Jarvis–Patrick clustering in 
chemoinformatics are compound selection, compound 
acquisition and high throughput screening. In [19], Jarvis-
Patrick is used to cluster a data set of about 240,000 
compounds for compound selection. Singletons are moved to 
the nearest non-singleton cluster. Then cluster centroids are 
calculated for each cluster to select representative compounds 
based on their closet centroid. In [20], Jarvis Patrick is to 
assist low-throughput screening and to support QSAR analysis 
by analyzing databases for efficient compound acquisition. In 
[17], Jarvis–Patrick is used for high throughput screening by 
the selection of compounds from the corporate database. In 
[18], Jarvis-Patrick is used for analysis of the compound 
database to support high throughput screening.  

The previous modifications are developed to overcome the 
singletons problem. The three neighborhood conditions of 
Jarvis-Patrick don't guarantee to group more similar 
compounds in the same cluster. So, the produced clusters have 
large SSE values. In the next section, the standard Jarvis-
Patrick algorithm will be modified by adding a fourth 
condition to overcome this problem. 

III. PROPOSED MODIFICATION ON STANDARD 

JARVIS-PATRICK 

The standard Jarvis-Patrick will be modified by adding a 
fourth neighborhood condition that will be computed only if 
the three previous neighborhood conditions are true. The 
fourth condition will compute the increasing in SE for a 
cluster contains compound i after adding compound j to this 
cluster and compare it with expected increasing in SE. First, 
for the cluster of n compounds each represented by a vector. 
The vector of the cluster centroid, x(c), is defined as 

X c = (1
𝑛 )  x(r)

𝑛

𝑟=1
   (1) 
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The centroid is the simple arithmetic mean of the vectors 

of the cluster members. The SE for a cluster is the sum of 

squared Euclidean distances to the centroid for all n 

compounds in that cluster. The SE is defined as 

SE =  [𝑋 𝑟 − 𝑋 𝑐 ]2𝑛

𝑟=1
  (2) 

The SSE is the summation of SE for all produced m 

clusters and is defined as 

SSE =  𝑆𝐸𝑠
𝑚
𝑠=1    (3) 

The increasing in SE is the difference between the value of 

SE for the cluster containing i after adding compound j and 

before adding compound j. The increasing in SE is defined as 

Increasing in SE = 𝑆𝐸𝑎𝑓𝑡𝑒𝑟  𝑎𝑑𝑑𝑖𝑛𝑔  𝑗  − 𝑆𝐸𝑏𝑒𝑓𝑜𝑟𝑒  𝑎𝑑𝑑𝑖𝑛𝑔  𝑗

 (4) 

The expected increasing in SE is the SE for data set divided 

by number of compounds n multiplied with a user specified 

ratio r; r is a value between 0 and 1. Small values of r will 

ensure that more similar compounds will be grouped into the 

same cluster. The expected increasing in SE is defined as    

Expected increasing in SE =  
𝑆𝐸𝑑𝑎𝑡𝑎  𝑠𝑒𝑡   

𝑛
∗ 𝑟 

 (5) 

If increasing in SE is less than or equal expected increasing, 

then compound j will be added to the cluster containing 

compound i, else compound j will not be added to this cluster. 

By adding this modification, fourth condition will produce 

clusters with less SSE by not adding the compounds that will 

increase SE than expected increasing into the same cluster. So, 

compound selection, acquisition and QSAR analysis will be 

more efficient and the algorithm still has fast processing 

because the fourth condition will not be computed only if the 

three conditions of standard Jarvis-Patrick algorithm are true. 

IV. IMPLEMENTATION ND EXPERIMENTAL RESULTS 

The implementations of the algorithms are in JAVA, under 
Windows-7 operating system, Intel core-i5, 2.5 GHz and Ram 
4 GB. NCI data set, one of the most popular data set, is used 
for experimental [21]. Three random subsets are taken from 
NCI data set with the following number of compounds and SE 
as shown in Table 1. 

 

 

 

 

 

TABLE I.  THREE SUBSETS OF NCI DATA SET 

Subset Name 
Number of 

Compounds 
SE 

NCI-1 100 25.61546473 

NCI-2 500 791.56501 

NCI-3 1000 1838.0002 

 

BCUT descriptor is used to represent compounds in the 
three subsets [22]. For each NCI subset, 4 runs are recorded 
with K=16 and K-Min= 4, 8, 12 and 14 for each run. Table 2 
shows the K, K-Min, Number of Clusters (NOC), 
Computation time in milliseconds and SSE of standard Jarvis 
Patrick algorithm. Tables 3, 4, 5 and 6 show the same 
information for modified Jarvis Patrick algorithm where r = 
1.0, 0.5, 0.1 and 0.01.  

TABLE II.  OUTPUT OF STANDARD JARVIS-PATRICK 

ALGORITHM 

Data set 

Name 
K 

K-

Min 
NOC SSE 

Time in 

Milliseconds 

NCI-1 

16 4 8 13.29864 40 

16 8 10 4.069484 20 

16 12 28 1.49243 10 

16 14 62 0.238635 10 

NCI-2 

16 4 46 44.92072 190 

16 8 63 29.30268 140 

16 12 200 14.63466 130 

16 14 335 2.768861 120 

NCI-3 

16 4 85 43.46274 480 

16 8 126 28.03772 420 

16 12 387 11.34654 410 

16 14 683 6.63129 410 

TABLE III.  OUTPUT OF MODIFIED JARVIS-PATRICK 

ALGORITHM WHERE R = 1.0 

Subset 

Name 
K 

K-

Min 
NOC SSE 

Time in 

Milliseconds 

NCI-1 

16 4 10 4.926679 80 

16 8 11 3.459389 30 

16 12 28 1.457589 30 

16 14 62 0.232923 10 

NCI-2 

16 4 48 39.88919 270 

16 8 65 24.27115 150 

16 12 201 11.79896 140 

16 14 335 2.768861 140 

NCI-3 

16 4 84 40.29349 620 

16 8 126 23.87385 460 

16 12 378 11.19564 450 

16 14 659 6.579031 430 
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TABLE IV.  OUTPUT OF MODIFIED JARVIS-PATRICK 

ALGORITHM WHERE R = 0.5 

Subset 

Name 
K 

K-

Min 
NOC SSE 

Time in 

Milliseconds 

NCI-1 

16 4 13 2.894775 90 

16 8 13 2.878076 30 

16 12 30 0.858161 20 

16 14 62 0.232923 20 

NCI-2 

16 4 52 29.29845 270 

16 8 67 16.73628 180 

16 12 203 7.632148 150 

16 14 336 2.705852 140 

NCI-3 

16 4 84 39.44875 610 

16 8 126 23.02911 460 

16 12 378 9.807962 430 

16 14 659 5.191356 410 

TABLE V.  OUTPUT OF MODIFIED JARVIS-PATRICK 

ALGORITHM WHERE R = 0.1 

Subset 

Name 
K 

K-

Min 
NOC SSE 

Time in 

Milliseconds 

NCI-1 

16 4 25 0.897523 70 

16 8 25 0.896463 50 

16 12 36 0.530665 20 

16 14 64 0.177409 10 

NCI-2 

16 4 61 11.57974 290 

16 8 76 8.472676 170 

16 12 208 3.491306 150 

16 14 336 1.312308 140 

NCI-3 

16 4 91 25.03054 600 

16 8 133 16.17223 480 

16 12 382 5.916373 440 

16 14 662 2.095064 440 

TABLE VI.  OUTPUT OF MODIFIED JARVIS-PATRICK 

ALGORITHM WHERE R = 0.01 

Subset 

Name 
K 

K-

Min 
NOC SSE 

Time in 

Milliseconds 

NCI-1 

16 4 70 0.031339 70 

16 8 70 0.031339 50 

16 12 72 0.02826 30 

16 14 78 0.01946 10 

NCI-2 

16 4 117 2.293131 270 

16 8 130 1.933292 180 

16 12 237 0.764977 140 

16 14 348 0.368605 140 

NCI-3 

16 4 171 5.603048 570 

16 8 198 4.629283 470 

16 12 420 1.893126 440 

16 14 677 0.592186 430 

 

Fig.1 shows the SSE for the Standard Jarvis-Patrick (SJP) 
and Modified Jarvis-Patrick (MJP) where r = 1.0, 0.5, 0.1 and 
0.01 for the three subsets. As shown in Fig.1, our approach 
produces clusters with less or equal SSE than SJP for all 
subsets with K-Min = 4, 8, 12 and 14. For example in NCI-1 
subset when K-Min = 4, SJP produces clusters with SSE equal 
13.2986 and MJP produces clusters with SSE equal 4.9266 
where r = 1.0, 2.8947 where r = 0.5, 0.8975 where r = 0.1 and 
0.0313 where r = 0.01. When K-Min = 14, SJP produces 
clusters with SSE equal 0.2386 and MJP produces clusters 
with SSE equal 0.2329 where r = 1.0, 0.2329 where r = 0.5, 
0.1774 where r = 0.1 and 0.0194 where r = 0.01. From 
previous results, as the value of K-Min increase, MJP 
produces clusters with SSE less than or equal to SJP. When K-
Min decrease, MJP produces clusters with SSE less than SJP 
for all values of r. 
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(c) 

Figure 1.  SSE of SJP and MJP for three subsets where r = 1.0, 

0.5, 0.1 and 0.01 

Fig.2 shows the number of clusters generated by SJP and 
MJP where r = 1.0, 0.5, 0.1 and 0.01 for the three subsets. As 
shown in Fig.2, the number of clusters generated by our 
approach is large than or equal to the number of clusters 
generated by SJP for all subsets with K-Min = 4, 8, 12 and 14. 
For example in NCI-1 subset when K-Min = 4, SJP produces 
8 clusters and MJP produces 10 clusters where r = 1.0, 13 
clusters where r = 0.5, 25 clusters where r = 0.1 and 70 
clusters where r = 0.01. When K-Min = 14, SJP produces 62 
clusters and MJP produces 62 clusters where r = 1.0, 62 
clusters where r = 0.5, 64 clusters where r = 0.1 and 78 
clusters where r = 0.01. From previous results, as the value of 
K-Min increase MJP and SJP produce similar number of 
clusters and when K-Min decrease MJP produces more 
clusters than SJP for all values of r.  

 

 

(a) 

 
 

(b) 

 

(c) 

Figure 2.  Number of Clusters of SJP and MJP for three subsets where r = 

1.0, 0.5, 0.1 and 0.01 

Fig.3 shows the time required in milliseconds for SJP and 
MJP where r = 1.0, 0.5, 0.1 and 0.01 for the three subsets. As 
shown in Fig.3, The time required for our approach is large 
than or equal to the time required for SJP for all subsets with 
K-Min = 4, 8, 12 and 14. For example in NCI-1 subset when 
K-Min = 4, SJP takes 60 milliseconds and MJP takes 60 
milliseconds where r = 1.0, 90 milliseconds where r = 0.5, 70 
milliseconds where r = 0.1 and 70 milliseconds where r = 
0.01. When K-Min = 14, SJP takes 10 milliseconds and MJP 
takes 10 milliseconds where r = 1.0, 20 milliseconds where r = 
0.5, 10 milliseconds where r = 0.1 and 10 milliseconds where 
r = 0.01. From previous results, as the value of K-Min 
increase MJP and SJP take similar computation time and 
when K-Min decrease MJP takes more time than SJP for all 
values of r. The increasing in time for MJP represents the 
overhead time needed to process the fourth condition.  
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(a) 

 

(b) 

 

(c) 

Figure 3.  Time Required for SJP and MJP for three subsets where r = 1.0, 

0.5, 0.1 and 0.01  

Form Figures 1-3, our approach results reduce SSE in the 
resulted clusters than SJP. This SSE reducing is obvious for 
small values of K-Min because small values of K-Min will 
give the opportunity for the fourth condition to be invoked and 
the percentage of SEE reducing is depending on value of r. If 
the value of r is small then the SSE is more reduced. In order 
to reduce SSE, more clusters will be generated. These extra 
clusters represent compounds that don't satisfy the fourth 

condition. The increasing in time needed by our approach is 
overhead time to apply the fourth condition. 

V. CONCULSION 

The demands of clustering data sets of several million 
compounds with high-dimensional representations led to the 
widespread adoption of a few inherently efficient and 
optimally implemented methods. Jarvis-Patrick is one of the 
most popular clustering methods that have many applications 
in chemoinformatics such as compound selection, compound 
acquisition, lead-finding and QSAR analysis. In this paper, 
standard Jarvis-Patrick is modified in order to group more 
similar compounds in the same cluster and avoiding adding 
compounds to clusters that will increase SSE. The results 
show that our modification produces clusters with less SSE 
than standard Jarvis-Patrick. So, compound selection, 
acquisition and QSAR analysis will exhibit better efficiency 
and at the same time Jarvis-Patrick still has fast processing. In 
the future work, Modified Jarvis-Patrick will be applied for 
large chemical data sets and will be compared with ward 
clustering algorithm. 
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