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Abstract—Speaker recognition approaches rely heavily on the use 

of Gaussian Mixture Models (GMMs) for speaker modelling. The 

models can represent arbitrary distributions of feature vectors 

extracted from speech waveforms, and are easy to train. 

Traditional GMM-based implementations are computationally 

complex, utilizing large numbers of parameters. These 

approaches have typically been used in “offline” settings, where 

results are not generated in real-time. This work seeks to reduce 

the computational complexity of the GMM-UBM approach, 

allowing it to produce results in shorter amounts of time. The 

preliminary results of this study demonstrate the feasibility of 

reducing the number of parameters while maintaining speaker 

recognition performance. This work provides a foundation for 

further work in reducing computational complexity, which we 

intend to use for future real-time hardware implementations.  
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I. INTRODUCTION        

Speaker recognition has been an established area of 

research for the past 15 years, and involves the application of 

signal processing, statistical, and machine learning algorithms 

to the recognition of speaker identities in audio recordings. 

The technology is applicable to high-tech applications, such as 

voice-based biometrics[1], and forensics [2][3]. The 

traditional speaker recognition approach that has been widely 

popular until around 2007 is one that uses Gaussian mixture 

models (GMMs) to model the feature vectors extracted from 

the speech waveforms of speakers [4]. It is referred to as the 

GMM-UBM approach, which involves the use of a Universal 

Background Model (UBM) to represent feature vectors from a 

large set of speakers. The feature vectors are extracted using 

acoustic signal processing techniques. While more recent 

approaches for speaker recognition have relied on advanced 

techniques such as Joint Factor Analysis (JFA) [5] and i-

vectors [6][7], the classical approach involving GMM models 

is still viable in environments where speaker data is limited. 

This is because the JFA and i-vector techniques rely on large 

amounts of development data for modelling purposes. Such 

data, especially those matching the noise and recording 

environments of the target data, are not always available, 

The GMM models consist of a mixture of multivariate 

Gaussians probability distributions which are easy to obtain 

(or train) using the feature vectors. Given limited knowledge 

of the data, GMMs can model feature vector distributions that 

are difficult to precisely characterize, such as feature vectors 

resulting from speech waveforms. GMM models are trained 

using the Expectation-Maximization (EM) algorithm, an 

iterative algorithm that finds a maximum-likelihood estimate 

of the model parameters given the feature vectors [8]. The EM 

algorithm is similar to the K-means clustering algorithm [9], 

except that it uses soft clustering assignments. In soft 

clustering, each feature vector is assigned a likelihood of 

belonging to each GMM mixture. The mixture means, 

covariance’s, and weights are updated based on the likelihoods 

of its MFCC vectors. 

In every speaker recognition system, UBM is needed to 

represent the distribution of a general population of speakers 

[4]. The UBM is a speaker-independent GMM model that is 

used for score normalization and speaker-dependent GMM 

training, and is itself trained using the EM algorithm given 

feature vectors from a large number of speakers. GMM 

models are widely used not only for the classical GMM-UBM 

approach but also for the more advanced JFA and i-vector 

approaches. The i-vector approach seeks to obtain low-

dimensional vectors from speech waveforms representing 

speaker “voiceprints” [6][7]. A UBM is used for the statistical 

algorithms.  

The standard approaches such as the GMM-UBM are 

computationally complex, which prevents them for performing 

real-time voice processing. They have traditionally been 

designed to process the voice recordings “offline,” meaning 

that a waiting period is required before the system can to 

obtain the voice identities. This is because the systems often 

utilize millions of parameters, requiring many megabytes of 

memory and billions of algebraic computations per audio 

recording. One way in which the speaker recognition 

approaches can be improved is to allow them to perform better 

“real-time” voice processing by finding effective ways to 

reduce the number of parameters and computations needed. 

Such reductions would also enable more effective 

implementations on small-scale hardware platforms, where the 

memory and computational resources are limited. The aim of 

this work is to first set up and investigate existing complex 
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speaker recognition approaches to find ways in which the 

number of parameters and computational complexity can be 

effectively reduced. Based on the findings, the next step is to 

implement a speaker recognition approach suitable for small-

scale embedded hardware platforms. 
 The article is structured as followed: Section 2 discusses 
the data collected, and Section 3 describes the baseline GMM-
UBM approach. Section 4 describes the methodologies used to 
reduce the computational complexity and speaker recognition 
performance measures, and Section 5 describes the 
experiments and results, and provides a discussion. Section 6 
provides a summary and discussion of future work. 

II. DATA 

 The data consists of recorded speech from California State 
University, East Bay students and faculty. The recorded 
subjects include nine females and 33 males. Each subject was 
asked to read two paragraphs carefully selected from a 
textbook containing numbers and simple wording. The duration 
of the first paragraph takes roughly two minutes to read, while 
the second paragraph takes roughly one minute. The recordings 
were taken using a Blue Snowball USB microphone with the 
omni-directional microphone setting, with a sampling 
frequency of 44,100 samples per second. The total amount of 
speech used in all experiments is roughly one hour. We note 
that the dataset we used using is significantly smaller compared 
to standard datasets, such as the NIST Speaker Recognition 
Evaluation Datasets [10]. 

III. BASELINE GMM-UBM APPROACH 

The baseline for our experiments is the classical GMM-

UBM approach, which is based on training GMMs to model 

the distribution of feature vectors of extracted from speech 

waveforms. The feature vectors are Mel-Frequency Cepstral 

Coefficients (MFCCs) C0-C19, a total of 20 dimensions. In 

addition, the first and second time derivatives of the 

coefficients of each feature vector dimension are appended to 

generate vectors of 60 dimensions. The typical feature 

extraction approach extracts one MFCC feature vector for 

every 10ms of speech using 25ms windows of speech, such 

that an entire speech waveform is represented by a sequence 

of feature vectors. Every minute of speech should hence 

contain 100 vectors. Each MFCC feature vector dimension is 

mean and variance normalized across the duration of each 

waveform. Because our work is focused on the modelling 

approaches and not on the MFCC feature vectors, we will omit 

a full description of the feature vector extraction process from 

the acoustic and signal processing standpoint. For those 

interested, the work of [11] describes the MFCC features in 

detail. 

The GMM-UBM approach involves first training a UBM 

via the EM algorithm on a set of speech data across multiple 

speakers. The UBM represents the speaker-independent 

model. In our particular implementation of the system, 

speaker-dependent GMM models are trained using the EM 

algorithm from each speaker’s data, and the UBM is used to 

initialize the algorithm. The following equation describes the 

probably density function (pdf) of a GMM model: 
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where x is a vector, N(x; μm, Σm) is a pdf of a Gaussian 
distribution with mean μm and covariance matrix Σm, and ωm 
are the mixture weights. M is the number of Gaussian mixtures. 
The UBM is trained using the first paragraph of speakers 1-10, 
while the speaker-dependent models are trained using the first 
paragraphs of each speaker. Hence, the first paragraphs of each 
speaker comprise the training data. 

In our experiments, we used eight mixtures for each GMM 

(M=8), with full covariance matrices. The number of mixtures 

is small compared to those used in a typical GMM-UBM 

system, with 512 to 2,048 mixtures. However, the dataset we 

are using (1 hour of total speech) is also significantly smaller 

compared to the typical datasets, and hence fewer mixtures are 

needed. Figure 1 illustrates the GMM training process. 

 

 
Fig. 1. Training of Speaker-Independent UBM and speaker-

dependent GMM models 

 

Once the speaker-dependent GMM models were trained, 

data from the second paragraphs of each speaker (i.e. the test 

data) was used to generate test MFCC feature vectors for each 

speaker. The test feature vectors are scored against each 

speaker-dependent model. Specifically, given a speaker A for 

which test MFCC feature vectors are generated, and a speaker 

B for which a speaker-dependent GMM is generated, a log-

likelihood ratio (LLR) is computed to generate a speaker-

similarity score, as shown in the equation below: 
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where p(•) is a pdf of a GMM, score(A,B) is the similarity 

score between speakers A and B, μB, ΣB, and ωB are the 

parameters of the GMM trained for speaker B, and μUBM, 

ΣUBM, and ωUBM are the parameters of the UBM. xAi is MFCC 

feature vector i from the test data (second paragraph) of 

speaker A, which has a total of N feature vectors. Figure 2 

illustrates score computation. 

Note that our implementation of the GMM-UBM speaker 

recognition system was completed using publically available 

MATLAB scripts under the BSD license. 

 

 

 
 

Fig. 2. Log-Likelihood Ratio (LLR) speaker similarity score computation 

IV. METHODOLOGIES AND PERFORMANCE MEASURES 

The goal of this work is to reduce the computational 

complexity of the baseline GMM-UBM speaker recognition 

approach. This was achieved by examining the importance of 

different parameters and seeing how the number of parameters 

can be reduced based on their relative importance to the 

performance results. The following parameters were examined 

to evaluate their individual effects on performance.  

 

 MFCC analysis window (Tw): 25 ms 

 MFCC feature vector shift (Ts): 10 ms 

 MFCC feature vector dimension (N): 60 

 GMM-UBM mixtures (M): 8 

 UBM training data (D): Paragraph 1 of speakers 1-10 

 

Three of the parameters (Ts, M, and D) allowed us to 

reduce computational complexity while achieving comparable 

results to the baseline approach. Results were obtained using 

the following two performance measures, which are widely 

used in Speaker Recognition and Identification research. 

 

 Closed-Set Speaker Identification Accuracy 

 Equal Error Rate (EER) 

 

    The closed-set speaker identification accuracy is the 

percentage that the test data’s speaker (test speaker) is 

correctly identified given the set of all speakers in the dataset, 

and the knowledge that the test speaker is included among the 

set of all speakers. A test speaker is correct identified if the 

LLR score is highest for the speaker-dependent GMM of the 

same speaker. The higher the accuracy percentage, the better 

the speaker recognition approach. 

    The second performance measure is the Equal Error Rate 

(EER). The EER occurs at a scoring threshold where the rate 

at which non-target speaker scores are misclassified as target 

speaker scores (false alarms), equals the rate at which target 

speaker scores are misclassified as non-target speaker scores 

(misses). The lower the EER, the better the speaker 

recognition approach at separating the target and non-target 

speaker scores. 

    Note that 42 speakers are used for all experiments in this 

work, and each speaker provides both training and test data. 

Hence, the speaker recognition approaches all generate 42 

target speaker scores, and 1,722 non-target speaker scores 

(42*42 = 1,764; 1764-42 = 1,722), where each test data is 

scored against every speaker-dependent model obtained from 

the training data. 

V. EXPERIMENTS, RESULTS AND DISCUSSIONS 

We first implemented the GMM-UBM baseline approach 

with the parameter values discussed in Section 5. The 

following table shows the results of the baseline 

implementation. Further experiments are based on parameter 

modifications of the baseline approach. 
Results for the baseline GMM-UBM approach 

TABLE I.  RESULTS FOR THE BASELINE GMM-UBM APPROACH 

Approaches Acc EER 

Baseline 61.904 0.217 

 

We performed a set of 10 experiments (Exp 1 – Exp 10) 

examining the MFCC feature vector shift parameter (Ts). The 

purpose is to determine if the number MFCC feature vectors 

can be reduced by spaced them farther apart across time. For 

larger Ts values, the MFCC feature vectors are spaced farther 

apart, and for smaller values, the vectors are spaced closer 

together. Hence, larger values would lead to reduced number 

of MFCC vectors, resulting in reduced computational 

complexity. Table 2 shows our results. 

TABLE II.   RESULTS BASED ON CHANGING THE MFCC FEATURE 

VECTOR SHIFT PARAMETER 

Exp Ts Acc (%) EER 

1 25 61.904 0.095 

2 35 92.857 0.093 

3 45 80.952 0.071 

4 55 71.428 0.077 

5 65 73.809 0.077 

6 75 76.190 0.070 

7 80 92.857 0.097 

8 85 73.809 0.093 

9 95 88.095 0.092 

10 105 69.047 0.118 

 

According to Table 2, the Exp 2 and Exp 7 have among the 

best combination of accuracies (92.857 and 92.857) with 

acceptable EERs (0.093 and 0.097). The experiments used Ts 

values of 35 ms and 80 ms, which is greater than the baseline 

Ts value of 10 ms. This suggests that MFCC feature vectors 

can be spaced farther apart across time while maintaining 

speaker recognition performing using the GMM-UBM 

approach. We note that the results in Table 2 have generally 
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lower EERs and Accuracies than the baseline system, which 

uses more MFCC frames. This seems to contradict what we 

know about speaker recognition, and we are currently 

investigating the root cause of this outcome. 

Using the Ts value of 35 ms, we next examined the number 

of speakers used for the UBM training data (D) to see if data 

reductions can be made to improve UBM training speed. 

Accuracy and EER results are shown in Table 3. The numbers 

under the “D” column represent the speaker identities used to 

train the UBM. Each of the 42 speakers has a unique identity, 

labelled from 1 through 42. 

TABLE III.  RESULTS BASED ON CHANGING THE UBM TRAINING DATA  

Exp 
# of spkrs    

    used 
D Acc (%) EER 

11 10 1 – 10 92.857 0.093 

12 20 1 – 20 83.333 0.071 

13 20 
1 – 10 
31 – 40 

85.741 0.069 

14 10 31 – 40 85.714 0.071 

15 10 

1,5,9,13, 

17,21,25, 

29,33,38 

76.190 0.071 

 

Results from Table 3 suggests that there is an inconclusive 

effect of altering the speaker identities used for UBM training. 

Using speaker identities 1-10 resulted in the best Accuracy 

(92.867%), while using speaker identities 1-10 and 31-40 

resulted in the best EER (0.069). However, it is preferable to 

use fewer speakers for UBM training to reduce computational 

complexity (i.e. Exp 11, Exp 14, and Exp 15). 

Afterwards, we examined the effect of the number of UBM 

mixtures (M) to speaker recognition performance, using a Ts 

of 35, and speakers 1-10 for UBM training. Results are shown 

in Table 4. 

TABLE IV.   RESULTS BASED ON CHANGING THE GMM  MIXTURE 

AMOUNTS 

Exp M Acc (%) EER 

16 4 80.952 0.095 

17 8 92.857 0.093 

18 16 85.714 0.07 

 

These results suggest that using eight UBM mixtures (Exp 

17) produces the best Accuracy (92.857%), and the second 

best EER (0.093). Eight UBM is also used in the baseline 

GMM-UBM approach. Increasing the number of mixtures to 

16 does produce better EER, but requires more computational 

complexity. It should also be noted that the use of only 4 

mixtures (Exp 16) produces an Accuracy of 80.952% and EER 

of 0.095, while requiring the least computational cost. 

 

Lastly, we examined different parameter combinations in an 

attempt to arrive at the optimal tradeoff between 

computational complexity and performance. Table 5 shows 

the results that generated the best EERs, which is the most 

widely used performance measure in practice. 

 

 

 

TABLE V.  RESULTS BASED ON CHANGING MULTIPLE PARAMETERS 

Exp Ts D Acc (%) EER 

19 75 
1,5,9,13, 
17,21,25, 

29,33,38 

83.333 0.045 

20 80 
1,5,9,13, 
17,21,25, 

29,33,38 

83.333 0.047 

Results suggest that using large MFCC vector shifts of 75 

and 80, along with a uniform distribution of 10 speakers for 

UBM training resulted in the optimal EERs (0.045 and 0.047), 

and decently Accuracy (83.333%) 

VI. SUMMARY AND FUTURE WORK 

This work explored parameter reduction approaches to the 

widely established GMM-UBM speaker recognition approach 

on a set of 42 speakers, each with roughly 3 minutes of 

speech. The aim was to reduce the computational complexity 

of the approach by using fewer parameters. We found that by 

increasing the MFCC feature vector shifts, the computational 

cost can be significantly reduced while even improving 

speaker recognition performance. The number of UBM 

training speakers and GMM mixtures were also examined, but 

did not result in significant performance improvements while 

reducing computational complexity. This can be attributed to 

the lack of statistical significance in some results. Future work 

will incorporate more speakers to generate greater statistical 

significance in the results, and quantify the reduction in 

computation time for the different experiments. Afterwards, 

approaches with lowest computational complexity (i.e. time) 

will be used for real-time speaker recognition implementations 

on embedded processor hardware platforms. 
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