

Regulated Distance Algorithm in Large Networks for Graph Partitioning

Anusha Swaminathan

Department of Computer Science
Engineering

Meenakshi Sundararajan Engineering
College

Chennai, India

Varsha Alangar

Department of Computer Science
Engineering

Meenakshi Sundararajan Engineering
College

Chennai, India

Abstract

One of the fundamental needs in many networking
applications is the computation of shortest paths.
There are many methodologies and algorithms to
compute the shortest path but the time and
complexity plays a major role in choosing the
algorithm that has less execution time and executes
with low complexity. We thus propose a method
that partitions the graph more efficiently by
clustering method. This method also reduces the
search space by clipping the unnecessary sub
graph branches due to the creation of the
abstraction graphs. The algorithm can be further
extended to routing algorithms to compute the
shortest paths of various routes. This algorithm
also proves to reduce the traversing distance ratio
as the clustering increases.

1. Introduction

 Any field including geographic
information systems (GIS), computer networks and
social networks today requires the computation of
shortest path for some purpose. It is one of the most
fundamental necessity in networking area. There
are various shortest path algorithms designed to
deliver optimal solutions. In 1959, Dijkstra
developed a successful shortest path algorithm that
produced a complexity of O(|E|+|V|log|V|), where
|V| is the number of vertices and |E| is the number
of arcs. Though Dijkstra algorithm computes the

optimal solution in a theoretical sense, it is often
too slow in practical applications, giving way for
several other techniques for improving its response
time.

A general path query is a regular expression over
the labels of a graph G. For crucial applications, the
path queries need to be solved with both time and
accuracy kept in mind. Pre-computing, though fast,
consumes lot of time and storage. A lot of research
has been tried to balance between the preprocessing
and the query times most of which uses graph
partition techniques for the original problem
decomposition. The query execution can be
effectively enhanced through appropriate division
and partitioning of graphs.

In this work, we concentrate on shortest path
queries in large networks. With minimal amount of
storage of data, and a fast preprocessing technique,
our algorithm aims to accelerate the path queries
based on the most suitable graph partitioning
without a layout or an embedding.

2. The Hierarchical Graph Model

Assume a road network or individuals in a
friendship network. Let G=(V,E) be a graph, where
each vertex in V represents the network objects and
the edges E be represented as E={(u,v)|(u,v ∈ V) ∧
(u ≠ v)} are the connections between the preceding
objects. The length of a path P is the sum of the
weights or cost of all the nodes on the path,
denoted by cost(P) and the distance dist(a,b)

2430

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90760IJERTV2IS90760

between two nodes a and b is defined by the length
of the shortest path from a to b in the graph G.

Given a graph G=(V,E), the subgraphs of G is
represented as SG={G1(V1, E1), …,Gk(Vk, Ek)}
with Vi ⊆ V, Ei ⊆ E, 1 ≤ i ≤ k. For a node v ∈ V,
let Sub(v) denote the subgraph to which v belongs
to.

2.1. Inter community edge

An edge (u,v)∈E is called an intercommunity
edge if u,v belongs to adjacent subgraphs Gi and Gj
respectively. The intercommunity edge set between
Gi and Gj is denoted by IC(Gi,Gj)={(u,
v)∈E|(u∈B(Gi)) ∧ (v∈B(Gj)) ∧ (i ≠ j)}.

2.2. Border node and Inner node

A node u ∈Vi is called a border node of Gi if
there exists an edge (u,v)∈E with v∈Vj and i≠j, and
an inner node of Gi otherwise; Gj is then called a
neighbour subgraph of u, denoted by Ns(u) and the
subgraphs Gi and Gj are said to be adjacent.

2.3. Abstraction graph

Abstraction graphs are those in which

• Each node u∈VA is a supernode
representing the subgraph formed by
{v∈V| Sub(v)=u}

• Each edge (u, v)∈EA represents the
collection of edges { (u′, v′)∈E | (Sub(u′) =
u) ∧ (Sub(v′) = v) }

• The weight of any node u∈ VA is defined
by wvA :=minTd(u)

Figure 1(a). Graph G with sub graph
partitions.

Figure 1(b). High-level graph constructed
from the sub graphs of G

For example, Figure 1(a) shows a graph G
whose sub graphs G1, G2, G3, and G4 are shown in
Figure 1(b). Fig 2 shows the high-level graph
constructed from G1 to G4, where each sub graph is
represented as a complete graph composed of its
border node set and the community edge set. The
intercommunity edge can be thought of as forming
bottlenecks between sub graphs. The corresponding
abstraction graph is shown in Figure 2, which
contains far fewer nodes and edges.

Figure 2. Abstraction Graph G for the

Figure 1

Thus, this process motivates in estimating the

real shortest path value efficiently by eliminating
unnecessary computations. This can be done by
first searching in the abstraction graph when the
maximum traversing distance equals the minimum
one for each subgraph. This can be used to
efficiently execute the path queries.

2431

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90760IJERTV2IS90760

3. Partitioning of Graphs

 In this section, we discuss about the graph
partitioning technique adapted and also the
notations followed for the Graph Partitioning using
Regulated Distance Algorithm (RDA). The
traversing distance is used for the partitioning
process.

3.1. Rate Determination

 Suppose that the original network is
partitioned into k subgraphs G1, G2, …, Gk. Let
s(Gi) be the size of subgraph Gi,and Ri the ratio of
the maximum traversing distance to the minimum
traversing distance for subgraph Gi, Ri :=
max(Td(Gi)) min(Td(Gi)) , with 1 ≤ i ≤ k. The
ratio Ri:=1 if Gi has only one neighbor subgraph.
For any node u ∈ B(Gi), Num(u) represents the
number of intercommunity edges incident to u. The
permitted upper and lower bounds for subgraph
size are denoted by U δ and L δ , respectively.

In general,

min {Ri | ∀ 1 ≤ i ≤ k }

is subject to

 Num(u)=1, u∈B(Gi) (A)
 L δ ≤ s(Gi) ≤ U δ (B)

• Condition A is necessary to ensure that the shortest
path will pass through a subgraph via atleast one
community edge rather than just one border node.

• Condition B is necessary to avoid too large or small
partitions and thereby regulating the path searching
within each subgraph.

Figure 3(a). Actual Graph partitioning with
boundary nodes {b1} and {b2,b3,b4}

Figure 3(b). Modified graph partitions with
boundary nodes {b1} and {b1’}

3.2. RDA Algorithm

The Regulated Distance Algorithm (RDA)
comprises of two phases namely

Phase1. Initialization

 In this phase, the network is divided into a
series of small subgraphs. Initally, all the nodes are
unmarked. The nodes are considered one by one.
The node u is marked with a new subgraph number
and a set "temp" is maintained for the nodes added
to this subgraph in turn. This is repeated to avoid
too small subgraphs. The first node is removed
from temp and judged whether it has a neighbour in
a different subgraph. If not, all the unmarked
neighbours are added to temp. Otherwise, it is
checked if the neighbour has a neighbour node in a
different subgraph and added to the end of temp. If
the temp becomes null, the algorithm exits.

Algorithm1. Sub graph Initialization

Node u # unmarked node
Set temp # unmarked neighbors of u
Node v # first node from temp
Node x # neighbor node

initialise()
{
 while(subgraph size too small)

{
 u.num=sn; //with subgraph
number
 temp={unmarked neighbors of
u};
}
while(temp!=null)
{
 if(v has neighbour node x in
different subgraph)
 if(x has a neighbor node in a
different subgraph)

 temp=append(x);
 else
 temp=append(unmarked
neighbors of v and x);
}

}

2432

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90760IJERTV2IS90760

 At the end of the sweep, we randomly put
the unmarked degree one node in its neighbor
subgraph and mark it with the subgraph number. At
that point, all nodes are marked, and each node is
adjacent to one or two subgraphs (for inner nodes
and border nodes, respectively). Then, for any
border node which is adjacent to more than one
intercommunity edge, we turn to add a zero-
weighted node to replace the multiple nodes
adjacent to it.

 In Fig 3(a), node b1 has three
intercommunity edges which makes the
partitioning very chaotic. When a node is added,
say b1' in its neighbor subgraph and linking up the
endpoints of the original intercommunity edges via
b1', we get a modified graph where each border
node is connected to only one intercommunity
edge, as shown in Fig 3(b) .

Phase2. Clustering

 During this phase, the subgraph clustering
process is performed on the graph partition
produced in the phase 1. This is carried out in order
to reduce the ratio Ri and regulating the subgraph
size to [δL, δU].

Algorithm2 : Sub graph Clustering

Set Sg #set of subgraphs
{G1(V1,E1),....,Gk(Vk,Ek)}
Set tdi #Traversing distance
set for each subgraph 1<=i<=k where k is the
number of subgraphs of graph G
int i #present node
int j #neighboring node
Ri #ratio between
maximum traversing distance and the minimum
traversing distance

clustering()
{

for (each subgraph Sgi in graph G)
{
 computer Ri;
 add to set tdi;
}

for (each subgraph Sgi in graph G)
{
 degradationi=merge(Gi,Gj);

 if(degradationi is maximal)
 {
 combine(Gi,Gj);
 update neighbor
information;
 computer Rj;
 }
}

compute Rcom for the combined subgraph
Gcom;

}

 The ratio Ri is calculated for each
subgraph. At the end of the loop, the traversing
distance set for each subgraph, and the ratio Ri is
calculated. Then, for each subgraph the degradation
of Ri is calculated by merging a neighboring
subgraph. At the end, the constructed community
edges are employed to facilitate the computation of
the traversing distance ratio Rcom for a combined
subgraph Gcom.

4. Evaluation

 When the algorithm is evaluated for a
generalized road network, it is seen that the average
traversing distance ration follow a downward trend
as the subgraph clusters, though it may fluctuate
slightly.

Figure4. Plot between Traversing Distance
ratio R and the subgraph clustering

2433

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90760IJERTV2IS90760

5. Conclusion

 In this paper, we propose an effective
graph partition method for accelerating the path
queries on large node weighted networks. We
propose a new regulated distance algorithm based
on our hierarchical graph model, which could
compute optimal subgraph partitioning in both
static and dynamic environments. The proposed
method can also be applied to edge-weighted
graphs through several conversions and is focused
in another piece of our work. As part of future
research, it would be beneficial to quantify the
effect of the number of subgraphs and the average
traversing distance ratio on the performance
improvement of a query algorithm so as to
determine the optimum values. Also, it is worth
developing more fast and effective partition
methods to further reducing the traversing distance
ratio.

6. References

[1] E. W. Dijkstra, “A note on two problems in
connexion with graphs”, Numer. Math., vol. 1, pp.
269-271, 1959.
[2] R. Möhring, H. Schilling, B. Schütz, D.
Wagner, and T. Willhalm, “Partitioning graphs to
speed up Dijkstra’s algorithm”, ACM J. Exp.
Algor., vol.11, article no.2.8, pp. 1-29, 2006.
[3] Y. W. Huang, N. Jing, and E. A. Rundensteiner,
“Effective graph clustering for path queries in
digital map database”, in Proc. CIKM, Rockville,
1996, pp. 215-222.
[4] S. Jung and S. Pramanik,“An efficient path
computation model for hierarchically structured
topographical road maps”, IEEE Trans. Knowl.
Data Eng.,vol. 14, no. 5, pp. 1029-1046, 2002.
[5] J. Maue, P. Sanders, and D. Matijevic, “Goal
directed shortest path queries using precomputed
cluster distances”, ACM J. Exp. Algor., vol.14,
article no.3.2, pp. 1-27, 2009.
[6] G. Karypis and V. Kumar,“A fast and high
quality multilevel scheme for partitioning irregular
graphs”, SIAM J. Sci. Comput., vol. 20, no. 1, pp.
359-392, 1998.
[7] D Gusfield, "Partition-distance : A problem and
class of perfect graphs arising in clustering", 2002
[8] M. B. Habbal, H. N. Koutsopoulos, and S. R.
Lerman, “A decomposition algorithm for the all-
pairs shortest path problem on massively parallel

computer architectures”, Transp. Sci., vol. 28, no.
4, pp. 292-308, 1994.
[9] Huaijun Qiu, Edwin R.Hancock, "Graph
matching and clustering using spectral partitions",
2005.
[10] Rodney Michael Miles, "Graph Clustering
with an Emphasis on Algorithms Employing the
Commuting Times Distance", 2013
[11] Philippe Gambette, Alain Guenoche,
"Bootstrap Clustering for Graph Partitioning", 2001

11. Authors

Anusha Swaminathan is also pursuing her B.E in
Computer Science Engineering at Meenakshi
Sundararajan Engineering College which is
affiliated to the Anna University of Chennai, Tamil
Nadu, India. She has presented several papers and
also won many accolades for the same. She
specializes in Algorithms and programming.

Varsha Alangar is currently pursuing her B.E in
Computer Science Engineering at Meenakshi
Sundararajan Engineering College which is
affiliated to the Anna University of Chennai, Tamil
Nadu, India. She has presented several papers on
networking including “Resource allocation in
Wireless Mesh networks” and other papers related
to Operating systems and Cloud computing .

2434

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90760IJERTV2IS90760

