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Abstract 
 
One of the fundamental needs in many networking 
applications is the computation of shortest paths. 
There are many methodologies and algorithms to 
compute the shortest path but the time and 
complexity plays a major role in choosing the 
algorithm that has less execution time and executes 
with low complexity. We thus propose a method 
that partitions the graph more efficiently by 
clustering method. This method also reduces the 
search space by clipping the unnecessary sub 
graph branches due to the creation of the 
abstraction graphs. The algorithm can be further 
extended to routing algorithms to compute the 
shortest paths of various routes. This algorithm 
also proves to reduce the traversing distance ratio 
as the clustering increases.  

 
1. Introduction  
  

 Any field including geographic 
information systems (GIS), computer networks and 
social networks today requires the computation of 
shortest path for some purpose. It is one of the most 
fundamental necessity in networking area. There 
are various shortest path algorithms designed to 
deliver optimal solutions. In 1959, Dijkstra 
developed a successful shortest path algorithm that 
produced a complexity of O(|E|+|V|log|V|), where 
|V| is the number of vertices and |E| is the number 
of arcs. Though Dijkstra algorithm computes the 

optimal solution in a theoretical sense, it is often 
too slow in practical applications, giving way for 
several other techniques for improving its response 
time. 

A general path query is a regular expression over 
the labels of a graph G. For crucial applications, the 
path queries need to be solved with both time and 
accuracy kept in mind. Pre-computing, though fast, 
consumes lot of time and storage. A lot of research 
has been tried to balance between the preprocessing 
and the query times most of which uses graph 
partition techniques for the original problem 
decomposition. The query execution can be 
effectively enhanced through appropriate division 
and partitioning of graphs.  

In this work, we concentrate on shortest path 
queries in large networks. With minimal amount of 
storage of data, and a fast preprocessing technique, 
our algorithm aims to accelerate the path queries 
based on the most suitable graph partitioning 
without a layout or an embedding.  

2. The Hierarchical Graph Model 

Assume a road network or individuals in a 
friendship network. Let G=(V,E) be a graph, where 
each vertex in V represents the network objects and 
the edges E be represented as E={(u,v)|(u,v ∈ V) ∧ 
(u ≠ v)} are the connections between the preceding 
objects. The length of a path P is the sum of the 
weights or cost of all the nodes on the path, 
denoted by cost(P) and the distance dist(a,b) 
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between two nodes a and b is defined by the length 
of the shortest path from a to b in the graph G. 

 

Given a graph G=(V,E), the subgraphs of G is 
represented as SG={G1(V1, E1), …,Gk(Vk, Ek)} 
with Vi ⊆ V, Ei ⊆ E, 1 ≤ i ≤ k. For a node v ∈ V, 
let Sub(v) denote the subgraph to which v belongs 
to.  

2.1. Inter community edge 

An edge (u,v)∈E is called an intercommunity 
edge if u,v belongs to adjacent subgraphs Gi and Gj 
respectively. The intercommunity edge set between 
Gi and Gj is denoted by IC(Gi,Gj)={(u, 
v)∈E|(u∈B(Gi)) ∧ (v∈B(Gj)) ∧ (i ≠ j)}. 

2.2. Border node and Inner node 

A node u ∈Vi is called a border node of Gi if 
there exists an edge (u,v)∈E with v∈Vj and i≠j, and 
an inner node of Gi otherwise; Gj is then called a 
neighbour subgraph of u, denoted by Ns(u) and the 
subgraphs Gi and Gj are said to be adjacent. 

2.3. Abstraction graph 

Abstraction graphs are those in which  

• Each node u∈VA is a supernode 
representing the subgraph formed by 
{v∈V| Sub(v)=u} 

• Each edge (u, v)∈EA represents the 
collection of edges { (u′, v′)∈E | (Sub(u′) = 
u) ∧ (Sub(v′) = v) } 

• The weight of any node u∈ VA is defined 
by wvA :=minTd(u)  

 

Figure 1(a). Graph G with sub graph 
partitions. 

Figure 1(b). High-level graph constructed 
from the sub graphs of G 

 

For example, Figure 1(a) shows a graph G 
whose sub graphs G1, G2, G3, and G4 are shown in 
Figure 1(b). Fig 2 shows the high-level graph 
constructed from G1 to G4, where each sub graph is 
represented as a complete graph composed of its 
border node set and the community edge set. The 
intercommunity edge can be thought of as forming 
bottlenecks between sub graphs. The corresponding 
abstraction graph is shown in Figure 2, which 
contains far fewer nodes and edges.  

 

 
Figure 2. Abstraction Graph G for the 

Figure 1 
 
Thus, this process motivates in estimating the 

real shortest path value efficiently by eliminating 
unnecessary computations. This can be done by 
first searching in the abstraction graph when the 
maximum traversing distance equals the minimum 
one for each subgraph. This can be used to 
efficiently execute the path queries.  

 
 

 
  
 

2431

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90760IJERTV2IS90760



   
  

 
 
 
 
 
3. Partitioning of Graphs 
 
 In this section, we discuss about the graph 
partitioning technique adapted and also the 
notations followed for the Graph Partitioning using 
Regulated Distance Algorithm (RDA). The 
traversing distance is used for the partitioning 
process.  
 
3.1. Rate Determination 

 Suppose that the original network is 
partitioned into k subgraphs G1, G2, …, Gk. Let 
s(Gi) be the size of subgraph Gi,and Ri the ratio of 
the maximum traversing distance to the minimum 
traversing distance for subgraph Gi, Ri := 
max(Td(Gi )) min(Td(Gi )) , with 1 ≤ i ≤ k. The 
ratio Ri:=1 if Gi has only one neighbor subgraph. 
For any node u ∈ B(Gi), Num(u) represents the 
number of intercommunity edges incident to u. The 
permitted upper and lower bounds for subgraph 
size are denoted by U δ and L δ , respectively.  

In general,  
 
min {Ri | ∀ 1 ≤ i ≤ k } 
 
is subject to 
 
 Num(u)=1, u∈B(Gi)        (A) 
 L δ ≤ s(Gi) ≤ U δ             (B) 

• Condition A is necessary to ensure that the shortest 
path will pass through a subgraph via atleast one 
community edge rather than just one border node. 

• Condition B is necessary to avoid too large or small 
partitions and thereby regulating the path searching 
within each subgraph. 

 
 

Figure 3(a). Actual Graph partitioning with 
boundary nodes {b1} and {b2,b3,b4} 

Figure 3(b). Modified graph partitions with 
boundary nodes {b1} and {b1’} 

 
 

3.2. RDA Algorithm 

The Regulated Distance Algorithm (RDA) 
comprises of two phases namely 

Phase1. Initialization 

 In this phase, the network is divided into a 
series of small subgraphs. Initally, all the nodes are 
unmarked. The nodes are considered one by one. 
The node u is marked with a new subgraph number 
and a set "temp" is maintained for the nodes added 
to this subgraph in turn. This is repeated to avoid 
too small subgraphs. The first node is removed 
from temp and judged whether it has a neighbour in 
a different subgraph. If not, all the unmarked 
neighbours are added to temp. Otherwise, it is 
checked if the neighbour has a neighbour node in a 
different subgraph and added to the end of temp. If 
the temp becomes null, the algorithm exits.  

Algorithm1. Sub graph Initialization 

Node u                  # unmarked node  
Set temp                # unmarked neighbors of u 
Node v                  # first node from temp 
Node x                  # neighbor node 
 
initialise() 
{ 
 while(subgraph size too small) 

{ 
 u.num=sn; //with subgraph 
number 
 temp={unmarked neighbors of 
u}; 
} 
while(temp!=null) 
{ 
 if(v has neighbour node x in 
different subgraph) 
 if(x has a neighbor node in a 
different subgraph) 

 temp=append(x); 
 else  
  temp=append(unmarked 
neighbors of v and x); 
} 

} 

_________________________________________ 
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 At the end of the sweep, we randomly put 
the unmarked degree one node in its neighbor 
subgraph and mark it with the subgraph number. At 
that point, all nodes are marked, and each node is 
adjacent to one or two subgraphs (for inner nodes 
and border nodes, respectively). Then, for any 
border node which is adjacent to more than one 
intercommunity edge, we turn to add a zero-
weighted node to replace the multiple nodes 
adjacent to it. 

 In Fig 3(a), node b1 has three 
intercommunity edges which makes the 
partitioning very chaotic. When a node is added, 
say b1' in its neighbor subgraph and linking up the 
endpoints of the original intercommunity edges via 
b1', we get a modified graph where each border 
node is connected to only one intercommunity 
edge, as shown in Fig 3(b) . 

Phase2. Clustering 

 During this phase, the subgraph clustering 
process is performed on the graph partition 
produced in the phase 1. This is carried out in order 
to reduce the ratio Ri and regulating the subgraph 
size to [δL, δU]. 

Algorithm2 : Sub graph Clustering  
 
 
Set Sg                           #set of subgraphs         
{G1(V1,E1),....,Gk(Vk,Ek)} 
Set tdi                                     #Traversing distance 
set for each subgraph 1<=i<=k where k is the 
number of subgraphs of graph G 
int i                                       #present node 
int j                                       #neighboring node 
Ri                                            #ratio between 
maximum traversing distance and the minimum 
traversing distance 
 
clustering() 
{ 

 
for (each subgraph Sgi in graph G) 
{ 
 computer Ri; 
 add to set tdi; 
} 
 
for (each subgraph Sgi in graph G) 
{ 
 degradationi=merge(Gi,Gj); 
  

 if(degradationi is maximal) 
 { 
  combine(Gi,Gj); 
  update neighbor 
information; 
  computer Rj; 
 } 
} 
 
compute Rcom for the combined subgraph 
Gcom; 

} 
 
_________________________________________
    

 The ratio Ri is calculated for each 
subgraph. At the end of the loop, the traversing 
distance set for each subgraph, and the ratio Ri is 
calculated. Then, for each subgraph the degradation 
of Ri is calculated by merging a neighboring 
subgraph. At the end, the constructed community 
edges are employed to facilitate the computation of 
the traversing distance ratio Rcom for a combined 
subgraph Gcom.  

4.  Evaluation 

 When the algorithm is evaluated for a 
generalized road network, it is seen that the average 
traversing distance ration follow a downward trend 
as the subgraph clusters, though it may fluctuate 
slightly. 

 

Figure4. Plot between Traversing Distance 
ratio R and the subgraph clustering 

 

 
  
 

2433

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90760IJERTV2IS90760



   
  

 
 
 
 
 
5. Conclusion 
 
 In this paper, we propose an effective 
graph partition method for accelerating the path 
queries on large node weighted networks. We 
propose a new regulated distance algorithm based 
on our hierarchical graph model, which could 
compute optimal subgraph partitioning in both 
static and dynamic environments. The proposed 
method can also be applied to edge-weighted 
graphs through several conversions and is focused 
in another piece of our work. As part of future 
research, it would be beneficial to quantify the 
effect of the number of subgraphs and the average 
traversing distance ratio on the performance 
improvement of a query algorithm so as to 
determine the optimum values. Also, it is worth 
developing more fast and effective partition 
methods to further reducing the traversing distance 
ratio. 
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