

Reliability Allocation for Fault Tolerant Software

Krishna Kumar Singh1 and Dr. S. K Chaturvedi2

1 Lecturer in CSE Department, RGU IIIT, Nuzvid
2Associate Professor in Reliability Engineering Centre, IIT Kharagpur

Abstract

 Fault tolerance is one of the major concerns in
software design nowadays. In this paper a simple
optimization model for the fault tolerant software
reliability allocation using fault tree and event tree
techniques incorporated with cost (testing time)
minimization approach is presented, which takes
software module complexity (size) into account along
with its criticality with respect to other modules.

A simple methodology for the fault tolerant
software reliability allocation model is presented
mainly based on two methods: cut set method (SFTA)
[7], and cost (testing time) minimization, where
objective function is derived from Musa basic
execution model and Musa-Okumoto logarithmic
model.

1. Introduction
Reliability Allocation deals with the setting of

reliability goals to individual Software module or
component, so that a specified reliability goal is met.
The apportionment of reliability values among the
various components can be made on the basis of
complexity, occurrence, criticality and utility.
 Several papers have addressed the problem of
software reliability allocation. Zahedi and Ashrafi [4]
modeled Software Reliability Allocation Based on
Structure, Utility, Price, and Cost within a nonlinear
programming formulation that maximizes system
reliability subject to a cost constraint; Misra [10],
proposed a cost model for allocation of component
failure intensities to achieve a software system’s
reliability target while minimizing the cost in the
design phase.

 The above two papers highly rely on expertise and
experience to estimate the parameters used in the
model; R. Lyu [6], has taken the initial failure rate of
each software module as one of parameter to minimize
total cost (testing time) and considered all modules are
connected in logically series fashion. Malaiya [5]
presented a allocation model to minimize cost subject
to an overall system failure intensity goal, same as Lyu
[6] but considered that execution frequency also
affects the allocated reliability; Xiang [7] presented a
fault tree analysis of reliability allocation. He
considered the structural complexity (redundancy), but
not internal complexity (e.g. size) of software

modules; Lyu and Sampath [15] presented the idea
regarding fault tolerant software reliability allocation
based on coverage factor, but it can be estimated
during integration testing phase. The optimization of
reliability allocation, subject to reliability constraints
(derived from fault tree or event tree), considers the
internal complexity (e.g. size of module) as well as
structural redundancy and criticality.

Three of the best-known fault-tolerant software
design methods are N-version programming (NVP),
recovery block scheme (RBS), and N-self-checking
programming. All three methods are based on the
redundancy of software modules (functionally
equivalent but independently developed) and the
assumption that coincident failures of modules are
rare. This approach presumes the execution of N
functionally equivalent software modules (called
versions) that receive the same input and send their
outputs to a voter, which is aimed at determining the
system output. The voter produces an output if at least
M-out-of-N outputs agrees, otherwise, the system fails.

 The rest of the Section is organized as follows.
Section 2 elaborates the description of some important
terms, which are prerequisites to understand software
reliability allocation. Section 3 covers the introduction
of three Basic techniques of fault tolerant software,
these techniques are: N-version programming
architecture, recovery block architecture, and N-self-
checking programming.
 Section 4 elaborates the problem statements for
reliability allocation model. Section 5 concludes the
paper work.

2. Definition of some important terms
 This Section defines some important terms and
terminology, which are required to understand problem
model and its formulation for reliability allocation
procedures.

2.1 Source lines of code (SLOC) and
instruction execution rate(r).

 This is number of source instructions (Is) [1]
excluding commented lines of code. One source
instructions may be equivalent to many machine level
instructions. Instruction execution rate is processor
execution speed i.e. how many instructions are
executed in a unit time (CPU time). For example r =
25 MIPS, i.e. 25000000 instructions are executed in
one second.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

1www.ijert.org

2.2 Failure rate and failure intensity function
(λ(t)).

A failure occurs when the user perceives that a
software program ceases to deliver the expected
service. The failure intensity function represents [1]
the rate of change of the cumulative failure function.
The hazard rate is defined as the probability that a
failure per unit time occurs in the interval [t , t + dt],
given that a failure has not occurred before t and
instantaneous hazard rate is refers to failure rate
function (i.e. probability of failure in the point of
time). In this paper, the failure rate and failure
intensity function are used interchangeably.

2.3 Inherent fault density () .
This is number of faults per KSLOC. The estimate

for inherent fault density can be based on KSLOC and
Function Points. A fault is uncovered when either a
failure of the program occurs, or an internal error (e.g.,
an incorrect state) is detected within the program. The
cause of the failure or the internal error is said to be a
fault.

2.4 Fault reduction efficiency factor(B).
This is a measure of the proportion of faults

removed from code to faults removed plus new faults
introduced, and in other word, it is average no of faults
corrected per failure. Suggested defect removal
efficiencies of software developed on different Levels
of the capability maturity model (1CMM) [1] are given
in the Table 2.1.

Table 2.1. Fault removal efficiency factor

corresponding to CMM level

SEI CMM Levels Fault Removal
Efficiency Factor

SEI CMM 1 0.85

SEI CMM 2 0.89

SEI CMM 3 0.91

SEI CMM 4 0.93

SEI CMM 5 0.95

2.5 Fault exposure ratio (K):
 It is expected fraction of existing faults exposed
during the execution of software application. i.e. number
of faults exposed divided by total number of existing
faults. In other word, it can be interpreted as the average
number of failures occurring per fault in the code during
one linear execution of the program.

1 Note: CMM is a benchmark for comparative assessment of
software development processes. This service mark owned by
Software Engineering Institute (SEI), Carnegie Mellon University
(CMU), US.

 Musa’s default value of K [1] is given by
 , however, it is suggested that the

organization determine an estimate of fault exposure
based on historical data. Fault exposure ratio, which
can be obtained by normalizing the per-fault hazard
rate with respect to the software size and the
instruction execution rate. Li and Malaiya [2] have
suggested that K varies with the initial fault density

and have given the estimates

where is defect density per KSLOC.

2.6 Average code expansion ratio (Qx).
It is number of object instructions per SLOC. It is

defined as the ratio of executable line of code
generated after compilation to that of legal program
source code syntax. To compute the number of object
instructions I, the number of executable lines of code
is multiplied by the code expansion ratio, supplied in
Table 2.2 [10]. If real project data is not available then
we can use this table, as this provides average value of
estimates.

 The rationale behind this data is that the
relationship between a line of code and a machine
instruction varies depending on the language. Also,
the relationship between a line of code and a function
point also vary with language.

Table 2.2. Code expansion ratio

2.7 Function points.
Function Points are measures of software size,

functionality, and complexity used as a basis for
software cost estimation [9], and given by an
expression.
Function Points = Unadjusted Function Points ×
(0.65 + 0.01 × Value Adjustment Factor).
Determining the unadjusted function point count
consists of counting the number of external inputs,
external outputs, external inquiries, internal logical
files, and external interface files. Determining the
value adjustment factor consists of rating system, input
and output, and application complexity. Determining
Function Points consists of factoring unadjusted
function points and value adjustment factor together

Programmi
ng
Language

Expansi
on Ratio

Mean Source
Statements/Fu
nction Point

Assembler 1 320

C 2.5 128

Ada 4.5 71

3rd
generation

lang.

4 80

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

2www.ijert.org

After estimating the function points, we can estimate
the inherent faults using CMM level [1] (standard
adopted for software development process), as given in
the Table 2.3.

Table 2.3: Estimation of total inherent defects using

function points

SEI CMM
Level

Average function point

SEI CMM 1 5 potential, .75 delivered

SEI CMM 2 4 potential, .44 delivered

SEI CMM 3 3 potential, .27 delivered

SEI CMM 4 2 potential, .14 delivered

SEI CMM 5 1 potential, .05 delivered

2.8 Non-homogeneous Poisson process:
A non-homogeneous Poisson process [16] is a

Poisson process with rate parameter λ (t) such that the
rate parameter of the process is a function of time.
The counting process {N (t), t ≥ 0} is said to be a non-
homogeneous Poisson process with intensity function
λ (t), for t ≥ 0 if:

(I) N(0) = 0;
(II) It has independent increments; and
(III) It has unit jumps, that is,

P (N (t + h) – N (t) = 1) = λ (t) h + o (h) and
P (N (t + h) – N (t) ≥ 2) = o (h). Where, o (h) is very
small quantity
In the non-homogeneous case, the rate parameter λ (t)
now depends on t.
When λ (t) = λ, constant, then it reduces to the
homogeneous case.

2.9 Musa basic execution time model.
The Musa basic execution time model [1][14]

assumes that all faults are equally likely to occur, are
independent of each other and are actually observed.
The execution times between failures are modeled as
piecewise exponentially distributed. The intensity
function is proportional to the number of faults
remaining in the program. Failure intensity is function
of average number of failures)(τµ experienced at any
given point in time (= failure probability) and is given
by

Where,

 Where, f: is linear execution frequency, and K is fault
exposure ratio

μ (τ): is average total number of failures during
execution time (τ).
λ(τ): failure intensity function.
λ0: initial failure intensity at start of execution.
v0: total number of failures over infinite time.

2.10 Musa-Okumoto logarithmic model.
The Musa-Okumoto model [14] is called

logarithmic Poisson execution time model, it assumes
that all faults are equally likely to occur and are
independent of each other. The expected number of
faults is a logarithmic function of time in this model,
and the failure intensity decreases exponentially with
the expected failures experienced. Finally, the software
will experience an infinite number of failures in
infinite time.
Average total number of counted experienced failures
(µ) is a function of the elapsed execution time (τ).

The failure intensity is given by

Where, 0λ is initial failure intensity

 is failure intensity decay parameter.

 Dmin (fault density) takes a value between 2 and 4
defects per KLOC. For an initial fault density D larger
than 10 faults per KLOC, they [14] suggest to set Dmin
= D0/3. Like Musa’s basic execution time model the
“logarithmic Poisson execution time model” by Musa
and Okumoto is based on failure data measured in
execution time. Its assumptions are as follows:
1. At time t = 0, no failures have been observed.
2. The number of failures observed by time t, M(t),
follows a Poisson process.

2.11 Fault tree analysis (FTA).
Fault tree analysis is a failure analysis [7] in which

an undesired state of a system is analyzed using logic
relationship among the various components (or
events). Fault Tree Analysis (FTA) attempts to model
and analyze failure processes of systems. FTA is
basically composed of logic diagrams that display the
state of the system and is constructed using graphical
design techniques. The fault tree is usually using
conventional logic gate symbols.

A cut set is a set of basic events whose occurrence
causes the system to fail. To get the minimum cut sets
from the whole cut sets; use the relationships of the
events below to absorb the redundant cut sets.
A+A=A A+AB=A AA=A. Some example we shall
see in Section 3.

()1ln)(10 += τββτµ

1
)(

1

10

+
=

τβ
ββτλ

010 λββ =

0/1 β

min0 DI s=β

−

=
τλ

λτλ 0
0

0)(ve

))(()(τµτλ −= NfK

−=

− τλ

τµ 0
0

0 1)(vev

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

3www.ijert.org

2.12 Event tree diagram.
 Event tree diagram is based on binary logic, in

which an event either has or has not happened or a
component has or has not failed. It is valuable in
analyzing the consequences arising from a failure or
undesired event. Event tree analysis is highly effective
in determining how various initiating events can result
in accidents of interest. Event trees are useful for
system-reliability analysis and risk quantification since
they illustrate the logic of combination of probabilities
and consequences of event sequences.

3. Basic techniques and terms of fault
tolerant software
Software failures are caused by errors made in

various phases of program development. When the
software reliability is of critical importance, special
programming techniques are used in order to achieve
its fault tolerance. Three of the best-known fault-
tolerant software design methods [13] are N-version
programming (NVP), recovery block scheme (RBS),
and N-self-checking programming (NSCP). Here it is
considered that failures of versions of each component
are statistically independent and having no coincident
failure and hardware faults has not been taken into
account. The term coincident failure refers that the two
or more functionally equivalent modules fail on the
same input case.

3.1. N-version programming (NVP)
architecture
In an N-version software system, each module is

made with up to N different implementations. Each
variant accomplishes the same task, but hopefully in a
different way. Each version then submits its answer to
voter or decider which determines the correct answer,
and returns that as the result of the module. This
system can overcome the design faults present in most
software by relying upon the design diversity concept.

Figure 3.1: N-version fault tolerant software model

Using N-version software, it is encouraged that
each different version be implemented in as diverse a
manner as possible, including different tool sets,

different programming languages, and possibly
different environments. The voter produces an output
if at least M out of N outputs agree (it is presumed that
the probability that M wrong outputs agree is
negligibly small). Otherwise, the system fails. Usually
majority voting is used in which N is odd and M =
(N+1)/2. N-version programming consists of an
adjudication module called a voter, and n
independently developed software versions (M1, M2,
M3,…Mn), which are functionally equivalent. This
NVP model is based on the same concepts as N-
modular redundancy (NMR), which is a hardware
fault-tolerant architecture. In the NVP model, all n
software versions are executed for the same task at the
same time (i.e., in parallel), and their outputs are
collected and evaluated by the voter as shown in
Figure 3.1.

 Figure 3.2: Fault tree diagram of 3-version FTS

The majority of the outputs determine the voter

(V) decision. For the ease of computation of failure
probability, n-version fault tolerant software (FTS)
model can be converted into fault tree diagram. A fault
tree equivalent of 3-version FTS (2 out-of-3) is shown
in Figure 3.2.

3.2. Recovery block architecture
Another approach to software fault tolerance is the

“Recovery Block”. As the name implies, the basic goal
is to detect a software fault in a program, recover the
machine state at the time the faulty program was
entered, and execute next version that performs the
same function as the faulty program. A number of
independently designed programs that perform the
same function are developed. The adjudicator
(acceptance test) is the component which determines
the correctness of the various blocks to try.

If an acceptance test detects erroneous output,
then the next one is executed, etc., until an acceptable
output is obtained. If all versions are deemed faulty, an
error is posted. The Figure 3.3 illustrates the technique.

Top Event

Input

Correct

System
failure

M
1

M
2

M
3

M
n

Voter

A B B C A C

V

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

4www.ijert.org

Figure 3.3: Recovery block

3.3. N shelf-checking programming (NSCP).

 Self-checking software are the extra checks, often
including some amount of check pointing and rollback
recovery methods added into fault-tolerant or safety
critical systems. In NSCP, N modules are executed in
pairs. The outputs from the modules are compared and
then the outputs of each pair are tested and if they do
not agree with each other, the response of the pair is
discarded. The technique is shown in Figure 3.4 for
N=4. If a comparison of the outputs of the first pair of
modules, M1 and M2, is successful, then the output is
passed to the next phase of computation and system is
successful. If these outputs disagree, then a
comparison of the outputs of the second pair of
modules, M3 and M4, is made. If the outputs of the
second pair are agreed, then the output is passed to the
next phase. Otherwise the system fails.

Figure 3. 4: N self-checking programming

3.4. Adjudication by voting
Majority voting:

Majority voting: In m-out-of-n fault tolerant
software system, the number of version is N, and m is
the agreement number, or the number of matching
outputs which the adjudication algorithm requires for
the system success. The value of n is rarely larger than
3. In general, in majority voting, 2/)1(+= Nm
where, m is ceiling function of (N+1)/2.

4. Problem statements
Consider a software system consisting of n

module/component, where some of components are
used in redundant fashion to make the system fault
tolerant. The goal is to assign failure probability
requirements to the n modules (versions), such that the
pre-specified reliability requirements of the system are
satisfied, at the minimal cost. It is assumed that
failures of versions for each component are statistically
independent and having no coincident failure and
hardware faults has not been taken into account. All
the functionally equivalent module consist different
number of faults depending on size (KLOC), but fault
density is same

4.1. Model formulation
Two system failure probability allocation

techniques are used: first one is, cut set method based
on software Fault tree analysis (SFTA) [7], and second
allocation technique, which is based on minimization
of total cost (testing time/effort) and taking failure
probability expression (obtained from fault tree or
event tree) as constraints.

4.1.1 Cut set method: this method [7] analyses the
logic relationships among the components (or
applications) of the software, which may cause the root
event to occur. A cut set of basic events whose
occurrence causes the system to fail. A minimum cut set
of a fault tree gives a minimum set of successful events
necessary to satisfy the root. Presume that the maximum
acceptable Failure probability of software system is F,
and the system consists of n components m1, m2,
m3,….mn, By using SFTA, we get x minimum cut sets.
If one minimum cut set contains i modules, then the
maximum FR of each component in this minimum cut
set is

Where,j=1,2,3…n. (1)

If there exist intersections in the minimum cut

sets, that is to say, the result of F mj, F may have k
different values, then the minimum of them is taken as
the value of F. This algorithm is a geometric mean
algorithm in some sense, which is the reverse process
of the traditional analysis of software failure rate by
using SFTA. Cost minimization allocation model: The
testing time (cost) is taken as objective function and
failure probability expression, derived from equivalent
fault tree (for n-version programming) and event tree
[12] (for recovery block), is taken as constraint for
reliability allocation model. There, two software
reliability models are used to derive the objective
function (testing time expression): Musa basic
execution model and Musa-Okumoto logarithmic
model. The problem is formulated as a nonlinear
programming problem as follows

i

mj x
FF

/1

≤

Failure

input

Correct output

M
1

M
n

M
2

M
3

A
1

A
1

A
1

A
1

Pair fails

Input

Correct output
System failure

Modules outputs

M1

M2 M3 M4

Compare II

Compare I Compare I

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

5www.ijert.org

Musa basic execution time model:
Minimize (2)

Subject to (3)

 is initial failure intensity of ith module
F is goal failure probability of software system
The numerical values given below are either
experimental or assumed [1].

ssi

i
i ISLOCI

KrB 5.10
)(

.
0

0 =
×

==
ω
λ

β

 f is execution frequency
Q (is code expansion ratio) = 4.5
 (Inherent faults) =

 r (Execution speed of processor) = 25 MIPS
K (Fault exposure ratio) =
B (Fault reduction efficiency factor)= 0.85.(from Table
2.1.)
 (Fault density) = 6 faults /KLOC (taken a
average value)

Musa-Okumoto logarithmic model:
 Testing time is given by

Objective.function

 ….(4)

Constraints: (from
eq. (3)).
Where, n is number of components,

 Dmin=4 faults per KLOC [14],
 Isi= source lines of code of ith module
 λi= failure intensity function of ith module
 λ0i= initial failure intensity function of ith

module

4.2. Reliability allocation of N-version
programming architecture.

Consider a fault tolerant system consisting only

one application as shown in Figure 4.1, where the
modules M1, M2, and M3 are executed concurrently
and 2-out of 3, is required to run the system

successfully. The module V compares and checks the
output of the modules whether it should be accepted or
not. For the ease of computation, the 3-version
software fault tolerant model shown in Figure 4.1 is
converted to an equivalent fault tree diagram, as shown
in Figure 4.2. Where, the modules A, B, and C (failure
probability of M1, M2 and M3 respectively) are
executed concurrently and at least 2-out of them is
required to run the system successfully. The module V
(failure probability of voter) checks for the most
appropriate result out of the outputs of all the three
versions.

Figure 4.1: 3-version fault tolerant software model

Failure rate allocation using SFTA:
Minimal cut sets of the fault tree shown in Figure 4.2
are V (voter), AB, AC, BC. Let failure rate of the
software (top event) = 0.03. Fv is failure rate of
module V, Then by using Eq. (1), we get:

Figure 4.2: Fault tree equivalent to 3-version fault
tolerant software model

∑ =

=

n

i
i

i

i

C
1

0ln1
λ
λ

β
Ff n ≤),.......,(21 λλλ

decreamentfailureofrateis
C

uleioffunctionensityfailure
timetestingisCwhere

i

ii

th
i

β
βλ

λ
]exp[

)modint(
,

0 −×
=

0866.0
4

0075.0
4

2/1

1/1

=

===

=

=

FFFF

FF

CBA

V

System failure

M1 M2 M3

Voter

Input

Correct output

Top event

A B B C A C

V

i0λ

7102.4 −×

i0ρ

i0ω si I×0ρ

)/(4.50
/000

hrfailure
QKrKf iii =××=××= ρωλ

−= 1

)(
0

0

0

tλ
λ

λ
βτ

−= ∑

=

10

0

min

1 i

i

i

si
n

i

DICost
λ
λ

λ
Ff n ≤),.......,(21 λλλ

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

6www.ijert.org

Allocation using cost minimization
Let the goal failure rate of software is 0.03
The objective function is given (derived from (Musa
basic execution model)Eq. (2)) by.

The objective function is given (derived from(Musa
Okumoto Logarithmic model) Eq. (4)) by.

The constraint is given by:

This constraint is derived from fault tree shown in
Figure 4.2.
 Other constraints can be considered as:
V>0.001; V<0.999;
A>0.001; A<0.999;
B>0.001; B<0.999;
C>0.001; C<0.999;

 Figure 4.3: Failure rate vs. module size, in 3-
version programming architecture

After solving the equations (objective function
and constraints), the failure rate allocated to different
modules (result of all three, cutest, Musa basic
execution, and Musa Okumoto logarithmic methods) is
plotted and are shown in Figure 4.3. From the graph
shown in Figure 4.3, we can infer that the module v is
supposed to be more reliable (least failure rate) and the
allocated failure probability of modules A, B and C
may be different based on their size (i.e. complexity).
If modules sizes are equal then the allocated values are
identical to estimated by using SFTA (cut set method).
Musa-Okumoto model giving more appropriate
allocation among three approaches (tabulated above),
because, as size differs slightly, allocated value also
differs slightly, but Musa basic execution model gives
more variation where as cut set method gives no
variation.

4.3. Reliability allocation for recovery blocks
architecture.

In recovery block architecture, modules (versions) are
not in n-modular redundancy fashion exactly, but it
can be considered in sequential and standby fashion, so
rather than converting this into an equivalent fault tree
diagram, forming an event tree is more appropriate.
Recovery block architecture of two modules (M1, and
M2), and two adjudicator (A1 and A2) is shown in
Figure 4.4.
An equivalent event tree diagram of Figure 4.4 is
shown in Figure 4.5

 Input

Failure output

 Correct output

Figure 4.4: Recovery block architecture of 2-
modules

 M1 (a) A1 (b) M2(c) A2 (d) Outcomes

Figure 4.5 : Event tree of a 2-module recovery

block.

Where,
C stands for correct output,
I stand for incorrect output,
S stands for success,
 F stands for failure,
 and a, b, c, d are failure probability M1, A1, M2, and
A2 respectively.
Probability of failure of the event tree (shown in
Figure 4.4) is given by

abccabdbabcadcba ++++

 = bdcbcba ++
The objective function is derived from Eq. (2) and
given by (From Musa basic execution model)

03.0≤+++ ACBVBCAVABVV

M1 M2

A1 A1

C

I

C
C

C

I
I

I
I

I

C

C C

F

F

F
F

F

S

S

S

 −

×
+

 −

×

+

 −

×
+

 −

×
=

14.50
4.50
4

14.50
4.50
4

14.50
4.50
4

14.50
4.50
4

C
I

B
I

A
I

V
I

Cost

VV

VV

+

+

+

=

C
I

B
I

A
I

V
ICost CBAV 4.50ln

5.10
4.50ln

5.10
4.50ln

5.10
4.50ln

5.10

+

+

+

=

d
I

b
I

c
I

a
IC

AA

MM

4.50
ln

5.10
4.50

ln
510

4.50ln
5.10

4.50ln
5.10

21

21

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

7www.ijert.org

The objective function is derived from Eq. (4) and
given by (From Musa-Okumoto logarithmic model)

Constraint is derived (from event tree) as.

03.0<=++ bdcbcba
Other constraints are: a>0.001; a<0.999;
 b>0.001; b<0.999;
 c>0.001; c<0.999;
 d>0.001; d<0.999;
Because failure rate beyond the range (0.001,0.999) is
not practical.

Figure 4.6: failure probability vs. module size plot
of 2-module recovery block

After solving the equations (objective function and
constraints), the failure rate allocated to different
modules(size) is plotted and are shown in Figure 4.6,
and so we can see that first executable module
(version) is supposed to be more reliable than the next
one, which justify the fact that, in recovery block
architecture the best version executes first then another
best one and so on. For the ease of solving nonlinear
programming, the failure rates of acceptance tests are
taken equal. The results of allocation also give the idea
to organize the sequence (order) of module (versions)
to execute. The allocated value obtained from Musa
basic execution model shows more difference in
failure rate of first executable version than the next
one, whereas, Musa-Okomoto shows less difference.
Moreover, Musa-Okumoto model allocates better
reliability(less failure rate) to all other modules at the
cost of small increase in failure rate of first executable
version than Musa basic model. From the allocated
value of failure probability, many inferences can be
taken out, e.g. how to allocate testing effort and other
resources among the modules

4.4. N self-checking programming architecture
The N self-checking programming architecture as

shown in Figure 3.4, can be broken into two part, (a)
compare II is taken as acceptance test and compare I
along with modules connected with it, is taken as
module (version), and (b) compareI is taken as voter

and modules connected with this are taken as versions.
So, reliability allocation also can be done in two steps,
for part (I) recovery block allocation can be applied,
and for part (II) N-version programming allocation can
be applied, which are discussed already.

5. Conclusion
 Reliability allocation is a useful tool at design

stage of software development process. Fault tree
diagram and event tree diagram are used to make
software system simpler for reliability allocation work,
especially for Fault tolerant system. In recovery block
architecture, not all modules (functionally equivalent
version of software module) results in output, so it is
not reasonable to consider all modules as N-modular
redundancy or in series fashion. Basic approach of
reliability allocation using fault tree has been discussed
along with reliability allocation cost (testing time)
minimization. Voter is considered more critical hence,
allocated more reliability than versions (software
module with similar functionality). Musa-Okumoto
logarithmic model allocates better reliability to all
other modules at the cost of small increase in failure
probability of first executable version.

Scope and future work
(I) Many other software models can be used

for the allocation process.
(II) Number of faults corrected or residual can

be taken as objective function.
(III) Some other factors like utility and

occurrence probability can be
incorporated in reliability allocation
constraints.

6. References
[1]. Peter B. Lakey, McDonnell Douglas Corporation,

St. Louis, MO Ann Marie Neufelder, SoftRel,
Hebron, KY, “SYSTEM AND SOFTWARE
RELIABILITY ASSURANCE NOTEBOOK “,
Section 6 &7, Produced by Rome Laboratory

[2]. Yashwant K. Malaiya and Jason Denton, “What
Do the Software Reliability Growth Model
Parameters Represent?, Computer Science Dept.
Colorado State University Fort Collins, CO
80523 , pp: 124 - 135 , 1997.

[3]. Yashwant K. Malaiya, “Reliability Allocation”,
Computer Science Dept , Colorado State
University Fort Collins CO 80523 USA.

[4]. Fatemeh Zahedi and Noushin Ashrafi,” Software
Reliability Allocation Based on Structure,
Utility, Price, and Cost”, vol. 17, no. 4, April
1991.

[5]. Yashwant E, ”Fault Exposure Ratio Estimation and
Applications”, Li Naixin Microsoft Corp,
Malaiya Computer Science Dept, 1996.

[6]. Michael R. Lyu Sampath Rangarajan, Aad P. A. van Moorsel, “Optimization of Reliability
Allocation and Testing Schedule for Software
Systems”, Bell Laboratories, Lucent

 −

×
+

 −

×

+

 −

×
+

 −

×
=

14.50
4.50
4

14.50
4.50
4

14.50
4.50
4

14.50
4.50
4

21

21

d
I

b
I

c
I

a
I

Cost

AA

MM

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

8www.ijert.org

Technologies 600 Mountain Avenue, Murray Hill, NJ 07974.
[7]. Jianwen Xiang, Kokichi Futatsugi, “Fault Tree

Analysis of Software Reliability Allocation”,
School of Information Science, Ishikawa, 923-
1292 Japan.

[8] R. Keithscott, James W. Gault, and David
F.Mcallister, “Fault-Tolerant Software
Reliability Modeling”, vol.se-13, no.5, May 1987

[9]. Longstreet, D., “Function Points Step by Step”,
Longstreet Consulting, Inc., January 1999.

[10] Rani, Misra R.B,”Economic Allocation of Target
Reliability in Modular Software Systems “,
RAMS 2005.

[11].J.B.Fussell, E.F. Aber, R.G.Rahl, “On the
Quantitative Analysis of Priority AND Failure
Logic”, IEEE Transactions on Reliability, vol.
R-25, no.5, December 1976.

[12]. Keith Scott, James W. Gault, and David
F.Mcallister, “ Fault-Tolerant software
Reliability Modeling IEEE Transactions on
Software Engineering, vol. se-13, no.5, may
1987

[13]. D.F.McAllister and M.A.Vouk, “Fault-Tolerant
Software reliability Engineering”, North
Caroline state University, Section 14.

[14]. Michael Grottke “Software Reliability Model
Study”, IST-1999-55017 Deliverable A.2

[15]. Michael R. Lyu, Sampath Rangarajan, “Optimal
Allocation of Test Resources for

 Software Reliability Growth Modeling in
Software Development”, IEEE Transactions
 On Reliability, Vol. 51, No. 2, June 2002
[16]. Yuri Goegebeur “The Poisson and the non

homogeneous Poisson process” Department of
Statistics, University of Southern Denmark, 05-
Statistical Simulation, December 3, 2007

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

9www.ijert.org

