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Abstract 
 
        Fault tolerance is one of the major concerns in 
software design nowadays. In this paper a simple 
optimization model for the fault tolerant software 
reliability allocation using fault tree  and event tree 
techniques incorporated with cost (testing time) 
minimization approach is presented, which takes 
software module complexity (size) into account along 
with its criticality with respect to other modules. 

A simple methodology for the fault tolerant 
software reliability allocation model is presented 
mainly based on two methods: cut set method (SFTA) 
[7], and cost (testing time) minimization, where 
objective function is derived from Musa basic 
execution model and Musa-Okumoto logarithmic 
model.   

1. Introduction 
Reliability Allocation deals with the setting of 

reliability goals to individual Software module or 
component, so that a specified reliability goal is met. 
The apportionment of reliability values among the 
various components can be made on the basis of 
complexity, occurrence, criticality and utility. 
            Several papers have addressed the problem of 
software reliability allocation. Zahedi and Ashrafi [4] 
modeled Software Reliability Allocation Based on 
Structure, Utility, Price, and Cost within a nonlinear 
programming formulation that maximizes system 
reliability subject to a cost constraint; Misra [10], 
proposed a cost model for allocation of component 
failure intensities to achieve a software system’s 
reliability target while minimizing the cost in the 
design phase. 

     The above two papers highly rely on expertise and 
experience to estimate the parameters used in the 
model;  R. Lyu  [6], has taken the initial failure rate of 
each software module as one of parameter to minimize 
total cost (testing time) and considered all modules are 
connected in logically series fashion. Malaiya [5] 
presented a allocation model to minimize cost subject 
to an overall system failure intensity goal, same as Lyu 
[6] but considered that execution frequency also 
affects the allocated reliability; Xiang [7] presented a 
fault tree analysis of reliability allocation. He 
considered the structural complexity (redundancy), but 
not internal complexity (e.g. size) of software 

modules; Lyu and Sampath [15] presented the idea 
regarding fault tolerant software reliability allocation 
based on coverage factor, but it can be estimated 
during integration testing phase. The optimization of 
reliability allocation, subject to reliability constraints 
(derived from fault tree or event tree), considers the 
internal complexity (e.g. size of module) as well as 
structural redundancy and criticality. 

Three of the best-known fault-tolerant software 
design methods are N-version programming (NVP), 
recovery block scheme (RBS), and N-self-checking 
programming. All three methods are based on the 
redundancy of software modules (functionally 
equivalent but independently developed) and the 
assumption that coincident failures of modules are 
rare. This approach presumes the execution of N 
functionally equivalent software modules (called 
versions) that receive the same input and send their 
outputs to a voter, which is aimed at determining the 
system output. The voter produces an output if at least 
M-out-of-N outputs agrees, otherwise, the system fails. 

  The rest of the Section is organized as follows. 
Section 2 elaborates the description of some important 
terms, which are prerequisites to understand software 
reliability allocation. Section 3 covers the introduction 
of three Basic techniques of fault tolerant software, 
these techniques are: N-version programming 
architecture, recovery block architecture, and N-self-
checking programming. 
      Section 4 elaborates the problem statements for 
reliability allocation model.  Section 5 concludes the 
paper work. 

2. Definition of some important terms 
      This Section defines some important terms and 
terminology, which are required to understand problem 
model and its formulation for reliability allocation 
procedures. 

2.1  Source lines of code (SLOC) and 
instruction execution rate(r). 

       This is number of source instructions (Is) [1] 
excluding commented lines of code. One source 
instructions may be equivalent to many machine level 
instructions. Instruction execution rate is processor 
execution speed i.e. how many instructions are 
executed in a unit time (CPU time). For example r = 
25 MIPS, i.e. 25000000 instructions are executed in 
one second. 
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2.2 Failure rate and failure intensity function 
(λ(t) ). 

A failure occurs when the user perceives that a 
software program ceases to deliver the expected 
service. The failure intensity function represents [1] 
the rate of change of the cumulative failure function. 
The hazard rate is defined as the probability that a 
failure per unit time occurs in the interval [t , t + dt ], 
given that a failure has not occurred before t and   
instantaneous hazard rate is refers to failure rate 
function (i.e. probability of failure in the point of 
time). In this paper, the failure rate and failure 
intensity function are used interchangeably.  

2.3 Inherent fault density ( ) . 
This is number of faults per KSLOC. The estimate 

for inherent fault density can be based on KSLOC and 
Function Points. A fault is uncovered when either a 
failure of the program occurs, or an internal error (e.g., 
an incorrect state) is detected within the program. The 
cause of the failure or the internal error is said to be a 
fault.  

2.4 Fault reduction efficiency factor(B). 
This is a measure of the proportion of faults 

removed from code to faults removed plus new faults 
introduced, and in other word, it is average no of faults 
corrected per failure. Suggested defect removal 
efficiencies of software developed on different Levels 
of the capability maturity model (1CMM) [1] are given 
in the Table 2.1. 

 
Table 2.1.  Fault removal efficiency factor 

corresponding to CMM level 
 

SEI CMM Levels Fault Removal 
Efficiency Factor 

SEI CMM 1 0.85 

SEI CMM 2 0.89 

SEI CMM 3 0.91 

SEI CMM 4 0.93 

SEI CMM 5 0.95 

 

2.5 Fault exposure ratio (K): 
        It is expected fraction of existing faults exposed 
during the execution of software application. i.e. number 
of faults exposed divided by total number of existing 
faults. In other word, it can be interpreted as the average 
number of failures occurring per fault in the code during 
one linear execution of the program. 

                                            
1 Note: CMM  is a benchmark for comparative assessment of 
software development processes. This service mark owned by 
Software Engineering Institute (SEI), Carnegie Mellon University 
(CMU), US. 

         Musa’s default value of K [1] is given by     
  , however, it is suggested that the 

organization determine an estimate of fault exposure 
based on historical data. Fault exposure ratio, which 
can be obtained by normalizing the per-fault hazard 
rate with respect to the software size and the 
instruction execution rate. Li and Malaiya [2] have 
suggested that K varies with the initial fault density 

and have given the estimates     

where    is defect density per KSLOC. 

2.6 Average code expansion ratio (Qx). 
It is number of object instructions per SLOC. It is 

defined as the ratio of executable line of code 
generated after compilation to that of legal program 
source code syntax. To compute the number of object 
instructions I, the number of executable lines of code 
is multiplied by the code expansion ratio, supplied in 
Table 2.2 [10]. If real project data is not available then 
we can use this table, as this provides average value of 
estimates.   

     The rationale behind this data is that the 
relationship between a line of code and a machine 
instruction varies depending on the language.  Also, 
the relationship between a line of code and a function 
point also vary with language. 

Table 2.2. Code expansion ratio 
 

2.7 Function points. 
Function Points are measures of software size, 

functionality, and complexity used as a basis for 
software cost estimation [9], and given by an 
expression. 
Function Points = Unadjusted Function Points ×  
(0.65 + 0.01 ×  Value Adjustment Factor). 
Determining the unadjusted function point count 
consists of counting the number of external inputs, 
external outputs, external inquiries, internal logical 
files, and external interface files. Determining the 
value adjustment factor consists of rating system, input 
and output, and application complexity. Determining 
Function Points consists of factoring unadjusted 
function points and value adjustment factor together 

Programmi
ng 
Language 

Expansi
on Ratio 

Mean Source 
Statements/Fu
nction Point 

Assembler 1 320 

C 2.5 128 

Ada 4.5 71 

3rd 
generation 

lang. 

4 80 
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After estimating the function points, we can estimate 
the inherent faults using CMM level [1] (standard 
adopted for software development process), as given in 
the Table 2.3. 
 
Table 2.3: Estimation of total inherent defects using 

function points 
 

SEI CMM 
Level 

Average function point 

SEI CMM 1 5 potential, .75 delivered 

SEI CMM 2 4 potential, .44 delivered 

SEI CMM 3 3 potential, .27 delivered 

SEI CMM 4 2 potential, .14 delivered 

SEI CMM 5 1 potential, .05 delivered 

2.8 Non-homogeneous Poisson process: 
A non-homogeneous Poisson process [16] is a 

Poisson process with rate parameter λ (t) such that the 
rate parameter of the process is a function of time.  
The counting process {N (t), t ≥ 0} is said to be a non-
homogeneous Poisson process with intensity function 
λ (t), for t ≥  0 if: 

(I)  N(0) = 0; 
(II) It has independent increments; and 
(III) It has unit jumps, that is, 

P (N (t + h) – N (t) = 1) = λ (t) h + o (h) and 
P (N (t + h) – N (t) ≥  2) = o (h). Where, o (h) is very 
small quantity 
In the non-homogeneous case, the rate parameter λ (t) 
now depends on t. 
When λ (t) = λ, constant, then it reduces to the 
homogeneous case. 

2.9 Musa basic execution time model. 
The Musa basic execution time model [1][14] 

assumes that all faults are equally likely to occur, are 
independent of each other and are actually observed. 
The execution times between failures are modeled as 
piecewise exponentially distributed. The intensity 
function is proportional to the number of faults 
remaining in the program. Failure intensity is function 
of average number of failures )(τµ experienced at any 
given point in time (= failure probability) and is given 
by 
 
                                     
 
Where,   
              
 
  
 
 Where,   f:  is linear execution frequency, and K is fault 
exposure ratio  

μ (τ):  is average total number of failures during 
execution time (τ). 
λ(τ): failure intensity function. 
λ0: initial failure intensity at start of execution. 
v0: total number of failures over infinite time. 

2.10 Musa-Okumoto logarithmic model. 
The Musa-Okumoto model [14] is called 

logarithmic Poisson execution time model, it assumes 
that all faults are equally likely to occur and are 
independent of each other. The expected number of 
faults is a logarithmic function of time in this model, 
and the failure intensity decreases exponentially with 
the expected failures experienced. Finally, the software 
will experience an infinite number of failures in 
infinite time. 
Average total number of counted experienced failures 
(µ) is a function of the elapsed execution time (τ). 
 
The  failure intensity is given by 
 
 
 
 
 
 
 
 
 
Where,     0λ   is initial failure intensity 

                     is failure intensity decay parameter. 

        Dmin (fault density) takes a value between 2 and 4 
defects per KLOC. For an initial fault density D larger 
than 10 faults per KLOC, they [14] suggest to set Dmin 
= D0/3. Like Musa’s basic execution time model the 
“logarithmic Poisson execution time model” by Musa 
and Okumoto is based on failure data measured in 
execution time. Its assumptions are as follows: 
1. At time t = 0,  no failures have been observed. 
2. The number of failures observed by time t, M(t ), 
follows a Poisson process. 

2.11 Fault tree analysis (FTA). 
Fault tree analysis is a failure analysis [7] in which 

an undesired state of a system is analyzed using  logic 
relationship among the various components (or 
events). Fault Tree Analysis (FTA) attempts to model 
and analyze failure processes of systems. FTA is 
basically composed of logic diagrams that display the 
state of the system and is constructed using graphical 
design techniques. The fault tree is usually using 
conventional logic gate symbols.  

A cut set is a set of basic events whose occurrence 
causes the system to fail. To get the minimum cut sets 
from the whole cut sets; use the relationships of the 
events below to absorb the redundant cut sets.   
A+A=A   A+AB=A   AA=A. Some example we shall 
see in Section 3. 
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2.12 Event tree diagram. 
 Event tree diagram is based on binary logic, in 

which an event either has or has not happened or a 
component has or has not failed. It is valuable in 
analyzing the consequences arising from a failure or 
undesired event. Event tree analysis is highly effective 
in determining how various initiating events can result 
in accidents of interest. Event trees are useful for 
system-reliability analysis and risk quantification since 
they illustrate the logic of combination of probabilities 
and consequences of event sequences.  

3. Basic techniques and terms of fault 
tolerant software 
Software failures are caused by errors made in 

various phases of program development. When the 
software reliability is of critical importance, special 
programming techniques are used in order to achieve 
its fault tolerance. Three of the best-known fault-
tolerant software design methods [13] are N-version 
programming (NVP), recovery block scheme (RBS), 
and N-self-checking programming (NSCP). Here it is 
considered that failures of versions of each component 
are statistically independent and having no coincident 
failure and hardware faults has not been taken into 
account. The term coincident failure refers that the two 
or more functionally equivalent modules fail on the 
same input case. 

3.1. N-version programming (NVP) 
architecture 
In an N-version software system, each module is 

made with up to N different implementations. Each 
variant accomplishes the same task, but hopefully in a 
different way. Each version then submits its answer to 
voter or decider which determines the correct answer, 
and returns that as the result of the module. This 
system can overcome the design faults present in most 
software by relying upon the design diversity concept.  
                 
 
 
 
 
                              
                
 

                                            
 
 
 
 
 
 
 
Figure 3.1: N-version fault tolerant software model 
 

Using N-version software, it is encouraged that 
each different version be implemented in as diverse a 
manner as possible, including different tool sets, 

different programming languages, and possibly 
different environments. The voter produces an output 
if at least M out of N outputs agree (it is presumed that 
the probability that M wrong outputs agree is 
negligibly small). Otherwise, the system fails. Usually 
majority voting is used in which N is odd and M = 
(N+1)/2. N-version programming consists of an 
adjudication module called a voter, and n 
independently developed software versions (M1, M2, 
M3,…Mn), which are functionally equivalent. This 
NVP model is based on the same concepts as N-
modular redundancy (NMR), which is a hardware 
fault-tolerant architecture. In the NVP model, all n 
software versions are executed for the same task at the 
same time (i.e., in parallel), and their outputs are 
collected and evaluated by the voter as shown in 
Figure 3.1.                                          
 

 
 

 
 
 

 
 
 
 
 
 
 
 

 
 

   
   Figure 3.2: Fault tree diagram of 3-version FTS 

 
The majority of the outputs determine the voter 

(V) decision. For the ease of computation of failure 
probability, n-version fault tolerant software (FTS) 
model can be converted into fault tree diagram. A fault 
tree equivalent of 3-version FTS (2 out-of-3)  is shown 
in Figure 3.2.  

3.2. Recovery block architecture 
Another approach to software fault tolerance is the 

“Recovery Block”. As the name implies, the basic goal 
is to detect a software fault in a program, recover the 
machine state at the time the faulty program was 
entered, and execute next version that performs the 
same function as the faulty program. A number of 
independently designed programs that perform the 
same function are developed. The adjudicator 
(acceptance test) is the component which determines 
the correctness of the various blocks to try.  

If an acceptance test detects erroneous output, 
then the next one is executed, etc., until an acceptable 
output is obtained. If all versions are deemed faulty, an 
error is posted. The Figure 3.3 illustrates the technique. 

 

Top Event 

Input 

Correct 

System 
failure 

M
1 

M
2 

M
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M
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Figure 3.3: Recovery block 

3.3. N shelf-checking programming (NSCP). 
 

 Self-checking software are the extra checks, often 
including some amount of check pointing and rollback 
recovery methods added into fault-tolerant or safety 
critical systems. In NSCP, N modules are executed in 
pairs. The outputs from the modules are compared and 
then the outputs of each pair are tested and if they do 
not agree with each other, the response of the pair is 
discarded. The technique is shown in Figure 3.4 for 
N=4. If a comparison of the outputs of the first pair of 
modules, M1 and M2, is successful, then the output is 
passed to the next phase of computation and system is 
successful. If these outputs disagree, then a 
comparison of the outputs of the second pair of 
modules, M3 and M4, is made. If the outputs of the 
second pair are agreed, then the output is passed to the 
next phase. Otherwise the system fails.  

 

 

 

 

 

 

 

 

 
 
 
 

Figure 3. 4: N self-checking programming 

3.4. Adjudication by voting 
Majority voting: 

Majority voting: In m-out-of-n fault tolerant 
software system, the number of version is N, and m is 
the agreement number, or the number of matching 
outputs which the adjudication algorithm requires for 
the system success. The value of n is rarely larger than 
3. In general, in majority voting,  2/)1( += Nm  
where, m is ceiling function of (N+1)/2. 

4. Problem statements 
Consider a software system consisting of n 

module/component, where some of components are 
used in redundant fashion to make the system fault 
tolerant. The goal is to assign failure probability 
requirements to the n modules (versions), such that the 
pre-specified reliability requirements of the system are 
satisfied, at the minimal cost. It is assumed that 
failures of versions for each component are statistically 
independent and having no coincident failure and 
hardware faults has not been taken into account. All 
the functionally equivalent module consist different 
number of faults depending on size (KLOC), but fault 
density is same 

4.1. Model formulation 
Two system failure probability allocation 

techniques are used: first one is, cut set method based 
on software Fault tree analysis (SFTA) [7], and second 
allocation technique, which is based on minimization 
of total cost (testing time/effort) and taking failure 
probability expression (obtained from fault tree or 
event tree) as constraints. 

4.1.1 Cut set method: this method [7] analyses the 
logic relationships among the components (or 
applications) of the software, which may cause the root 
event to occur. A cut set of basic events whose 
occurrence causes the system to fail. A minimum cut set 
of a fault tree gives a minimum set of successful events 
necessary to satisfy the root. Presume that the maximum 
acceptable Failure probability of software system is F, 
and the system consists of n components m1, m2, 
m3,….mn,  By using SFTA, we get x minimum cut sets. 
If one minimum cut set contains i modules, then the 
maximum FR of each component in this minimum cut 
set is 
                                                                
 
Where,j=1,2,3…n.                    (1) 

 
If there exist intersections in the minimum cut 

sets, that is to say, the result of F mj,  F  may have k 
different values,  then the minimum of them is taken as 
the value of F. This algorithm is a geometric mean 
algorithm in some sense, which is the reverse process 
of the traditional analysis of software failure rate by 
using SFTA. Cost  minimization allocation model: The 
testing time (cost) is taken as objective function and 
failure probability expression, derived from equivalent 
fault tree (for n-version programming) and event tree 
[12] (for recovery block), is taken as constraint for 
reliability allocation model. There, two software 
reliability models are used to derive the objective 
function (testing time expression): Musa basic 
execution model and Musa-Okumoto logarithmic 
model. The problem is formulated as a nonlinear 
programming problem as follows  
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Musa basic execution time model: 
Minimize                                                                (2) 
 
                                                                                                     
Subject to     (3) 
 
 
 
                                                                                                                  
      
 
 
 
     is initial failure intensity of ith module       
F   is goal failure probability of software system 
The numerical values given below are either 
experimental or assumed [1]. 
                       
 
 
   

ssi

i
i ISLOCI

KrB 5.10
)(

.
0

0 =
×

==
ω
λ

β

 
 f   is execution frequency  
Q   (is code expansion ratio) = 4.5   
         (Inherent faults)  =    
           
 r  (Execution speed of processor) = 25 MIPS 
K  (Fault exposure ratio) =  
B (Fault reduction efficiency factor)= 0.85.(from Table 
2.1.)  
          (Fault density) = 6 faults /KLOC    (taken a 
average value) 

 
Musa-Okumoto logarithmic model: 
 Testing time is given by 
 
Objective.function                                                                                                        
      
 
 
     ….(4) 
 
Constraints:                                                             (from 
eq. (3)). 
Where, n is number of components, 

       Dmin=4 faults per KLOC [14],        
   Isi= source lines of code of ith module 
       λi= failure intensity function of ith module 
       λ0i= initial failure intensity function of ith 

module 

4.2. Reliability allocation of N-version 
programming architecture. 

 
Consider a fault tolerant system consisting only 

one application as shown in Figure 4.1, where the 
modules M1, M2, and M3 are executed concurrently 
and 2-out of 3, is required to run the system 

successfully. The module V compares and checks the 
output of the modules whether it should be accepted or 
not. For the ease of computation, the 3-version 
software fault tolerant model shown in Figure 4.1 is 
converted to an equivalent fault tree diagram, as shown 
in Figure 4.2. Where, the modules A, B, and C (failure 
probability of M1, M2 and M3 respectively) are 
executed concurrently and at least 2-out of them is 
required to run the system successfully. The module V 
(failure probability of voter) checks for the most 
appropriate result out of the outputs of all the three 
versions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.1: 3-version fault tolerant software model 

 
Failure rate allocation using SFTA: 
Minimal cut sets of the fault tree shown in Figure 4.2 
are V (voter), AB, AC, BC. Let failure rate of the 
software (top event) = 0.03. Fv is failure rate of  
module V, Then by using Eq. (1), we get: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.2: Fault tree equivalent to 3-version fault 
tolerant software model 
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Allocation using cost minimization 
Let the goal failure rate of software is 0.03 
The objective function is given (derived from (Musa 
basic execution model)Eq. (2)) by. 
              
 
 
The objective function is given (derived from(Musa 
Okumoto Logarithmic model) Eq. (4)) by. 
 
 
 
 
 
 
 
The constraint is given by: 
 
 
This constraint is derived from fault tree shown in 
Figure 4.2.  
 Other constraints can be considered as:  
V>0.001; V<0.999; 
A>0.001; A<0.999; 
B>0.001; B<0.999; 
C>0.001; C<0.999;  

 
 

 
 

 Figure 4.3: Failure rate vs. module size, in 3-
version programming architecture 

After solving the equations (objective function 
and constraints), the failure rate allocated to different 
modules (result of all three, cutest, Musa basic 
execution, and Musa Okumoto logarithmic methods) is 
plotted and are shown in Figure 4.3. From the graph 
shown in Figure 4.3, we can infer that the module v is 
supposed to be more reliable (least failure rate) and the 
allocated failure probability of modules A, B and C 
may be different based on their size (i.e. complexity). 
If modules sizes are equal then the allocated values are 
identical to estimated by using SFTA (cut set method). 
Musa-Okumoto model giving more appropriate 
allocation among three approaches (tabulated above), 
because, as size differs slightly, allocated value also 
differs slightly, but Musa basic execution model gives 
more variation where as cut set method gives no 
variation. 

4.3. Reliability allocation for recovery blocks 
architecture. 

In recovery block architecture, modules (versions) are 
not in n-modular redundancy fashion exactly, but it 
can be considered in sequential and standby fashion, so 
rather than converting this into an equivalent fault tree 
diagram, forming an event tree is more appropriate. 
Recovery block architecture of two modules (M1, and 
M2), and two adjudicator (A1 and A2) is shown in 
Figure 4.4.                              
An equivalent event tree diagram of Figure 4.4 is 
shown in Figure 4.5 

 
  Input    

                                                                                  
 
 
 
Failure output 

                   
              Correct output 
 

Figure 4.4: Recovery block architecture of 2-
modules 

 
 
            M1 (a)   A1 (b)  M2(c)  A2 (d) Outcomes 
      
 
 
 

 
 
 
 
 
 
 

 
Figure 4.5 : Event tree of a 2-module recovery 

block. 
 
Where,  
C stands for correct output,  
I stand for incorrect output,  
S stands for success, 
 F stands for failure,  
 and a, b, c, d are failure probability M1, A1, M2, and 
A2 respectively.  
Probability of failure of the event tree (shown in 
Figure 4.4) is given by 

abccabdbabcadcba ++++  

         =   bdcbcba ++  
The objective function is derived from Eq. (2) and 
given by (From Musa basic execution model) 
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The objective function is derived from Eq. (4) and 
given by  (From Musa-Okumoto logarithmic model) 
 
 
 
 
 
 
 
Constraint is derived (from event tree) as. 

03.0<=++ bdcbcba  
Other constraints are: a>0.001; a<0.999; 
                        b>0.001; b<0.999; 
   c>0.001; c<0.999; 
   d>0.001; d<0.999;  
Because failure rate beyond the range (0.001,0.999) is 
not practical. 
 

 
 

Figure 4.6: failure probability vs. module size plot 
of 2-module recovery block 

 
After solving the equations (objective function and 
constraints), the failure rate allocated to different 
modules(size) is plotted and are shown in Figure 4.6, 
and so we can see that first executable module 
(version) is supposed to be more reliable than the next 
one, which justify the fact that, in recovery block 
architecture the best version executes first then another 
best one and so on. For the ease of solving nonlinear 
programming, the failure rates of acceptance tests are 
taken equal. The results of allocation also give the idea 
to organize the sequence (order) of module (versions) 
to execute. The allocated value obtained from Musa 
basic execution model shows more difference in 
failure rate of first executable version than the next 
one, whereas, Musa-Okomoto shows less difference. 
Moreover, Musa-Okumoto model allocates better 
reliability(less failure rate) to all other modules at the 
cost of small increase in failure rate of first executable 
version than Musa basic model. From the allocated 
value of failure probability, many inferences can be 
taken out, e.g. how to allocate testing effort and other 
resources among the modules 

4.4. N self-checking programming architecture 
The N self-checking programming architecture as 

shown in Figure 3.4, can be broken into two part, (a) 
compare II is taken as acceptance test and compare I 
along with modules connected with it, is taken as 
module (version), and (b) compareI is taken as voter 

and modules connected with this are taken as versions. 
So, reliability allocation also can be done in two steps, 
for part (I) recovery block allocation can be applied, 
and for part (II) N-version programming allocation can 
be applied, which are discussed already. 

5. Conclusion 
   Reliability allocation is a useful tool at design 

stage of software development process. Fault tree 
diagram and event tree diagram are used to make 
software system simpler for reliability allocation work, 
especially for Fault tolerant system. In recovery block 
architecture, not all modules (functionally equivalent 
version of software module) results in output, so it is 
not reasonable to consider all modules as N-modular 
redundancy or in series fashion. Basic approach of 
reliability allocation using fault tree has been discussed 
along with reliability allocation cost (testing time) 
minimization. Voter is considered more critical hence, 
allocated more reliability than versions (software 
module with similar functionality). Musa-Okumoto 
logarithmic model allocates better reliability to all 
other modules at the cost of small increase in failure 
probability of first executable version.  

Scope and future work 
(I)       Many other software models can be used 

for the allocation process. 
(II)       Number of faults corrected or residual can 

be taken as objective function. 
(III)       Some other factors like utility and 

occurrence probability can be 
incorporated in reliability allocation 
constraints.  
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